

2013 HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

Extension 1 Mathematics

General Instructions

- o Reading Time 5 minutes.
- o Working Time 2 hours.
- o Write using a blue or black pen.
- o Board approved calculators may be used.
- o A table of standard integrals is provided at the back of this paper.
- o All necessary working should be shown for every question.
- o Begin each question on a fresh sheet of paper.

Total marks (70)

- Attempt Questions 1-10.(Multiple Choice 10 marks)
- Attempt Questions 11-14
 (All questions 15 marks)

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1; \ x \neq 0, \ if \ n < 0$$

$$\int \frac{1}{x} dx = \ln x, \ x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \ a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \ a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \ a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \ a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx \qquad \qquad = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} \, dx = \ln(x + \sqrt{x^2 - a^2}), \ x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2})$$

NOTE: $\ln x = \log_e x$, x > 0

Section 1- Multiple choice (10 marks)

- The solution to the inequality $x^3(x^2-4) > 0$ is: 1.
 - a. x > 0

c. -2 < x < 0, x > 2

b. $x \ge 0$

- d. 0 < x < 2
- If $y = e^{-x^2}$, then $\frac{d^2y}{dx^2}$ is equal to:

 - a. $2e^{-x^2}(2x^2-1)$ c. $2e^{-x^2}(e^x+1)$ b. $-2e^{-x^2}(2x^2-1)$ d. $2e^{-x^2}(e^{2x}-1)$
- 3. Which of the following is an expression for $\int \cos^2 2x \, dx$?

 - a. $x \frac{1}{4}\sin 4x + c$ b. $x + \frac{1}{4}\sin 4x + c$ c. $\frac{x}{2} \frac{1}{8}\sin 4x + c$ d. $\frac{x}{2} + \frac{1}{8}\sin 4x + c$
- How many distinct permutations of the letters of the word "TEMPE" are possible 4. in a straight line when the word begins and ends with the letter E.

12.

- If $f(x) = e^{x+2}$, what is the inverse function $f^{-1}(x)$? 5.
 - a. $f^{-1}(x) = e^{y-2}$
- c. $f^{-1}(x) = \ln x 2$ d. $f^{-1}(x) = \ln(x 2)$
- b. $f^{-1}(x) = e^{y+2}$
- The graph of $y = \frac{1}{(x+2)(x-1)}$ cuts the x axis:
 - a. Once

Three times

Twice

- d. Never
- The exact value of $\frac{2 \tan 15^{\circ}}{1 + \tan^2 15^{\circ}}$ is:

- The acute angle between the lines x 3y = 0 and 3x 2y + 1 = 0 is:
- 37°52′

c. 74°44′

82°15′ 、

- 62°52′
- The point that divides (2, -3) and (7, 7) externally in the ratio of 8: 3 is: 9,
 - (-1,9)

(10, 13)

(12, 9)

(13, 10)

The value of x in the diagram above is:

2.21

1.49

2.3

Question 11 (15 Marks)

Evaluate
$$\int_{0}^{2} \frac{dx}{\sqrt{16 - x^{2}}}$$

b. Evaluate $\lim_{x\to 0}$

c. Use the substitution
$$u = \ln x$$
 to find:

$$\int \frac{dx}{x\sqrt{1-(\ln x)^2}}$$

Show that the derivative of $x \tan x - \ln(\sec x)$ is $x \sec^2 x$.

$$\int_{0}^{\frac{\pi}{4}} x \sec^2 x \, dx$$

Write down the domain and range of $y = \sin^{-1}(\sin x)$

i. Draw a neat sketch of
$$y = \sin^{-1}(\sin x)$$

$$a \sec^2 x \, dx$$

Start a new booklet

	Question 12 (15 Marks) Start a new booklet	Marl
	Prove by mathematical induction that	3
	$1 \times 2^{0} + 2 \times 2^{1} + 3 \times 2^{2} + \dots + n \times 2^{n-1} = 1 + (n-1)^{2n}$	
1		
	Consider the function $f(x) = \sin^{-1}(x-1)$	
i.	Find the domain of the function.	1
ii.	Sketch the graph of the curve $y = f(x)$ showing the endpoints and the x intercept.	2
iii.	The region in the first quadrant bounded by the curve $y = f(x)$ and the y axis	3
	between the lines $y = 0$ and $y = \frac{\pi}{2}$ is rotated through one complete revolution	
	about the y axis. Find in simplest exact from the volume of the solid of revolution.	
	Let $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ be two points on the parabola $y = \frac{x^2}{2a}$	
	Let $F(2ap, ap)$ and $Q(2aq, aq)$ be two points on the parabola $y = \frac{1}{2a}$	
i.	Find the equation of the chord PQ .	2
ii.	If PQ is a focal chord, find the relationship between p and q .	1
iii.	Show that the locus of the midpoint of PQ is a parabola.	3

1

2

1

2

Marks

2

1

2

2

2

2

If $t = \tan \frac{\pi}{2}$, then $\tan \theta = \frac{\pi}{1 - t^2}$ Use the t results, or otherwise, to obtain θ correct to the nearest minute if

$$\frac{7\sin\theta}{2} + 2\cos\theta = 4 \text{ for } 0^{\circ} \le \theta \le 360^{\circ}$$

- b. A tower CX is observed at an angle of elevation of 14° from a point A on level ground. The same tower is observed from B, 1km from A, to have an angle of elevation of 17°, $\angle ACB = 120^\circ$ and C is the base of the tower.
 - i. Draw a diagram showing the information above.
 - ii. Calculate the height of the tower *CX* correct to the nearest metre.
- **c.** When a polynomial P(x) is divided by (x+1)(x-2) the result can be written as P(x) = (x+1)(x-2)Q(x) + R(x) where R(x) = ax + b.
 - i. Given that P(-1) = 3, find the value of R(x).
 - ii. Given also that the remainder is -2 when P(x) is divided by x-2, find the values 2 of a and b.
- **d.** Consider the function $f(x) = 2 \ln x$.
 - i. Find the equation of the inverse function $f^{-1}(x)$
 - ii. Explain why the x coordinate X of the point of intersection P of the graphs of y = f(x) and $y = f^{-1}(x)$ satisfies the equation $e^{2-X} X = 0$.
 - iii. Use two applications of Newton's Method with an initial value of X = 1.5 to find the value of X correct to two decimal places.

a. Find the coefficient of x^4 in the expansion of $\left(3x - \frac{4}{x^2}\right)^7$

Question 14 (15 Marks)

b. A balloon rises from level ground. Two projectiles are fired horizontally from the balloon at a velocity of 80ms^{-1} . The first is fired at a point 100 m from the ground and the second when the balloon has risen a further 100 m from the ground. How far apart will the projectiles hit the ground? Use $g = 10 \text{ms}^{-2}$.

- **c.** 8 dice are rolled, what is the probability (to 3 decimal places), that:
 - i. 6 appears once.
 - . 6 appears at least once.
- **d.** A particle moves in Simple Harmonic Motion in a straight line. At time *t* seconds its displacement from a fixed point *O* on the line is *x* metres, given by:

$$x = 4\sqrt{2}\cos\left(\frac{\pi t}{4} - \frac{\pi}{4}\right)$$

Its velocity is $v \text{ ms}^{-1}$ and its acceleration is $\ddot{x} \text{ ms}^{-2}$.

- i. Find the amplitude and period of motion.
- **ii.** Find the initial position of the particle and determine if it is initially moving towards or away from *O*.
- iii. Find the distance travelled by the particle in its first 3 seconds of motion.

SELTION 1) $\chi^3 (\chi^2 - 4) > 0$. $\chi^3(\chi+2)(\chi-2)>0$ 7152, -2 < 716 $l \cos^2 2\kappa \, dn = 1$ y= lnx -2

6) x -i-+ > y=0
→ <u> </u>
(7x +2) (7x -1)
:NO SOLN
D
7) 2+an 15° = 1
1+ +an215° 2
8) $x - 3y = 0$ $3x - 2y + 1 = 0$
$m = \frac{1}{3}$ $m = \frac{3}{2}$ $+an \theta = \frac{1}{3} - \frac{3}{2}$
$+a\Theta = \frac{1}{3} - \frac{3}{2}$
$1 + \frac{1}{3} \times \frac{3}{2}$
0 = 37°52'
A
9) $P = (9 \times 7 - 3 \times 2, 8 \times 7 - 3 \times -3) = (10, 13)$
8-3 8-3
10
$\chi^2 = 3 \times 1.7$
n = 2-3

SECTION 2
$\int_{0}^{2} dx = \left[\frac{1}{4} \right]_{0}^{2}$
= 11
b) lim sin3x - 3 lim sin3x 4x 4 n = 0 3
= <u>3</u> 4
y dx u=lnx
$\int x \int 1 - (\ln x)^2 du = 1$ $\int x du dx x.$
$= \int_{x\sqrt{1-u^2}}^{x\sqrt{1-u^2}} dn = x du$
= Sin (Inx) +L
d)i) d (x tan x = In (secx))
= tanx + nsec2x - secx tanx
$= \chi \operatorname{Sec}^{2} \chi$ $= \chi \operatorname{Sec}^{2} \chi d\chi = \left[\chi \operatorname{In} \chi - \ln(\operatorname{Sec} \chi) \right]_{0}^{\frac{1}{4}}$ $= \left(\frac{1}{4} - \ln \sqrt{2} \right) - \left(0 - \ln 1 \right)$
= T _ 1 n 2

= TT - 21n2			
4			
e) i) 0: x ER (all	real n)		
$R: -\pi < y \leq \pi$	•		***************************************
<u>ii)</u>	T/2		
-π	\longrightarrow		2π
-21			
	<u></u>		
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
12a)			
b) i) -1 < x -1 < 1			***************************************
	u	. 71)	
0 ≤ n ≤ 2	17×/××	y (2, 1/1)	
<u> </u>		/	
		X	
		L	
	_T/1		
	1 12		
iii) y = sin (x-	1)		
x-1 = sin y	التي		
$n = 1 + \sin y$			
$\chi' = 1 + \sin^2 x$	-		
$= \frac{1}{2} \left(\frac{1}{2} \right)$	- wszy)	+ 2 sing	
2			
= 1 + 1 -	60524 +	2 siny	
ל	า		

$\chi^2 = 3 - \cos 24 + 2\sin 4$
$\frac{2}{\sqrt{\pi/2}}$
$V = \pi \int_{0}^{\pi/2} \frac{3}{2} = \frac{2}{2} \log y + 2 \sin y dy$
$= \pi \left[\frac{3\kappa}{3\kappa} - \frac{\sin 2y}{2} - 2\cos y \right]^{\pi/2}$
1 2 4
$=\pi \left[\frac{3\pi}{4} - 0 - 0 \right] = 0 - 0 - 2$
$= \pi \left[\frac{3\pi}{4} \right] \frac{3}{4}$
$a))m_{pQ} = ap^2 - aq^2$
2ap-2ag
= a(p+q)(p-q) 2a(p-q)
$= \frac{p+q}{2}$
2.
chord PQ = y-ap2 = P+9/x-2ap
2)
$= \left(\frac{\rho+q}{2}\right)x - a\rho^2 - a\rho q$
$y = (P+q)n - \alpha pq$
$\left(\frac{1}{2}\right)$
ii) focal → n=0, y= 1/2.
$\Rightarrow \frac{9}{2} = -\alpha \rho q$
pq = -1

ii) M [2ap+2aq ap+ aq2]
iii) $M \left[\frac{2\alpha p + 2\alpha q}{2}, \frac{\alpha p^2 + \alpha q^2}{2} \right]$
$n = \alpha (\rho + q)$
$n^2 = a^2 \cdot 10a \cdot a^2$
$n = \alpha (\rho + q)$ $\frac{n^2}{\alpha^2} = \rho^2 + 2\rho q + q^2$
$\frac{\rho^2 + q^2}{\alpha^2} = \frac{\chi^2}{\alpha^2} = \frac{2\rho q}{\alpha}$
$=\chi^2$. 1 .
$= \frac{2^2}{a^2} + 1.$
$Y = \frac{\alpha}{2} \left(\rho^2 + q^2 \right)$
a [22 1]
$= \frac{\alpha \left[\frac{\kappa^2}{\alpha^2} + 1 \right]}{2 \left[\frac{\alpha^2}{\alpha^2} \right]}$
y = x2 + a
2a 2.
$ 30 7 \left[21 \right] + 2 \left[1 - 1^2 \right] = 4$
$\frac{100}{2} \frac{1}{1+4^2} \frac{1}{1+4^2} = \frac{1}{1+4^2}$
$7+ + 2(1-1^2) = 4(1+1^2)$
$\frac{74 + 2 - 24^2}{4^2 + 4^2} = 4 + 44^2$
$64^2 - 74 + 2 = 0$
(3+-2)(2+-1)=0
fan 1/2 = 2/3 1/2
0 = 67°13′, 53°8′
•

(i (d	
39.19	
h	
DC.	
140 1203	
B	
A Ikm	
i) fan 14° = h	
AL	
A(= h wt 14°	
B(= h w + 17"	
h2 wt 14° + h2 wt 217°+2 (h wt 14°)(h wt 17°) ws 120°= 1	
h' 60+214°+h' cof217°+h' 60+14° 60+17°=1	
; h = 1	
1 cot 2 14° + 10+2 17° + 10+14° 10+17°	
= 0.158 km	į
Q(x) = (x+1)(x-2)Q(x) + P(x)	
i) f(x) = (x+i)(x-2)Q(x) + f(x)	
••••	
P(-1) = R(-1) = 3	
ii) $P(2) = R(2) = -2$	
: -a+b=3 0	
2a +6 =-2. (2)	
$(1) - (2) \Rightarrow -3a = 5$	
a = -5/3	
b = 4/3	
	-

$\partial \partial x = 2 - \ln y$
$\ln y = 2 - \kappa$
$y=e^{2-\kappa}$
ii) let n = X be n-value of P.O.T.
Since f(n) and f-1(n) intersect on y=x,
$e^{2-\chi} - \chi = 0$
: e ^{2-x} -x=0 gives f.o.I.
\tilde{n} \tilde{n} \tilde{n} \tilde{n} \tilde{n} \tilde{n} \tilde{n}
$\gamma_1 = 1.5 - e^{2-1.5} - 1.5 \pm 1.5561$
- L ^{2-1.5} - 1
$\chi_{2} = \chi_{1} - e^{2-\chi_{1}} - \chi_{1}$ $2^{-\chi_{1}}$
$-e^{2-2\pi i}-1$
١.557
÷ 1-56
$(4) a) (3n - 4n^{-2})^7 \Rightarrow T_{r+1} = (r (3n)^{7-r} (-4n^{-2})^r)$
$= (-4)^{1/2} (-4)^{1/2}$
=7(r3 ^{7-r} (-4) ^r x ^{7-3r}
$\chi^{+} \Rightarrow 7-3r=4$
r = 1
· coeff of nt is 7 (, 3 (-4) = -20412.
5) Projectile 1 Projectile 2.
$Hor \rightarrow \tilde{\chi}_1 = 0$ $\tilde{\chi}_1 = 0$
ή, = 80 ×, = 80
$x_1 = 80+$ $x_2 = 80+$
$\dot{y}_{1} = -104$ $\dot{y}_{2} = -104$

	ound -> y=1	<u> </u>		
v ·	542 = 100			
	12 = 20		12 = 40	-
	+ = 255		$\frac{1}{2} = 2 \int_{0}^{\infty}$)
	0 x 2√5		x 2 110	
	, = 160(10 - 1	5).		
	= 148m.	7		
() i) P (i)) = 8(, (1/6) (5	/ ₆) '		
	= 0.372		***************************************	
ii) P(a)	least one) =			
		1 - (5/6)8		
	•	0.767		
$d) \chi = 4$	√2 ws (π+ -	#)		***************************************
i) 0 0 1	+ 12			
1) who =				
i) amp = 1	Z II = 8			
Τ'=	7/4			
Τ'=		-# 4),		
Τ'= à) x'=-π 4	7/4	***************************************		

y=-5+2+200	$110 + 3, \kappa = 4\sqrt{2} \cos\left(\frac{3\pi - \pi}{4}\right)$
$y_{2}=0 - 5t^{2}=200$ $t^{2}=40$	=0 : at 1=3 paticle is at 0
$\frac{1}{2\sqrt{10}}$	particle starts at $n=4$ moves to $x=4\sqrt{2}$ then returns to $n=0$
5).	$\frac{1}{2} d = 4\sqrt{2} + (4\sqrt{2} - 4)$ $= (8\sqrt{2} - 4) \text{ m}.$
(₁) ⁷	
1- P(0)	
0.767	
#) 	
$\left(-\frac{\pi}{4}\right)$	
<u>- カ</u> 4	
away from O	