

Year 12 HSC 2U Mathematics

Probability, Geometrical Applications of Differentiation, and Applications of Calculus to the Physical World.

Term 3, 2011 | Week 7

Time Allowed: 50 mins

Marks: 38

Show all working to gain maximum marks

Marks will be deducted for poor or illegible work

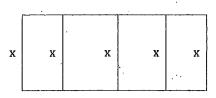
PART 1 - Probability (12 Marks)			CRA			
	•		, and the second			
(a)	A die is thrown and a coin is tossed. Find the probability of obtaining:					
	(i)	a head and a six	1			
	(ii)	a tail and a number less than four	1			
(b)		ming that the probability of a girl being born is 60%, find the bility that a family of 3 children will comprise:				
	(i)	all boys	1			
	(ii)	two boys and a girl	2			
	(iii)	at least one boy	1			
(c)	like V	ter Sport survey of 66 Australians revealed that 44 like Netball, 33 Wrestling and 6 don't like either. If one individual is selected at m from this group, what is the probability that:				
	(i) th	ney do not like Netball or Wrestling	1			
	(ii) tl	ney like Netball but not Wrestling	1			
(d)	A faulty	y machine produces items of which 34% are defective.	•			
	(i) W	That is the probability of the machine producing 3 good items in succession?	1			
	(ii) W	That is the probability of the machine producing n faulty items in succession?	1			
	(iii)W	That is the smallest number of items that are to be produced so that the probability of obtaining at least one good item exceeds 99%?	2			

PART 2 – Geometrical Applications of Differentiation (13 Marks) GHW

(a) If f''(x) = 18x + 4, f'(1) = 13 and f(1) = 6 find f(x)

9

- **(b)** Consider the function $f(x) = x 3 \ln x$ for $1 \le x \le 7$
 - (i) Find the coordinates of the stationary point(s) and determine their nature.
 - (ii) Sketch the curve for $1 \le x \le 7$.


2

(iv) What is the maximum value for $1 \le x \le 7$

1

(c) Build a rectangular pen with three parallel partitions using 500 feet of fencing.

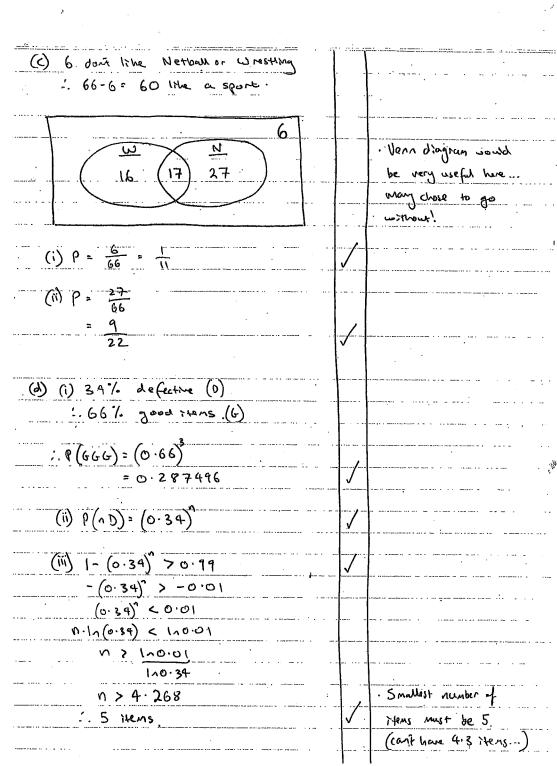
У

У

(i) Show. y = 250 - (5/2)x

3

(ii) Show $A = 250x - (5/2)x^2$


1

(ii) What is the maximum area of the pen?

3

PART:	3 – Apr	plications of Calculus to the Physical World (13 Marks)	RABS
(a)	A we	ight is tied to a spring. The displacement d (in cm) of the weight is equation $d = 3 \sin 3t$ where t is time in seconds.	found
	(i)	Following release, when does the weight return to the origin?	1
	(ii)	What is the velocity of the weight at this point in time?	2
	(iii)	Determine when the weight is at its maximum displacement from the origin.	2
(b)	Follow decrease	wing discovery, the population of thylacines was found to be asing at a rate proportional to its population.	
	Two y Five y	vears after discovery, the population of thylacines was 13000. vears after discovery, the population of thylacines was 4500.	
	(i)	Find the value of the constant of decay.	2
	(ii)	Find the initial population of thylacines.	1
	(iii)	After how many years will the number of thylacines be less than 5% of the original population?	2
(c)	The a	coeleration of a particle is given by $a = 4t$ where a is in ms^{-2} s in seconds.	
	If initi	ally its velocity is $5ms^{-1}$ and its displacement is 6m to the left of gin, find its displacement after 10 seconds.	3
,			

PART 1-PROBABILITY	MARKED BY CRA		
(i) P(H6): \(\frac{1}{2}\times\)\(\frac{1}{6}\) =\(\frac{1}{12}\)		. Well done an	
(ii) $P\left(\tau, 3, 2, i\right) = \frac{1}{2} \times \frac{3}{6}$	<u>/</u>	the whole.	
= 1 4			
(b) 88B			
0.4 B 0.6 6 B&G 0.4 B 0.6 6 6 B 6 6 B 6 6 6 6 6 6 6 6 6 6 6 6 6			
0.4 B 0.4 B 48B 0.6 G 48B			
(i) P(BBB)= (0.4) = (0.64	/		
(ii) P(BBG) + P(BGB) + P(GBB) = (04x0.4x0.6) + (0.4x0.6x0.4) + (0.6x0.4x0.4) = 0.288		· Many did not recognise 3 possible combinations	
(111) P(B)= 1 - P(666) = 1 - (0.6)		for 2 boys + 1 girls.	
- 0 . 784			
· · · · · ·			

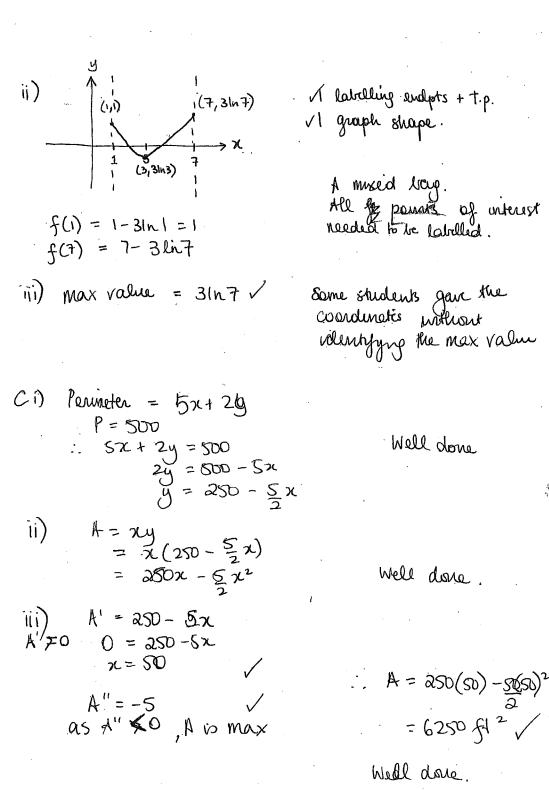
Part 2.

O)
$$f''(x) = 18x + 4$$
.

 $f'(x) = \int_{0}^{1} (8x + 4) dx$
 $= 9x^{2} + 4x + c$
 $f''(x) = 9(1)^{2} + 4(1) + c$
 $c = 0$.

 $f'(x) = 9x^{2} + 4x$

$$f(x) = \int_{0}^{1} (9x^{2} + 4x) dx$$
 $= 3x^{3} + 2x^{2} + c$
 $= 3(1)^{3} + 2(1)^{2} + c$
 $= 1$
 $f(x) = 3x^{3} + 2x^{2} + 1$


Uhen $f'(x) = 1 - \frac{3}{x}$

when $f'(x) = 0$.

 $= 1 - \frac{3}{x}$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$
 $= 3$

Very well done.

Jenerally well done, some forcet to their rature

= 6250 fl 2/

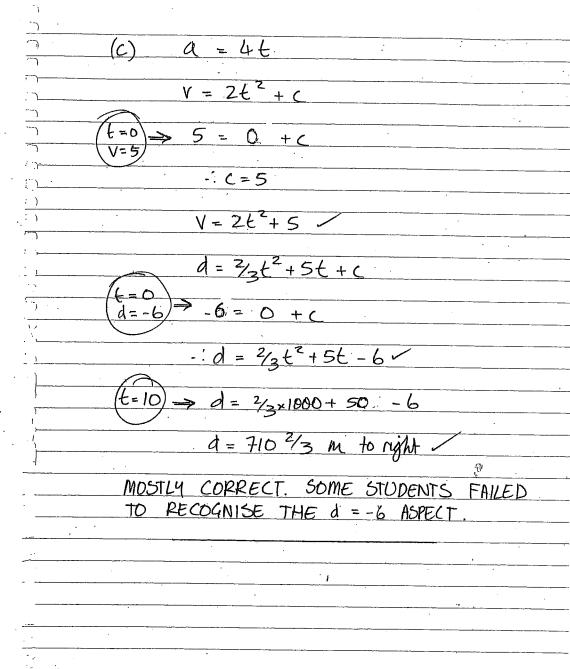
)	
	۔۔۔۔۔	PART3 APP OF CALC TO PHYS WORLD
	.(-)	(a)
i	· —	(i) 0 = 3 sin 3t
	<u></u>	
	$\overline{\gamma}$	0 = 6:31
ļ	.)——	$0 = \sin 3t$
	5) <u>gr</u>	4
		0 = sin 0
ı	1	$\vdots \Theta = O, \Pi, 2\Pi' \dots$
		,
		:. t = 17/3 s
	-,	MANU STUD TAITS IN TO THE
	•	MANY STUDENTS USED DEGREES AS A
	-	MEASUREMENT OF TIME RATHER THAN RADIAN'S
		Ł MUST BE IN RADIAN FORM FOR THESE
		TYPES OF Q'NS!
	-	
		SOME STUDENTS USED t=0 THE QUESTION
19		STATED "FOLLOWING RELEASE "
	• ———	(ii) V= 9 sin 3t /
	r	111/ 12/100
		1= 1/2 = V = 9 600 IT,
	L	1= 1/3 - V = 9 cas IT,
		=-9 m5 ⁻¹
	157	MAIN VIII CHAIR
١.		MANY STUDENTS FOUND OUT THE VELOCITY BUT
_		NEGLECTED THE - WE SIGN. VELOCITY HAS
	- 1	DIRECTION!
	٠.	

(iii)
$$x$$
 is max when dx (or v) = 0.

 at
 $0 = 9 \cos 3t$
 $0 = \cos 3t$
 $0 = \cos 3t$
 $t = \frac{11}{2}$, $\frac{317}{2}$, ...

 $t = \frac{11}{6}$ s

CHECK IF MAX/


 $v' = -27 \sin 3t$
 $= -27 \sin \frac{11}{2}$
 $= -27 \sin \frac{11}{2}$
 $= -27 \sin \frac{11}{2}$
 $= -27 \sin \frac{11}{2}$
 $= -27 \sin \frac{11}{2}$

MANY STUDENTS DID NOT CHECK IF INDEED x was max when $t = \frac{11}{6}$ or NEGLECTED x TO MENTION why they were allowing $v = 0$.

(b)

(i) $4500 = 13000 e^{-\frac{1}{2}}$
 $y = -\frac{1}{2}$
 $y =$

13000 = Po e 3000 = Po = 26369.217 = 26 369 V THERE WERE SOME ODD ROUNDINGS IN THIS QUESTION. WHY ROUND TO THE NEAREST 10? ie 26 369.21 ⇒ 26370? CONVERSELY, SOME STUDENTS LEFT THE ANSWER AS A DECIMAL CAN YOU HAVE 0.22 OF A THYLACINE? (TASMANIAN TIGER 0.05>e-kt (III) In (0.05)>-kt In (0.05) < t 8.4715... \$ t :. t = 9 years ... or correctly rounded answer MOSTLY CORRECT. SOME STUDENTS FOUND 5% OF 26369 WHICH WAS UNNECESSARY

