Topic 2. Exercises on Complex Numbers II <u>Level 1</u>

1. (a) Find
$$|z|$$
 and arg z when $z = i$.

$$|z| = 1$$
; arg $z = \frac{\pi}{2}$

(b) Find
$$|z|$$
 and arg z when $z = 2 + 2i$.

$$|z| = 2\sqrt{2}$$
; arg $z = \frac{\pi}{4}$

(c) Find
$$|z|$$
 and arg z when $z = -3 + 2i$.

$$|z| = \sqrt{13}$$
; arg $z = \pi - \tan^{-1}(2/3)$

2. (a) Write down the moduli and arguments of $-\sqrt{3} + i$ and 4 + 4i. Hence express in modulus/argument form $(-\sqrt{3} + i)(4 + 4i)$.

$$8\sqrt{2}\operatorname{cis}\left(-\frac{11\pi}{12}\right)$$

(b) Write $(1+\sqrt{3}i)^{-1}$ in modulus/argument form.

$$\frac{1}{2}\operatorname{cis}\left(-\frac{\pi}{3}\right)$$

3. State the modulus and argument of -1+i. Hence write $(-1+i)^{18}$ in the form a+ib.

$$\sqrt{2}; \frac{3\pi}{4}; z^{18} = -512i.$$

4. On an Argand diagram the points A and B represent the complex numbers $z_1 = i$ and $z_2 = \frac{1}{\sqrt{2}}(1+i)$ respectively. Show that $\arg(z_1+z_2) = \frac{3\pi}{8}$.

5. Use the vector representation of z_1 and z_2 on an Argand diagram to show that if $|z_1| = |z_2|$, then $\frac{z_1 + z_2}{z_1 - z_2}$ is imaginary.

6. On an Argand diagram the points A and B represent z_1 and z_2 respectively. OAB is an equilateral triangle. Show that $z_1^2 + z_2^2 = z_1 z_2$. (Hint: Express z_2 in terms of z_1).