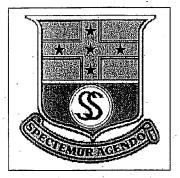
Number:



2013

Year 12

TRIAL HSC

Thesday 30th July 2013

(ALSO NSW INDEPENDENT SCHOOLS PAPER)

TRIAL HSC

Mathematics Ext 2

Weighting

40%

Working time: 3 hours

Total marks: 100

Outcomes: E1 – E8

Topics examined:

All topics

Question	Mark
1 -10	, /10
11	, /15
12	. /15
13	/15
14	/15
15	,/15
-, 16	/15
TOTAL	

General Instructions:

- Write using blue or black pen
- · Board-approved calculators and templates may be used
- All necessary working should be shown in every question
- · Questions are of equal value
- Full marks may not be awarded for careless or badly arranged work
- Questions are not necessarily arranged in order of difficulty
- Allow 15 minutes for section 1
- Allow 2 hours 45 minutes for section 2

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \ x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \ a \neq 0$$

$$\int \cos ax \ dx = \frac{1}{a} \sin ax, \ a \neq 0$$

$$\int \sin ax \ dx = -\frac{1}{a} \cos ax, \ a \neq 0$$

$$\int \sec^2 ax \ dx = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \ a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} \, dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \ x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$$

NOTE:
$$\ln x = \log_a x$$
, $x > 0$

Marks

Marks

1

Section 1

10 marks

Attempt Questions 1-10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10

- 1 What is the value of $(\log_a b)(\log_b c)(\log_c d)$?
- (A) $\frac{1}{\log_d a}$
- (B) $\log_a \frac{d}{a}$
- (C) $\log_a \frac{a}{d}$
- (D) $\log_a a$
- 2 $y = \sin^{-1} e^x$. Which of the following is an expression for $\frac{dy}{dx}$?
 - (A) cosec y
 - (B) $\cot y$
 - (C) sec *y*
- (D) tan y
- 3 What is the number of asymptotes on the graph of $y = \frac{x^3}{x^2 1}$?
 - (A) 1
 - (B) 2
 - (C) 3
 - (D) 4
- 4 Which of the following graphs is the locus of the point P representing the complex number z moving in an Argand diagram such that $|z-2i|=2+\operatorname{Im} z$?
 - (A) a circle
 - (B) a hyperbola
 - (C) a parabola
 - (D) a straight line

5 Which of the following is an expression for the eccentricity of the ellipse

$$\frac{x^2}{k} + \frac{y^2}{k-1} = 1$$
 where $k > 1$?

- (A) $\frac{\sqrt{2k-1}}{k}$
- (B) $\frac{1}{\sqrt{k}}$
- (C) $\sqrt{\frac{2k-1}{k}}$
- $\text{(D)} \quad \frac{\sqrt{2k^2 2k + 1}}{k}$
- 6 Which of the following is an expression for $\int x^3 \log_e x \, dx$?

A)
$$\frac{1}{4}x^4 \log x - \frac{1}{4}x^4 + c$$

(B)
$$\frac{1}{4}x^4 \log_e x - \frac{1}{16}x^4 + c$$

(C)
$$\frac{1}{4}x^4 \log_e x + \frac{1}{16}x^4 + c$$

(D)
$$\frac{1}{4}x^4 \log_e x + \frac{1}{4}x^4 + c$$

7 The base of a solid is the circle $x^2 + y^2 = 1$. Every cross section of the solid taken perpendicular to the x axis is a right-angled, isosceles triangle with its hypotenuse lying in the base of the solid. Which of the following is an expression for the volume V of the solid?

(A)
$$\int_{-1}^{1} \left(1 - x^2\right) dx$$

(B)
$$2\int_{-1}^{1} (1-x^2) dx$$

(C)
$$4\int_{-1}^{1} (1-x^2) dx$$

(D)
$$8 \int_{-1}^{1} (1-x^2) dx$$

Student name / number

8 What is the multiplicity of the root x=1 of the equation $3x^5-5x^4+5x-3=0$?

- (A)

- 9 A particle of mass m is moving horizontally in a straight line. Its motion is opposed by a force of magnitude $mk(\nu + \nu^2)$ Newtons when its speed is ν ms⁻¹ (where k is a positive constant). At time t seconds the particle has displacement x metres from a fixed point O on the line and velocity $v \text{ ms}^{-1}$. Which of the following is an expression for x in terms of ν ?
 - $\frac{1}{k}\int \frac{1}{1+\nu} d\nu$
- (B) $\frac{1}{k} \int \frac{1}{\nu(1+\nu)} \, d\nu$
 - (C) $-\frac{1}{k} \int \frac{1}{v(1+v)} dv$
- (D) $-\frac{1}{k} \int \frac{1}{1+\nu} d\nu$
- 10 If n fair dice are rolled together, what is the probability that the product of the n scores is an even number?

Section II

Marks

2

90 marks

Attempt Question 11 – 16

Allow about 2 hours 45 minutes for this section

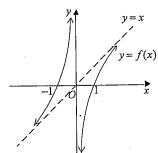
Answer the questions on your own paper, or writing booklets if provided. Start each question on a new page.

All necessary working should be shown in every question.

Ouestion 11 (15 marks)

Use a SEPARATE writing booklet.

- Find $\frac{dy}{dt}$ in simplest form if $x = t + \frac{1}{t}$ and $y = \frac{1}{3}t^3 t$.
- Find $\int \frac{\cos x}{1+\cos x} dx$. 2
- Use the substitution $u = e^x + 1$ to find $\int \frac{e^{2x}}{\sqrt{e^x + 1}} dx$.
- Use the substitution $t = \tan \frac{x}{2}$ to evaluate $\int_{0}^{\frac{x}{2}} \frac{1}{4 + 5\sin x} dx$ in simplest exact form.
- The diagram shows the graph of the curve y = f(x) where $f(x) = |x \frac{1}{x}|$.



On separate diagrams sketch the graphs of the following curves showing any intercepts on the axes and the equations of any asymptotes.

- (i) y = f(x)
- (ii) $y = \frac{1}{f(x)}$
- (iii) $y = e^{f(x)}$

Marks

2

Question 12 (15 marks)

Use a SEPARATE writing booklet.

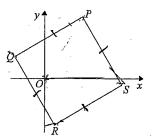
If z=1+2i and w=3-i, express in the form a+ib (a and b real numbers)

2z-w

(ii) $z\overline{w}$

If $z = 4\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$, express in modulus/argument form the two values of $z^{\frac{1}{2}}$.

In the Argand diagram below vectors OP, OQ, OR, OS represent the complex numbers p, q, r, s respectively where PORS is a square. Show that s + ip = q + ir



Consider the function $f(x) = x^3 - px + q$, where p > 0 and q are real numbers. (d)

Sketch the graph of y = f(x) showing the coordinates of the turning points.

- (ii) Show that the equation $x^3 px + q = 0$ has exactly one real root if and only if $27a^2 > 4p^3$.
- The region bounded by the curve $y = \tan^{-1} x$ and the x axis between x = 0 and x = 1is rotated through one complete revolution about the line x = 1.
- Use the method of cylindrical shells to show that the volume V of the solid formed is given by $V = 2\pi \left((1-x) \tan^{-1} x \, dx \right)$.

(ii) Hence find the value of V in simplest exact form.

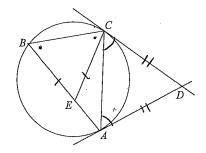
Ouestion 13 (15 marks)

Use a SEPARATE writing booklet.

Marks

 $P(2\sqrt{2}, 2\sqrt{3})$ and Q(4, 6) are two points on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ where a > b > 0. Find the values of a and b.

In the diagram below, ABC is a triangle inscribed in a circle. Tangents to the circle at A and C meet at D. E is the point on AB such that CE = BE.



(i) Show DAEC is a cyclic quadrilateral.

(ii) Hence show DE || CB.

2

(c)(i) Show that the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is πab .

(ii) Show that if the hyperbola $xy = c^2$ and the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (where a > b > 0) intersect at $(a\cos\theta, b\sin\theta)$ then $2c^2 = ab\sin 2\theta$

By considering the graph of $y = \sin 2\theta$ for $-\pi < \theta \le \pi$, show that if $2c^2 < ab$ the ellipse and hyperbola intersect at four points (two in the first quadrant and two in the third quadrant), while if $2c^2 = ab$ the curves touch at two points (one in the first quadrant and one in the third quadrant).

(iii) The ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (where a > b > 0) has eccentricity e and foci S and S'. This ellipse touches the hyperbola $xy = \frac{1}{2}ab$ at points P and Q. Show that the ratio of the area of the quadrilateral PSQS' to the area of the ellipse is $e\sqrt{2}$: π .

Marks

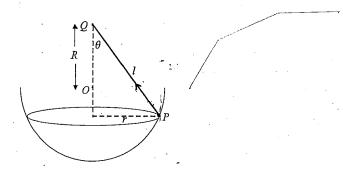
2

Student name / number

Question 14 (15 marks)

Use a SEPARATE writing booklet.

(a)



In the diagram, particle P of mass m kg is moving in a horizontal circle of radius r metres with constant angular velocity ω radians/second on the inside of a smooth hemispherical bowl with centre O and radius R metres. The particle is fastened to one end of a light, inextensible string of length l metres, the other end of which is suspended from a point Q at a distance R metres vertically above O. The string makes an angle θ with the downward vertical through O. The tension in the string is T Newtons while the normal reaction between P and the surface of the bowl is N Newtons. The acceleration due to gravity is $g \text{ ms}^{-2}$.

- (i) Show that $N\cos 2\theta + T\cos \theta = mg$ and $N\sin 2\theta + T\sin \theta = mr\omega^2$.
- (ii) Hence show that $N = ml\omega^2 \cos \theta mg$ and find a similar expression for T.
- (iii) Hence show that if the particle remains in contact with the bowl then

$$\omega \ge \sqrt{\frac{g}{l\cos\theta}}$$

- A particle of mass m kg is dropped from rest in a medium where the resistance is mkv^2 Newtons when the speed of the particle is $v \text{ ms}^{-1}$ and the terminal velocity is $V \text{ ms}^{-1}$. After t seconds the particle has fallen x metres. The acceleration due to gravity is g ms⁻².
- (i) Explain why $\ddot{x} = \frac{g}{v^2} (V^2 v^2)$.
- (ii) By finding x and t as functions of ν , show that $Vt x = \frac{V^2}{g} \log_a \left(1 + \frac{\nu}{V} \right)$.
- (iii) Express ν as a function of t.
- Tive Find the limiting difference as $t \to \infty$ between the distance travelled at constant speed V ms⁻¹ for t seconds and the distance fallen by the particle in this medium over t seconds.

Question 15 (15 marks)

Use a SEPARATE writing booklet.

Marks

3

- The equation $x^3 + kx + 1 = 0$ has roots α , β and γ .
 - (i) Find the monic cubic equation with roots $\frac{1}{\alpha^2}$, $\frac{1}{\beta^2}$ and $\frac{1}{\alpha^2}$.
 - (ii) Find the value of $\alpha^4 + \beta^4 + \gamma^4$.
 - A sequence of numbers T_n , n=1,2,3... is such that $T_1=2$, $T_2=-4$ and 5 $T_n = 2T_{n-1} - 4T_{n-2}$ for n = 3, 4, 5, 6... Use Mathematical induction to show that $T_n = (1 + \sqrt{3} i)^n + (1 - \sqrt{3} i)^n$ for $n \ge 1$.
- Consider the function $f(x) = \sum_{k=1}^{n} \sqrt{a_k} x \frac{1}{\sqrt{a_k}}$ where a_1, a_2, \dots, a_n are positive real numbers.
 - (i) By expressing f(x) as a quadratic function of x, show that 3 $\left(a_1 + a_2 + ... + a_n\right) \left(\frac{1}{a} + \frac{1}{a} + ... + \frac{1}{a}\right) \ge n^2$.
- (ii) Hence show that $1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{n} \ge \frac{2n}{n+1}$. 2

Student name / number

Marks

3

Question 16 (15 marks)

Use a SEPARATE writing booklet.

- (a) The equation $z^5 1 = 0$ has roots 1, α , α^2 , α^3 , α^4 where $\alpha = \cos \frac{2\pi}{5} + i \sin \frac{2\pi}{5}$. Find the monic quadratic equation with integer coefficients whose roots are $(\alpha + \alpha^4)$ and $(\alpha^2 + \alpha^3)$.
- (b)(i) If a and b are positive real numbers, show that $a^2 ab + b^2 \ge \left(\frac{a+b}{2}\right)^2$.
 - (ii) In $\triangle ABC$, if $\angle BCA \ge 60^\circ$ show that $c^2 \ge a^2 ab + b^2$ and hence deduce that $2c^3 \ge a^3 + b^3$ with equality if and only if $\triangle ABC$ is equilateral.
- (c) Let $I_n = \int_1^2 \left(1 \frac{1}{x}\right)^n dx$ for n = 1, 2, 3, ...
 - (i) Show that $\frac{1}{n+1}I_{n+1} = \frac{1}{n}I_n \frac{1}{n(n+1)2^n}$ for n = 1, 2, 3, ...
 - (ii) Hence show that $\frac{1}{n+1}I_{n+1} = I_1 \sum_{r=1}^n \frac{1}{r(r+1)2^r}$.
 - (iii) Show that $\sum_{r=1}^{n} \frac{1}{r(r+1)2^{r}} = (1 \log_{e} 2) \frac{1}{n+1} I_{n+1}$ and hence find the limiting sum of the series $\frac{1}{1 \times 2 \times 2^{1}} + \frac{1}{2 \times 3 \times 2^{2}} + \frac{1}{3 \times 4 \times 2^{3}} + \dots$

Independent Trial HSC 2013 Mathematics Extension 2 Marking Guidelines

Section I

Questions 1-10 (1 mark each)

Question	Answer	Solution	Outcomes
1.	A	$(\log_a b)(\log_b c)(\log_e d) = \frac{\log_d b}{\log_d a} \cdot \frac{\log_d c}{\log_d b} \cdot \frac{\log_d d}{\log_d c} = \frac{1}{\log_d a}$	Н3
2.	D	$y = \sin^{-1} e^{x}$ $\cos y \frac{dy}{dx} = e^{x}$ $\therefore \frac{dy}{dx} = \frac{\sin y}{\cos y} = \tan y$	HE4
3.	С	$y = \frac{x^3}{x^2 - 1} = \frac{x(x^2 - 1) + x}{x^2 - 1} = x + \frac{x}{x^2 - 1}, \text{ where } \frac{x}{x^2 - 1} \to 0 \text{ as } x \to \infty$ $\therefore y = x, x = 1 \text{ and } x = -1 \text{ are the asymptotes on the graph.}$	E6
4.	C	The distance from P to the fixed point $(0,2)$ (the focus) is equal to the vertical distance to the horizontal line $y=-2$ (the directrix).	E3
5.	В	$k-1 = k(1-e^2)$ $\therefore 1 - \frac{1}{k} = 1 - e^2$ $\therefore e = \frac{1}{\sqrt{k}}$	E4
6.	В	$\int x^3 \log_e x dx = \frac{1}{4} x^4 \log_e x - \frac{1}{4} \int x^3 dx = \frac{1}{4} x^4 \log_e x - \frac{1}{16} x^4 + c$	E8
7.	A	$A = \frac{1}{2}s^{2} = \frac{1}{4}(s^{2} + s^{2}) = \frac{1}{4}(2y)^{2}$ $\therefore A = y^{2} = 1 - x^{2}$ $\therefore V = \int_{-1}^{1} (1 - x^{2}) dx$	E7
8.	С	$P(x) = 3x^{5} - 5x^{4} + 5x - 3 \implies P(1) = 0$ $P'(x) = 15x^{4} - 20x^{3} + 5 \implies P'(1) = 0$ $P''(x) = 60x^{3} - 60x^{2} \implies P''(1) = 0$ $P'''(x) = 180x^{2} - 120x \implies P'''(1) \neq 0$	E4
9.	D	$\nu \frac{d\nu}{dx} = -k(\nu + \nu^2) \qquad \qquad \therefore \frac{dx}{d\nu} = -\frac{1}{k(1+\nu)} \qquad \qquad \therefore x = -\frac{1}{k} \int \frac{1}{1+\nu} d\nu$	E5 .
10.	С	$P(product \ even) = P(at \ least \ one \ even) = 1 - P(all \ odd)$ ∴ $P(product \ even) = 1 - \left(\frac{1}{2}\right)^n = \frac{2^n - 1}{2^n}$	НЕ3

Question 11

a. Outcomes assessed: E6

	Marking Guidelines	
	Criteria	Marks
• finds $\frac{dy}{dt}$ and $\frac{dx}{dt}$		1
finds the quotient		1

Answer

$$y = \frac{1}{3}t^{3} - t \implies \frac{dy}{dt} = t^{2} - 1$$

$$x = t + \frac{1}{t} \implies \frac{dx}{dt} = 1 - \frac{1}{t^{2}} = \frac{t^{2} - 1}{t^{2}}$$

$$\therefore \frac{dy}{dx} = \frac{dy}{dt} + \frac{dx}{dt} = t^{2}$$

b. Outcomes assessed: E8

Marking Guidelines	
Criteria	Marks
rearranges integrand into appropriate form	1
• writes primitive function	1

Answer

$$\frac{\cos x}{1 + \cos x} = 1 - \frac{1}{1 + \cos x} = 1 - \frac{1}{2\cos^2(\frac{1}{2}x)} = 1 - \frac{1}{2}\sec^2(\frac{1}{2}x)$$
$$\therefore \int \frac{\cos x}{1 + \cos x} dx = x - \tan(\frac{1}{2}x) + c$$

c. Outcomes assessed: E8

Marking Guidelines		
Criteria	Marks	
• performs substitution and finds primitive as a function of u	1	
• finds primitive as a function of x	1	

Answer

$$\int \frac{e^{2x}}{\sqrt{e^x + 1}} dx = \int \frac{e^x}{\sqrt{e^x + 1}} e^x dx = \int \frac{u - 1}{\sqrt{u}} du = \frac{2}{3}u^{\frac{1}{2}} - 2u^{\frac{1}{2}} + c$$

$$du = e^x dx$$

$$\therefore \int \frac{e^{2x}}{\sqrt{e^x + 1}} dx = \frac{2}{3}\sqrt{e^x + 1} \left(e^x - 2\right) + c$$

Q11(cont)

d. Outcomes assessed: E8

Marking Guidelines

Marking Guidennes	
Criteria	Marks
• converts into a definite integral in terms of t	. 1
rearranges integrand into partial fractions	1
• finds the primitive function	1
evaluates in simplest exact form	1

Answer

$$t = \tan\frac{x}{2}$$

$$dt = \frac{1}{2}\sec^{2}\frac{x}{2}dx$$

$$dx = \frac{2}{1+t^{2}}dt$$

$$x = 0 \Rightarrow t = 0$$

$$x = \frac{\pi}{2} \Rightarrow t = 1$$

$$4 + 5\sin x = \frac{4(1+t^{2}) + 10t}{1+t^{2}}$$

$$\int_{0}^{\frac{\pi}{2}} \frac{1}{4+5\sin x} dx = \int_{0}^{1} \frac{1}{2t^{2} + 5t + 2} dt$$

$$= \int_{0}^{1} \frac{1}{(2t+1)(t+2)} dt$$

$$= \frac{1}{3} \int_{0}^{1} \left(\frac{2}{2t+1} - \frac{1}{t+2}\right) dt$$

$$= \frac{1}{3} \left[\log_{e} \frac{2t+1}{t+2}\right]_{0}^{1}$$

$$= \frac{1}{3} (\log_{e} 1 - \log_{e} \frac{1}{2})$$

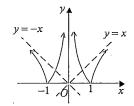
$$= \frac{1}{3} \log_{e} 2$$

e. Outcomes assessed : E6

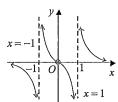
Marking Guidelines Criteria	
i • reflects sections of graph below x axis in x axis, giving equations of oblique asymptotes	Marks 1
ii • sketches curve for $ x > 1$ giving equations of vertical asymptotes	1
• sketches curve for $ x < 1$ with origin excluded	1
iii • sketches curve for $x < 0$ through $(-1,1)$	1
• sketches curve for $x > 0$ through (1, 1) with origin excluded	1

Answer

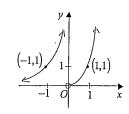
i.
$$y = |f(x)|$$



ii.
$$y = \frac{1}{f(x)}$$



iii.
$$y = e^{f(x)}$$



Question 12

a. Outcomes assessed: E3

Marking Guidelines

	Crite	 Marks
i • subtracts and simplifies	,	1
ii • expands product and simplifies		1

Answer

i.
$$2z - w = (2+4i) - (3-i) = -1+5i$$

ii.
$$z\overline{w} = (1+2i)(3+i) = 3+7i+2i^2 = 1+7i$$

b. Outcomes assessed: E3

Marking Guidelines

Trait ting Guidelines		
Criteria	Marks	
writes one value in modulus/argument form	1	
writes second value in modulus/argument form	1	

Answer

The two square roots of $z = 4\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$ have modulus 2 and arguments $\frac{\pi}{6}$ and $\frac{\pi}{6} - \pi$.

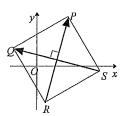
The two values of $z^{\frac{1}{2}}$ are $2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$ and $2\left(\cos\frac{-5\pi}{6} + i\sin\frac{-5\pi}{6}\right)$

c. Outcomes assessed: E3

Marking Guidelines

Criteria Criteria	Marks
• uses the geometrical properties of a square to compare vectors along the diagonals	1
• translates this into an appropriate statement about p, q, r, s and rearranges	1

Answer



The diagonals of a square are equal and meet at right angles.

Hence the vector SQ, representing (q-s) is the rotation

anticlockwise by $\frac{\pi}{2}$ of the vector \overrightarrow{RP} , representing (p-r).

$$\therefore q - s = i(p - r).$$

$$s + ip = q + ir.$$

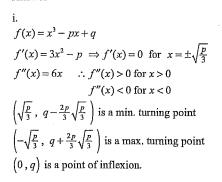
Q12 (cont)

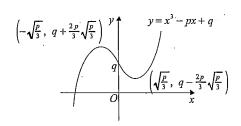
d. Outcomes assessed: E4

Marking Guidelines

Warking Guidennes	
Criteria	Marks
i • finds x coordinates for stationary points and determines their nature	1
sketches curve showing coordinates of turning points	1
ii • deduces y coordinates of turning points have same sign for exactly one real root	1
• uses product of y coordinates of turning points is positive to deduce $27q^2 > 4p^3$	1

Answer





ii. The equation has exactly one real root if and only if the curve cuts through the x axis exactly once, and this occurs when the y coordinates of the turning points are either both positive or both negative and therefore have a product which is positive.

Hence the equation has exactly one real root if and only if

$$\left(q - \frac{2p}{3}\sqrt{\frac{p}{3}}\right)\left(q + \frac{2p}{3}\sqrt{\frac{p}{3}}\right) > 0$$

$$q^2 - \left(\frac{2p}{3}\sqrt{\frac{p}{3}}\right)^2 > 0$$

$$q^2 > \frac{4p^3}{27}$$

$$27q^2 > 4p^3$$

Q12 (cont)

e. Outcomes assessed: E7, E8

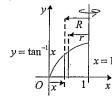
Marking Guidelines

Trial King Outdomics	
Criteria	Marks
i • finds the volume of a typical cylindrical shell in terms of x	1
• takes the limiting sum of cylindrical shells to deduce the required expression for V	1
ii • applies integration by parts to simplify the definite integral	1 1
• finds the primitive function	1
• evaluates in simplest exact form	1

Answer

i.

ii.



R=1-x	$\delta V = \pi (R^2 - r^2)h$
$r = 1 - x - \delta x$	$=\pi(R+r)(R-r)h$
$h = \tan^{-1} x$	$= \pi \left\{ 2(1-x) - \delta x \right\} \delta x. \tan^{-1} x$

Ignoring terms in $(\delta x)^2$,

$$V = \lim_{\delta x \to 0} \sum_{x=0}^{x=1} 2\pi (1-x) \tan^{-1} x \, \delta x$$
$$= 2\pi \int_{0}^{1} (1-x) \tan^{-1} x \, dx$$

$$V = 2\pi \int_0^1 (1-x) \tan^{-1} x \, dx$$

$$= 2\pi \left\{ \left[-\frac{1}{2} (1-x)^2 \tan^{-1} x \right]_0^1 + \frac{1}{2} \int_0^1 (1-x)^2 \frac{1}{1+x^2} \, dx \right\}$$

$$= \pi \left\{ 0 + \int_0^1 \frac{1+x^2-2x}{1+x^2} \, dx \right\}$$

$$= \pi \left[0 + \frac{1}{2} \left[1 - \frac{2x}{1+x^2} \right] \right]_0^1$$

$$= \pi \left[x - \log_e (1+x^2) \right]_0^1$$

$$= \pi (1 - \log_e 2)$$

Question 13

a. Outcomes assessed: E4

Marking Guidelines

Criteria	Marks
• writes a pair of simultaneous equations in a^2 and b^2	1
• finds the value of one pronumeral	
• finds the value of the second pronumeral	1

Answer

$$\frac{8}{a^2} - \frac{12}{b^2} = 1 \quad (1) \qquad 2 \times (1) - (2) \implies \frac{12}{b^2} = 1 \quad \therefore b = 2\sqrt{3}$$

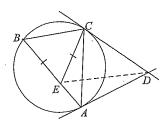
$$\frac{16}{a^2} - \frac{36}{b^2} = 1 \quad (2) \qquad 3 \times (1) - (2) \implies \frac{8}{a^2} = 2 \quad \therefore a = 2$$

b. Outcomes assessed: PE3

Marking Guidelines

Marking Guidelines	
Criteria	Marks
i • deduces $\angle DCA = \angle CBA = \angle CAD$ using alternate segment theorem	1
• finds either ∠CEA or ∠CEB in terms of ∠CBA	1
applies an appropriate test for a cyclic quadrilateral to complete the proof	1
ii • deduces ∠CED = ∠CAD	1
applies appropriate test for parallel lines to complete proof	1

Answer



- i. ∠DCA = ∠CBA = ∠CAD (∠ between a tangent and a chord is equal to ∠ subtended by the chord in the alternate segment)
- $\therefore \angle CDA + 2\angle CBA = 180^{\circ} (\angle sum \ of \ \Delta CDA \ is \ 180^{\circ})$
- But $\angle ECB = \angle CBE$ (\angle 's opp. equal sides in $\triangle EBC$ are equal)
- $\therefore \angle CEA = 2\angle CBA \qquad (ext. \angle is sum of int. opp. \angle s in \triangle EBC)$
- $\therefore \angle CDA + \angle CEA = 180^{\circ}$
- ∴ quadrilateral DAEC is cyclic (one pair of opp. ∠'s supplementary)
- ii. $\angle CED = \angle CAD$ (\angle 's in the same segment subtended by the same arc CD in circle DAEC are equal)
- But $\angle CAD = \angle CBA = \angle ECB$ (proven in i.)
- $\therefore \angle CED = \angle ECB$
 - ∴ DE || CB

(equal alt. ∠'s on transversal EC)

O13 (cont)

c. Outcomes assessed: H8, E3

Marking Guideline

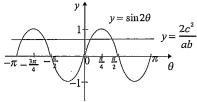
Criteria	Marks
i • expresses the area as a definite integral	1
• evaluates the integral	1
ii • shows $2c^2 = ab\sin 2\theta$ if curves intersect at $(a\cos\theta, b\sin\theta)$	$\begin{bmatrix} & 1 \\ & 1 \end{bmatrix}$
• deduces result for $2c^2 < ab$	1
• deduces result for $2c^2 = ab$	
iii • finds the coordinates of P, Q	1
 finds the area of PSQS' and compares with area of ellipse 	

Answer

i.
$$y = \pm \frac{b}{a} \sqrt{a^2 - x^2}$$
. Hence the area of the ellipse is $2\frac{b}{a} \int_{-a}^{a} \sqrt{a^2 - x^2} dx = 2\frac{b}{a} (\frac{1}{2}\pi a^2) = \pi ab$

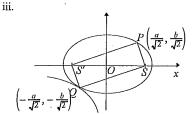
(Using the fact that the area of a semi-circle of radius a is given by the definite integral)

ii. $(a\cos\theta, b\sin\theta)$ lies on the ellipse. If it also lies on the hyperbola, then $(a\cos\theta)(b\sin\theta) = c^2$. Hence $2c^2 = ab(2\sin\theta\cos\theta) = ab\sin 2\theta$



If $2c^2 < ab$ the line cuts the sine curve in two points where $0 < \theta < \frac{\pi}{2}$, giving two points of intersection $\left(a\cos\theta,b\sin\theta\right)$ of the ellipse and hyperbola in the first quadrant, and the line cuts the sine curve in two further points where $-\pi < \theta < -\frac{\pi}{2}$, giving a further two points of intersection $\left(a\cos\theta,b\sin\theta\right)$ of the ellipse and hyperbola in the third quadrant.

If $2c^2 = ab$ the line touches the sine curve at $\theta = \frac{\pi}{4}$ and $\theta = -\frac{3\pi}{4}$, giving two points where the ellipse touches the hyperbola, $\left(\frac{a}{\sqrt{2}}, \frac{b}{\sqrt{2}}\right)$ in the first quadrant and $\left(-\frac{a}{\sqrt{2}}, -\frac{b}{\sqrt{2}}\right)$ in the third quadrant.



By symmetry, $Area\ PSQS' = 2 \times Area\ \Delta PSS'$ $= 2 \times \frac{1}{2} \times 2ae \times \frac{b}{\sqrt{2}}$ $= e\sqrt{2}\ ab$

:. Area PSQS': Area ellipse = $e\sqrt{2}$: π

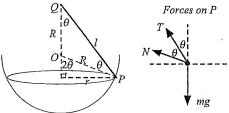
Question 14

a. Outcomes assessed: H5, E5

Marking Guidelines	
Criteria	Marks
i • shows forces on P in a diagram and justifies angle made by N with the vertical through P	1
applies Newton's second law, resolving forces vertically and horizontally	1
ii • eliminates T to find an expression for N	1
• uses trigonometry to simplify expression for N	1
• applies similar process to find an expression for T	1
iii • deduces $N \ge 0$ to find inequality for ω	1

Answer

i.



 ΔOPQ is isosceles with equal angles θ at P and Q, so that the radius PO makes angle 2θ with the vertical (by the exterior angle theorem). The normal to the surface at P is directed along the radius PO.

The resultant force on the particle is directed horizontally toward the centre of the circle of motion with magnitude $mr\omega^2$. Hence by Newton's second law, resolving forces on P vertically and horizontally,

 $N\cos 2\theta + T\cos \theta = mg$ (1) (vertical component of resultant force is 0) $N\sin 2\theta + T\sin \theta = mr\omega^2$ (2)

ii.
$$(2) \times \cos \theta - (1) \times \sin \theta \implies N(\sin 2\theta \cos \theta - \cos 2\theta \sin \theta) = mr\omega^2 \cos \theta - mg \sin \theta$$

$$\therefore N\sin\theta = m(l\sin\theta)\omega^2\cos\theta - mg\sin\theta$$

$$N = ml\omega^2 \cos\theta - mg$$

$$(1) \times \sin 2\theta - (2) \times \cos 2\theta \implies T(\sin 2\theta \cos \theta - \cos 2\theta \sin \theta) = mg \sin 2\theta - mr\omega^2 \cos 2\theta$$

$$T \sin \theta = mg \sin 2\theta - m(l \sin \theta)\omega^2 \cos 2\theta$$

$$T = 2mg\cos\theta - ml\omega^2\cos2\theta$$

iii. If particle remains in contact with the bowl, $N \ge 0$ and hence $l\omega^2 \cos\theta \ge g$. $\omega \ge \sqrt{\frac{g}{l\cos\theta}}$

O14 (cont)

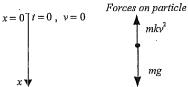
b. Outcomes assessed: H3, E5

Marking Guidelines

Criteria	Marks
i • shows forces on particle and uses Newton's 2 nd law to find equation of motion	1
• investigates the terminal velocity to substitute for k , obtaining required form of \ddot{x}	1
ii • uses appropriate expression for \ddot{x} to find primitive function for x in terms of v	1
• uses appropriate expression for \ddot{x} to find primitive function for t in terms of v	1
 evaluates constants of integration in both cases using initial conditions 	1
• uses log laws to establish required relation	1
iii • removes logarithm from expression for t in terms of v by applying exponential function	1
• rearranges to find ν as a function of t	1
iv • takes an appropriate limit as $t \to \infty$	1

Answer

i.



Applying Newton's second law, $m\ddot{x} = mg - mkv^2$ $\ddot{x} \to 0$ as $kv^2 \to g$ $\ddot{x} = g - kv^2$ $\therefore kV^2 = g$ $\therefore \ddot{x} = \frac{g}{V^2} (V^2 - v^2)$

ii.
$$\frac{1}{2} \frac{dv^2}{dx} = \frac{g}{V^2} \left(V^2 - v^2 \right)$$
$$-\frac{2g}{V^2} \frac{dx}{d(v^2)} = \frac{-1}{V^2 - (v^2)}$$
$$-\frac{2g}{V^2} x = \log_e \left(V^2 - v^2 \right) + c_1$$
$$x = 0$$
$$v = 0$$
$$v = 0$$
$$\Rightarrow 0 = \log_e V^2 + c_1$$
$$-\frac{2g}{V^2} x = \log_e \left(\frac{V^2 - v^2}{V^2} \right)$$
$$x = -\frac{V^2}{2g} \log_e \frac{(V - v)(V + v)}{V^2}$$

$$\frac{dv}{dt} = \frac{g}{V^2} \left(V^2 - v^2 \right)$$

$$\frac{g}{V^2} \frac{dt}{dv} = \frac{1}{V^2 - v^2}$$

$$\frac{2g}{V} \frac{dt}{dv} = \frac{1}{V - v} + \frac{1}{V + v}$$

$$\frac{2g}{V} t = \log_e \frac{V + v}{V - v} + c_2$$

$$t = 0$$

$$v = 0$$

$$\Rightarrow 0 = \log_e 1 + c_2$$

$$\frac{2g}{V} t = \log_e \frac{V + v}{V - v}$$

$$t = \frac{V}{2g} \log_e \frac{V + v}{V - v}$$

$$\therefore Vt - x = \frac{V^2}{2g} \log_e \left(\frac{V + v}{V}\right)^2 = \frac{V^2}{g} \log_e \frac{V + v}{V} = \frac{V^2}{g} \log_e \left(1 + \frac{v}{V}\right) \text{ (using log laws for products and powers)}$$

iii.
$$\frac{V-v}{V+v} = e^{-\frac{2g}{V}t} \qquad \therefore v \left(1 + e^{-\frac{2g}{V}t}\right) = V\left(1 - e^{-\frac{2g}{V}t}\right) \qquad \therefore v = V\left(\frac{1 - e^{-\frac{2g}{V}t}}{1 + e^{-\frac{2g}{V}t}}\right)$$

iv.
$$\lim_{t \to \infty} (Vt - x) = \frac{V^2}{g} \lim_{t \to \infty} \log_e \left(1 + \frac{v}{V} \right) = \frac{V^2}{g} \log_e 2$$

a. Outcomes assessed: E4

Criteria	Marks
i • applies a technique to find a new equation whose roots are squares of the original roots	1
• applies a technique to find a new equation whose roots are reciprocals of previous roots	1
• combines the two techniques and rearranges to find required equation	1
ii • expresses the sum of the 4th powers in terms of the sums of lower powers	1
• uses relations between roots and coefficients to evaluate required sum	1

Maulius Cuideline

Answer

i.
$$\alpha$$
, β , γ roots of $x^3 + kx + 1 = 0$.

$$\therefore \alpha^2, \beta^2, \gamma^2 \text{ satisfy } \left(x^{\frac{1}{2}}\right)^3 + k\left(x^{\frac{1}{2}}\right) + 1 = 0$$

$$\left(x^{\frac{1}{2}} + kx^{\frac{1}{2}}\right)^2 = \left(-1\right)^2$$

$$x^3 + 2kx^2 + k^2x = 1$$

$$\therefore \alpha^2$$
, β^2 , γ^2 are roots of $x^3 + 2kx^2 + k^2x - 1 = 0$

Now
$$\frac{1}{\alpha^2}$$
, $\frac{1}{\beta^2}$, $\frac{1}{\gamma^2}$ satisfy $\left(\frac{1}{x}\right)^3 + 2k\left(\frac{1}{x}\right)^2 + k^2\left(\frac{1}{x}\right) - 1 = 0$

$$\therefore \frac{1}{\alpha^2}$$
, $\frac{1}{\beta^2}$, $\frac{1}{\gamma^2}$ are roots of $x^3 - k^2x^2 - 2kx - 1 = 0$

ii.
$$\alpha$$
, β , γ satisfy $x(x^3 + kx + 1) = 0$
$$\therefore \alpha^4 + \beta^4 + \gamma^4 + k(\alpha^2 + \beta^2 + \gamma^2) + (\alpha + \beta + \gamma) = 0$$
$$\therefore \alpha^4 + k\alpha^2 + \alpha = 0$$
$$\beta^4 + k\beta^2 + \beta = 0$$
$$\therefore \alpha^4 + \beta^4 + \gamma^4 + k(-2k) + 0 = 0$$
$$\therefore \alpha^4 + \beta^4 + \gamma^4 = 2k^2$$

b. Outcomes assessed: HE2

Marking Guidelines	
Criteria	Marks
• defines an appropriate sequence of statements and verifies that the first is true	1
• verifies that the second statement is also true	1
• considers the $(k+1)^{th}$ statement, using the recurrence relation, conditional on $S(n)$ true, $n \le k$	1
• regroups and removes common factors, recognizing the perfect square expansions from S(2)	1
$ullet$ completes the rearrangement of T_{k+1} and completes the induction process.	1

Answer

Let S(n), n=1,2,3,... be the sequence of statements defined by S(n): $T_n = \left(1+\sqrt{3}i\right)^n + \left(1-\sqrt{3}i\right)^n$. Consider S(1): $(1+\sqrt{3}i)^1 + (1-\sqrt{3}i)^1 = 2 = T_1$ $\therefore S(1)$ is true $S(2): (1+\sqrt{3}i)^2 + (1-\sqrt{3}i)^2 = (-2+2\sqrt{3}i) + (-2-2\sqrt{3}i) = -4 = T$ $\therefore S(2)$ is true

Q15 b (cont)

If S(n) is true for $n \le k$ where $k \ge 2$, then $T_n = (1 + \sqrt{3}i)^n + (1 - \sqrt{3}i)^n$, n = 1, 2, 3, ..., k ** Consider S(k+1), where $k \ge 2$:

$$\begin{split} T_{k+1} &= 2T_k - 4T_{k-1} \\ &= 2\left(1 + \sqrt{3}i\right)^k + 2\left(1 - \sqrt{3}i\right)^k - 4\left(1 + \sqrt{3}i\right)^{k-1} - 4\left(1 - \sqrt{3}i\right)^{k-1} & \text{if } S(n) \text{ true for } n \leq k \\ &= \left(1 + \sqrt{3}i\right)^{k-1} \left(-2 + 2\sqrt{3}i\right) + \left(1 - \sqrt{3}i\right)^{k-1} \left(-2 - 2\sqrt{3}i\right) \\ &= \left(1 + \sqrt{3}i\right)^{k-1} \left(1 + \sqrt{3}i\right)^2 + \left(1 - \sqrt{3}i\right)^{k-1} \left(1 - \sqrt{3}i\right)^2 \\ &= \left(1 + \sqrt{3}i\right)^{k+1} + \left(1 - \sqrt{3}i\right)^{k+1} \end{split}$$

Hence for $k \ge 2$, if S(n) is true for $n \le k$ then S(k+1) is true. But S(1) and S(2) are true, hence S(3)is true, and then S(4) is true and so on.

Hence by Mathematical induction, $T_n = (1 + \sqrt{3} i)^n + (1 - \sqrt{3} i)^n$, $n \ge 1$

c. Outcomes assessed: HE3

Marking Guidelines Criteria Marks i • rearranges f(x) as a quadratic function of x by expansion • recognises that f(x) is never negative and hence has discriminant $\Delta \leq 0$ 1 · uses this fact to obtain required inequality ii • applies result when $a_k = k$, k = 1, 2, 3, ..., n1

• uses the sum of an AP to complete the proof

Answer

i.
$$f(x) = \sum_{k=1}^{n} \left(\sqrt{a_k} x - \frac{1}{\sqrt{a_k}} \right)^2 = \sum_{k=1}^{n} \left(a_k x^2 - 2x + \frac{1}{a_k} \right) = \left(\sum_{k=1}^{n} a_k \right) x^2 - 2nx + \left(\sum_{k=1}^{n} \frac{1}{a_k} \right)$$

Clearly $f(x) \ge 0$ for all real x. Hence $\Delta \le 0$. $\therefore 4n^2 - 4\left(\sum_{k=1}^n a_k\right) \left(\sum_{k=1}^n \frac{1}{a_k}\right) \le 0$

$$\therefore \left(a_1 + a_2 + \dots + a_n\right) \left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}\right) \ge n^2$$

ii. Let
$$a_k = k$$
, $k = 1, 2, 3, ..., n$. Then $(1 + 2 + 3 + ... + n)(1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{n}) \ge n^2$

$$\frac{1}{2}n(n+1)(1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{n}) \ge n^2$$

$$(1 + \frac{1}{n} + \frac{1}{n} + ... + \frac{1}{n}) \ge \frac{2n}{n}$$

$$\left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right) \ge \frac{2n}{n+1}$$

Question 16

a. Outcomes assessed: E4

Marking Gildelines	
Criteria	Marks
• finds the sum of the roots of the required quadratic equation	1
• finds the product of the roots of the required quadratic equation	1
• uses these values to determine the coefficients and hence write down the quadratic equation	1

Answer

$$z^5-1=0$$
 has roots 1, α , α^2 , α^3 , α^4 where $\alpha=\cos\frac{2\pi}{5}+i\sin\frac{2\pi}{5}$. Then $1+\alpha+\alpha^2+\alpha^3+\alpha^4=0$ and $\alpha^5=1$.

$$\therefore (\alpha+\alpha^4)+(\alpha^2+\alpha^3)=-1 \text{ and } (\alpha+\alpha^4)(\alpha^2+\alpha^3)=\alpha^3+\alpha^4+\alpha^6+\alpha^7=\alpha^3+\alpha^4+\alpha+\alpha^2=-1$$
Hence required quadratic equation is $x^2+x-1=0$.

b. Outcomes assessed: HE3

Marking Guidelines	
Criteria Criteria	Marks
i • writes $a^2 - ab + b^2$ in terms of the squares of $(a+b)$ and $(a-b)$	1
• uses the fact that the square of a real number is non-negative to deduce the result	1
ii • uses the cosine rule to show $c^2 \ge a^2 - ab + b^2$ if $\angle BCA \ge 60^\circ$	1
$ullet$ combines this inequality with that from i. to produce required inequality for c^3	1
• justifies the condition for equality	1

Answer

i.
$$a^2 - ab + b^2 = \frac{1}{4}(a+b)^2 + \frac{3}{4}(a-b)^2$$
, where $\frac{3}{4}(a-b)^2 \ge 0$ since a and b are real.

$$\therefore a^2 - ab + b^2 \ge \left(\frac{a+b}{2}\right)^2$$
, with equality if and only if $a = b$

ii. In
$$\triangle ABC$$
, using the cosine rule, $c^2 = a^2 + b^2 - 2ab \cos \angle BCA$
If $\angle BCA \ge 60^\circ$, then $\cos \angle BCA \le \frac{1}{2}$. $\therefore c^2 \ge a^2 + b^2 - 2ab \times \frac{1}{2}$
 $\therefore c^2 \ge a^2 - ab + b^2$, with equality if and only if $\angle BCA = 60^\circ$.
Then, using i., $c \ge \sqrt{a^2 - ab + b^2} \ge \frac{a + b}{2}$, with equality if and only if both $\angle BCA = 60^\circ$ and $a = b$.

Hence if
$$\angle BCA \ge 60^{\circ}$$
, $c^3 \ge \left(\frac{a+b}{2}\right)\left(a^2-ab+b^2\right) = \frac{a^3+b^3}{2}$

 $2c^3 \ge a^3 + b^3$, with equality if and only if $\triangle ABC$ is equilateral.

(i.e. if and only if $\triangle ABC$ is equilateral)

Q16 (cont)

c. Outcomes assessed: H5, E8

Marking Guidelines	
Criteria ·	Marks
i • applies integration by parts	1
• rearranges to obtain required recurrence relation	1
ii • takes the sum of both sides over integer values from 1 to n	1
• simplifies to obtain required result	1
iii • evaluates I_1	1
• shows that $\frac{1}{n+1}I_{n+1} \to 0$ as $n \to \infty$	1
 states limiting sum of series 	1 1

Answer

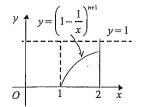
i. For n = 1, 2, 3, ...

$$\begin{split} I_{n+1} &= \int_{1}^{2} \left(1 - \frac{1}{x}\right)^{n+1} dx \\ &= \left[x\left(1 - \frac{1}{x}\right)^{n+1}\right]_{1}^{2} - (n+1)\int_{1}^{2} x\left(1 - \frac{1}{x}\right)^{n} \left(\frac{1}{x^{2}}\right) dx \\ &= \left(\frac{1}{2^{n}} - 0\right) + (n+1)\int_{1}^{2} \left\{\left(1 - \frac{1}{x}\right) - 1\right\} \left(1 - \frac{1}{x}\right)^{n} dx \end{split} \qquad \qquad \therefore \quad I_{n+1} &= \frac{1}{2^{n}} + (n+1)\left(I_{n+1} - I_{n}\right) \\ &= \left(\frac{1}{2^{n}} - 0\right) + (n+1)\int_{1}^{2} \left\{\left(1 - \frac{1}{x}\right) - 1\right\} \left(1 - \frac{1}{x}\right)^{n} dx \end{aligned}$$

ii.
$$\sum_{r=1}^{n} \frac{1}{r+1} I_{r+1} = \sum_{r=1}^{n} \frac{1}{r} I_{r} - \sum_{r=1}^{n} \frac{1}{r(r+1)2^{r}} \implies \frac{1}{2} I_{2} + \ldots + \frac{1}{(n+1)} I_{n+1} = I_{1} + \frac{1}{2} I_{2} + \ldots + \frac{1}{n} I_{n} - \sum_{r=1}^{n} \frac{1}{r(r+1)2^{r}}$$

$$\therefore \frac{1}{n+1} I_{n+1} = I_{1} - \sum_{r=1}^{n} \frac{1}{r(r+1)2^{r}}$$

iii.
$$I_1 = \int_1^2 \left(1 - \frac{1}{x}\right) dx = \left[x - \log_e x\right]_1^2 = 1 - \log_e 2$$
 $\therefore \sum_{r=1}^n \frac{1}{r(r+1)2^r} = (1 - \log_e 2) - \frac{1}{n+1}I_{n+1}$



Considering areas,
$$0 < I_{n+1} < 1$$

$$0 < \frac{1}{(n+1)}I_{n+1} < \frac{1}{n+1}$$

$$\therefore \frac{1}{(n+1)}I_{n+1} \to 0 \text{ as } n \to \infty$$

Hence
$$\frac{1}{1\times 2\times 2^1} + \frac{1}{2\times 3\times 2^2} + \frac{1}{3\times 4\times 2^3} + \dots \text{ has a limiting sum } (1-\log_e 2).$$