Topic 4. Conics.

Level 3.

Problem CON3 01.

For the ellipse $\frac{x^2}{16} + \frac{y^2}{25} = 1$ find (a) the eccentricity; (b) the coordinates of the foci; (c) the equations of the directrices. Sketch the ellipse.

Answer: (a)
$$\frac{3}{5}$$
; (b) (0,±3); (c) $y = \pm \frac{25}{3}$.

Solution:

$$\frac{x^2}{16} + \frac{y^2}{25} = 1 \; ; \quad a = 4, b = 5 \Rightarrow b > a$$
$$a^2 = b^2 (1 - e^2)$$

eccentricity: $e = \sqrt{1 - \frac{16}{25}} = \frac{3}{5}$

foci: $(0,\pm be) \Rightarrow (0,\pm 3)$

directrices: $y = \pm \frac{b}{e} \Rightarrow y = \pm \frac{25}{3}$

Problem CON3 02.

For the hyperbola $\frac{y^2}{16} - \frac{x^2}{9} = 1$ find (a) the eccentricity; (b) the coordinates of the foci; (c) the equations of the directrices. Sketch the hyperbola.

Answer: (a) $\frac{5}{4}$; (b) $(0,\pm 5)$; (c) $y = \pm \frac{16}{5}$.

Solution:

$$\frac{y^2}{16} - \frac{x^2}{9} = 1$$
; $a = 3, b = 4$
 $a^2 = b^2(e^2 - 1)$

eccentricity: $e = \sqrt{1 + \frac{9}{16}} = \frac{5}{4}$

foci: $(0,\pm be) \Rightarrow (0,\pm 5)$

directrices: $y = \pm \frac{b}{e} \Rightarrow y = \pm \frac{16}{5}$,

asymptotes: $x = \pm \frac{a}{b} y \Rightarrow x = \pm \frac{3}{4} y \Rightarrow y = \pm \frac{4}{3} x$.

Problem C'ON3 03.

A variable point P(x,y) moves so that its distance from (0,4) is two times its distance from y=1. Find the locus of P.

Answer: $\frac{y^2}{4} - \frac{x^2}{12} = 1$.

Solution:

The locus of a variable point P(x,y) is the hyperbola with focus at S(0,4), directrix m:y=1 and eccentricity e=2. Let M be the foot of the perpendicular from P to m. Then M has coordinates (x,1).

 $PS = e \cdot PM \Rightarrow x^2 + (y-4)^2 = 2^2 (y-1)^2$. Therefore the Cartesian equation of the hyperbola is $x^2 + y^2 (1-4) = 4-16$. $\frac{y^2}{4} - \frac{x^2}{12} = 1$.

Problem C'ON3 04.

The asymptotes of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ are inclined to each other at an angle α . Show that $\tan \alpha = \frac{2ab}{\left|a^2 - b^2\right|}$.

Solution: Let φ denote the smallest angle from positive x-axis to the asymptote $y = \frac{b}{a}x$. Then $\alpha = 2\varphi$ when $\varphi \leq \frac{\pi}{4}$, or $\alpha = \pi - 2\varphi$ when $\varphi > \frac{\pi}{4}$. Therefore $\tan \alpha = |\tan 2\varphi|$. Since $\tan \varphi = \frac{b}{a}$, then $\tan \alpha = \left|\frac{2\tan \varphi}{1-\tan^2 \varphi}\right| = \left|\frac{2b}{a}\cdot\left(1-\frac{b^2}{a^2}\right)^{-1}\right| = \frac{2ab}{\left|a^2-b^2\right|}$.

Problem CON3 05.

A point $P(a \sec \theta, b \tan \theta)$ lies on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ with foci S(a l, 0) and S'(-a l, 0).

- (a) Show that $PS = a|e \sec \theta 1|$ and $PS' = a|e \sec \theta + 1|$
- (b) Deduce that |PS PS'| = 2a

Solution: (a) Length of PS is $\sqrt{(a\sec\theta-ae)^2+(b\tan\theta)^2}=\sqrt{a^2(\sec\theta-e)^2+b^2\tan^2\theta}$. For the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ we have $b^2=a^2(e^2-1)$. Therefore the length of PS is $\sqrt{a^2(\sec\theta-e)^2+a^2(e^2-1)\tan^2\theta}=a\sqrt{\sec^2\theta-2e\sec\theta+e^2+e^2\tan^2\theta-\tan^2\theta}=a\sqrt{e^2(1+\tan^2\theta)-2e\sec\theta+(\sec^2\theta-\tan^2\theta)}=a\sqrt{e^2\sec^2\theta-2e\sec\theta+1}=a\sqrt{(e\sec\theta-1)^2}$ Hence the length of PS is $a|e\sec\theta-1|$.

Length of PS' is $\sqrt{(a\sec\theta+ae)^2+(b\tan\theta)^2}=\sqrt{a^2(\sec\theta+e)^2+b^2\tan^2\theta}$. For the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ we have $b^2=a^2(e^2-1)$. Therefore the length of PS' is $\sqrt{a^2(\sec\theta+e)^2+a^2(e^2-1)\tan^2\theta}=a\sqrt{\sec^2\theta+2e\sec\theta+e^2+e^2\tan^2\theta-\tan^2\theta}=a\sqrt{e^2(1+\tan^2\theta)+2e\sec\theta+(\sec^2\theta-\tan^2\theta)}=a\sqrt{e^2\sec^2\theta+2e\sec\theta+1}=a\sqrt{(e\sec\theta+1)^2}$ Hence the length of PS' is $a|e\sec\theta+1|$.

(b) If P lies on the right-hand branch of the hyperbola, then $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$. Since for hyperbola e > 1, $PS = a(e \sec \theta - 1)$ and $PS' = a(e \sec \theta + 1)$. Therefore PS - PS' = -2a. If P lies on the left-hand branch of the hyperbola, then $-\pi < \theta < -\frac{\pi}{2}$ or $\frac{\pi}{2} < \theta \le \pi$. Since for hyperbola e > 1, $PS = -a(e \sec \theta - 1)$ and $PS' = -a(e \sec \theta + 1)$. Therefore PS - PS' = +2a. Hence |PS - PS'| = 2a.

Problem CON3 06.

Points $P(n \sec \theta, b \tan \theta)$ and $Q(a \sec \phi, b \tan \phi)$ lie on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. (a) Use the result that the chord PQ has equation $\frac{x}{a} \cos \left(\frac{\theta - \phi}{2} \right) - \frac{y}{b} \sin \left(\frac{\theta + \phi}{2} \right) = \cos \left(\frac{\theta + \phi}{2} \right)$ to show that if PQ is a local chord, then $\tan \frac{\theta}{2} \tan \frac{\phi}{2}$ takes one of the values $\frac{1 - e}{1 + e}$ or $\frac{1 + e}{1 - e}$. (b) The point $P(2\sqrt{3}, 3\sqrt{3})$ is one extremity of a focus chord on the hyperbola $\frac{x^2}{3} - \frac{y^2}{9} = 1$. Find the coordinates of the other extremity Q.

Answer:
$$(2\sqrt{3}, -3\sqrt{3})$$
 or $(-\frac{14\sqrt{3}}{13}, \frac{9\sqrt{3}}{13})$.

Solution: (a) If PQ is a focal chord through S(ae,0), then $e\cos\left(\frac{\theta-\phi}{2}\right)=\cos\left(\frac{\theta+\phi}{2}\right)$. Expanding both cosines gives $(e-1)\cos\frac{\theta}{2}\cos\frac{\phi}{2}=-(e+1)\sin\frac{\theta}{2}\sin\frac{\phi}{2}$. Hence $\tan\frac{\theta}{2}\tan\frac{\phi}{2}=\frac{1-e}{1+e}$. Similarly, if PQ is a focal chord through S'(-ae,0). Then replacing e by -e, $\tan\frac{\theta}{2}\tan\frac{\phi}{2}=\frac{1+e}{1-e}$.

(b)
$$\frac{x^2}{3} - \frac{y^2}{9} = 1 \Rightarrow a = \sqrt{3} \text{ and } b = 3, \therefore P(2\sqrt{3}, 3\sqrt{3}) = P(\sqrt{3} \sec \frac{\pi}{3}, 3 \tan \frac{\pi}{3}).$$

Also $b^2 = a^2(e^2 - 1)$ $\therefore e = \sqrt{\left(1 + \frac{9}{3}\right)} = 2$. P has parameter $\frac{\pi}{3}$. Let Q have parameter ϕ . Hence $\tan \frac{\pi}{6} \tan \frac{\phi}{2} = \frac{1 - 2}{1 + 2}$, or $\tan \frac{\pi}{6} \tan \frac{\phi}{2} = \frac{1 + 2}{1 - 2}$, $\therefore \tan \frac{\phi}{2} = -\frac{1}{\sqrt{3}}$, $\tan \frac{\phi}{2} = -3\sqrt{3}$, $\sec \phi = \frac{1 + \frac{1}{3}}{1 - \frac{1}{3}} = 2$ or $\sec \phi = \frac{1 + 27}{1 - 27} = -\frac{14}{13}$, and $\tan \phi = \frac{2\left(-\frac{1}{\sqrt{3}}\right)}{1 - \frac{1}{3}} = -\sqrt{3}$ or $\tan \phi = \frac{2\left(-3\sqrt{3}\right)}{1 - 27} = \frac{3\sqrt{3}}{13}$.

Q has coordinates $(\sqrt{3}\sec\phi, 3\tan\phi) \Rightarrow Q(2\sqrt{3}, -3\sqrt{3})$ or $Q\left(-\frac{14\sqrt{3}}{13}, \frac{9\sqrt{3}}{13}\right)$.

Problem CON3 07.

Points $P(a \cos \theta, b \sin \theta)$ and $Q(a \cos \phi, b \sin \phi)$ lie on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. Find the equation of the chord PQ. Hence show that if PQ subtends a right angle at the point A(a,0) then PQ passes through a fixed point on the x-axis.

Answer:
$$\frac{x}{a} \cos\left(\frac{\theta + \phi}{2}\right) + \frac{y}{b} \sin\left(\frac{\theta + \phi}{2}\right) = \cos\left(\frac{\theta - \phi}{2}\right)$$
.

Solution:

The chord PQ of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ has equation $\frac{x}{a} \cos\left(\frac{\theta + \phi}{2}\right) + \frac{y}{b} \sin\left(\frac{\theta + \phi}{2}\right) = \cos\left(\frac{\theta - \phi}{2}\right)$, where P, Q have parameters θ , ϕ . The chord PQ cuts the x-axis at point T(t,0). So $t = a\cos\left(\frac{\theta - \phi}{2}\right) \sec\left(\frac{\theta + \phi}{2}\right) = a\left(1 + \tan\frac{\theta}{2}\tan\frac{\phi}{2}\right)\left(1 - \tan\frac{\theta}{2}\tan\frac{\phi}{2}\right)^{-1}$. The gradient of AP is $\frac{b\sin\theta}{a(\cos\theta - 1)} = -\frac{b}{a}\cot\frac{\theta}{2}$ and the gradient of AQ is $\frac{b\sin\theta}{a(\cos\phi - 1)} = -\frac{b}{a}\cot\frac{\phi}{2}$. If the chord PQ subtends a right angle at the point A, then gradient $AP \times \text{gradient } AQ = -1$. Therefore $\frac{b^2}{a^2}\cot\frac{\phi}{2}\cot\frac{\phi}{2} = -1 \Rightarrow \tan\frac{\theta}{2}\tan\frac{\phi}{2} = -\frac{b^2}{a^2}$. Hence $t = a\left(1 - \frac{b^2}{a^2}\right)\left(1 + \frac{b^2}{a^2}\right)^{-1} = a\frac{a^2 - b^2}{a^2 + b^2}$. But for the

ellipse $b^2 = a^2(1 - e^2)$. Thus $t = \frac{ae^2}{2 + e^2}$. So PQ passes through a fixed point $T\left(\frac{ae^2}{2 + e^2}, 0\right)$ on the x-axis.

Problem CON3 08.

A point $P(a \sec \theta, b \tan \theta)$ lies on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. The line through P perpendicular to the x-axis meets an asymptote at Q and the normal at P meets the x-axis at N. Show that ON is perpendicular to the asymptote.

Solution: The normal to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ at the point $P(a \sec \theta, b \tan \theta)$ has equation $\frac{ax}{\sec \theta} + \frac{by}{\tan \theta} = a^2 + b^2$. So the point N has coordinates $\left(\frac{a^2 + b^2}{a} \sec \theta, 0\right)$. Since the asymptotes have equations $y = \pm \frac{b}{a}x$, then the point Q has coordinates $(a \sec \theta, \pm b \sec \theta)$. Thus the gradient of QN is $\mp b \sec \theta \cdot \left[\left(\frac{a^2 + b^2}{a} - a\right) \sec \theta\right]^{-1} = \mp \frac{a}{b}$. Therefore QN is perpendicular to the asymptote.

Problem CON3 09.

A point $P(a \sec \theta, a \tan \theta)$ lies on the rectangular hyperbola $x^2 - y^2 = a^2$. A is the point (a,0). M is the midpoint of AP. Find the equation of the locus of M.

Answer:
$$(2x-a)^2 - (2y)^2 = a^2$$

Solution: If M(x, y) is the midpoint of AP, then $x = \frac{a}{2}(\sec \theta + 1)$ and $y = \frac{a}{2}\tan \theta$. Therefore $(2x - a)^2 - (2y)^2 = a^2(\sec^2 \theta - \tan^2 \theta) = a^2$. Hence the locus of M is hyperbola $(2x - a)^2 - (2y)^2 = a^2$.

Problem CON3_10.

The point $P(a \sec \theta, b \tan \theta)$ on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is joined to the vertices A(a,0) and A'(-a,0). The lines AP and A'P meet he asymptote $y = \frac{b}{a}x$ at Q and R respectively. (i) Find the coordinetes of Q and R. (ii) Hence find the length QR, showing that it is independent of θ , and show that the area of triangle PQR is $\frac{1}{2}|ab(\sec \theta - \tan \theta)|$ square units.

Answer: (i)
$$\left(\frac{a\cos\frac{\theta}{2}}{\cos\frac{\theta}{2}-\sin\frac{\theta}{2}}, \frac{b\cos\frac{\theta}{2}}{\cos\frac{\theta}{2}-\sin\frac{\theta}{2}}\right), \left(\frac{a\sin\frac{\theta}{2}}{\cos\frac{\theta}{2}-\sin\frac{\theta}{2}}, \frac{b\sin\frac{\theta}{2}}{\cos\frac{\theta}{2}-\sin\frac{\theta}{2}}\right); (ii) \sqrt{a^2+b^2}$$

Solution:

(i) The line AP has equation $y = \frac{b \tan \theta}{a(\sec \theta - 1)}(x - a)$. Since the point Q lies on the line AP, then

 $y_1 = \frac{b \tan \theta}{a(\sec \theta - 1)}(x_1 - a)$. Since the point Q lies on the asymptote $y = \frac{b}{a}x$, then $y_1 = \frac{b}{a}x_1$.

Therefore
$$x_1 = \frac{\tan \theta}{(\sec \theta - 1)}(x_1 - a) \Rightarrow x_1 = \frac{a \tan \theta}{\tan \theta - \sec \theta + 1} = \frac{a \cos \frac{\theta}{2}}{\cos \frac{\theta}{2} - \sin \frac{\theta}{2}}$$
 and $y_1 = \frac{b \cos \frac{\theta}{2}}{\cos \frac{\theta}{2} - \sin \frac{\theta}{2}}$

Thus the point Q has coordinates $\left(\frac{a\cos\frac{\theta}{2}}{\cos\frac{\theta}{2}-\sin\frac{\theta}{2}}, \frac{b\cos\frac{\theta}{2}}{\cos\frac{\theta}{2}-\sin\frac{\theta}{2}}\right)$. Similarly the line A'P has

equation $y = \frac{b \tan \theta}{a(\sec \theta + 1)}(x + a)$. Since the point R lies on the line A'P, then

 $y_2 = \frac{b \tan \theta}{a(\sec \theta + 1)}(x_2 + a)$. Since the point R lies on the asymptote $y = \frac{b}{a}x$, then $y_2 = \frac{b}{a}x_2$. So

$$x_2 = \frac{\tan \theta}{(\sec \theta + 1)}(x_2 + a) \Rightarrow x_2 = \frac{-a \tan \theta}{\tan \theta - \sec \theta - 1} = \frac{a \sin \frac{\theta}{2}}{\cos \frac{\theta}{2} - \sin \frac{\theta}{2}} \text{ and } y_2 = \frac{b \sin \frac{\theta}{2}}{\cos \frac{\theta}{2} - \sin \frac{\theta}{2}}. \text{ Thus the }$$

 $point \ R \ has \ coordinates \left(\frac{a \sin \frac{\theta}{2}}{\cos \frac{\theta}{2} - \sin \frac{\theta}{2}}, \frac{b \sin \frac{\theta}{2}}{\cos \frac{\theta}{2} - \sin \frac{\theta}{2}} \right).$

(ii)
$$QR^2 = (x_1 - x_2)^2 + (y_1 - y_2)^2 = \frac{a^2 \left(\cos\frac{\theta}{2} - \sin\frac{\theta}{2}\right)^2}{\left(\cos\frac{\theta}{2} - \sin\frac{\theta}{2}\right)^2} + \frac{b^2 \left(\cos\frac{\theta}{2} - \sin\frac{\theta}{2}\right)^2}{\left(\cos\frac{\theta}{2} - \sin\frac{\theta}{2}\right)^2} = a^2 + b^2$$
. Thus the

length of QR is $\sqrt{a^2+b^2}$ and hence is independent of θ . The area of the triangle PQR is

 $\frac{1}{2} \cdot QR \cdot h$ where h is the height of the triangle. Since h is the distance from $P(a \sec \theta, b \tan \theta)$ to $\frac{|b|}{|a|} \cdot a \sec \theta - b \tan \theta$

the line
$$y = \frac{b}{a}x$$
, then $h = \frac{\left|\frac{b}{a} \cdot a \sec \theta - b \tan \theta\right|}{\sqrt{\left(\frac{b}{a}\right)^2 + 1}} = \frac{ba|\sec \theta - \tan \theta|}{\sqrt{a^2 + b^2}}$. Therefore the area of the triangle

$$PQR$$
 is $\frac{1}{2} \cdot \sqrt{a^2 + b^2} \cdot \frac{ba|\sec \theta - \tan \theta|}{\sqrt{a^2 + b^2}} = \frac{1}{2}ab|\sec \theta - \tan \theta|$.

Problem CON3_11.

Find the equation of the tangent and normal to (a) the ellipse $\frac{x^2}{8} + \frac{y^2}{2} = 1$ at the point (2,1);

(b) the ellipse $x = 4\cos\theta$, $y = 2\sin\theta$ at the point where $\theta = \frac{\pi}{3}$; (c) the hyperbola $\frac{x^2}{12} - \frac{y^2}{27} = 1$ at the point (4,3); (d) the hyperbola $x = 3\sec\theta$, $y = 6\tan\theta$ at the point where $\theta = \frac{\pi}{6}$.

Answer: (a)
$$x + 2y = 4$$
, $2x - y = 3$; (b) $x + 2\sqrt{3}y = 8$, $6x - \sqrt{3}y = 9$; (c) $3x - y = 9$, $x + 3y = 13$; (d) $4x - y = 6\sqrt{3}$, $x + 4y = 10\sqrt{3}$.

Solution: (a) The tangent to the ellipse $\frac{x^2}{8} + \frac{y^2}{2} = 1$ at the point (2,1) has equation $\frac{2x}{8} + \frac{y}{2} = 1 \Rightarrow x + 2y = 4$. The normal to the ellipse $\frac{x^2}{8} + \frac{y^2}{2} = 1$ at the point (2,1) has equation $\frac{8x}{2} - \frac{2y}{1} = 8 - 2 \Rightarrow 2x - y = 3$.

(b) The tangent to the ellipse $x = 4\cos\theta$, $y = 2\sin\theta$ at the point where $\theta = \frac{\pi}{3}$ has equation $\frac{x\cos\frac{\pi}{3}}{4} + \frac{y\sin\frac{\pi}{3}}{2} = 1 \Rightarrow x + 2\sqrt{3}y = 8$. The normal to the ellipse $x = 4\cos\theta$, $y = 2\sin\theta$ at the point where $\theta = \frac{\tau}{3}$ has equation $\frac{4x}{\cos\frac{\pi}{3}} - \frac{2y}{\sin\frac{\pi}{3}} = 16 - 4 \Rightarrow 6x - \sqrt{3}y = 9$.

(c) The tangent to the hyperbola $\frac{x^2}{12} - \frac{y^2}{27} = 1$ at the point (4,3) has equation

$$\frac{4x}{12} - \frac{3y}{27} = 1 \Rightarrow 3x - y = 9$$
. The normal to the hyperbola $\frac{x^2}{12} - \frac{y^2}{27} = 1$ at the point (4,3) has equation $\frac{12x}{14} + \frac{27y}{3} = 12 + 27 \Rightarrow x + 3y = 13$.

(d) The tangent to the hyperbola $x = 3\sec\theta$, $y = 6\tan\theta$ at the point where $\theta = \frac{\pi}{6}$ has equation $\frac{x\sec\frac{\pi}{6}}{3} - \frac{y\tan\frac{\pi}{6}}{6} = 1 \Rightarrow 4x - y = 6\sqrt{3}$. The normal to the hyperbola $x = 3\sec\theta$, $y = 6\tan\theta$ at the point where $\theta = \frac{\pi}{6}$ has equation $\frac{3x}{\sec\frac{\pi}{6}} + \frac{6y}{\tan\frac{\pi}{6}} = 9 + 36 \Rightarrow x + 4y = 10\sqrt{3}$.

Problem CON3 12.

The point $P(a\cos\theta, b\sin\theta)$ lies on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. The points T and T' are the feet of the perpendiculars from the foci S and S' respectively to this tangent. Show that $ST \cdot S'T' = b^2$.

Solution: The tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at the point $P(a\cos\theta, b\sin\theta)$ has equation $\frac{x\cos\theta}{a} + \frac{y\sin\theta}{b} = 1$.

Since S has coordinates (ae,0), then $ST = \frac{|e\cos\theta - 1|}{\sqrt{\frac{\cos^2\theta}{a^2} + \frac{\sin^2\theta}{b^2}}}$ (ST is the distance from S to the line

 $\frac{x\cos\theta}{a} + \frac{y\sin\theta}{b} = 1$). Since S' has coordinates (-ae,0), then $S'T' = \frac{|-e\cos\theta - 1|}{\sqrt{\frac{\cos^2\theta}{a^2} + \frac{\sin^2\theta}{b^2}}}$. Therefore

 $ST \cdot S'T' = \frac{1 - e^2 \cos^2 \theta}{\cos^2 \theta} \cdot \frac{1 - e^2 \cos^2 \theta}{b^2}$. But for the ellipse $b^2 = a^2 (1 - e^2) \Rightarrow e^2 = 1 - \frac{b^2}{a^2}$. Hence

$$ST \cdot S'T' = \frac{1 - \cos^2 \theta + \frac{b^2}{a^2} \cos^2 \theta}{\frac{\cos^2 \theta}{a^2} + \frac{\sin^2 \theta}{b^2}} = b^2.$$

Problem CON3_13.

The point $P(a \sec \theta, b \tan \theta)$ lies on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. The points T and T' are the feet of the perpendiculars from the foci S and S' respectively to this tangent. Show that $ST \cdot S'T' = b^2$.

Solution: The tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ at the point $P(a \sec \theta, b \tan \theta)$ has equation $\frac{x \sec \theta}{a^2} - \frac{y \tan \theta}{b^2} = 1$.

Since S has coordinates (ae,0), then $ST = \frac{|e \sec \theta - 1|}{\sqrt{\frac{\sec^2 \theta}{a^2} + \frac{\tan^2 \theta}{b^2}}} (ST \text{ is the distance from } S \text{ to the}$

 $\lim \frac{x \sec \theta}{a} - \frac{y \tan \theta}{b} = 1$). Since S' has coordinates (-ae, 0), then $S'T' = \frac{\left| -e \sec \theta - 1 \right|}{\sqrt{\frac{\sec^2 \theta}{a^2} + \frac{\tan^2 \theta}{b^2}}}$. Hence

 $ST \cdot S'T' = \frac{e^2 \sec^2 \theta - 1}{\frac{\sec^2 \theta}{a^2} + \frac{\tan^2 \theta}{b^2}}.$ But for the hyperbola $b^2 = a^2(e^2 - 1) \Rightarrow e^2 = \frac{b^2}{a^2} + 1$. Thus

$$ST \cdot S'T' = \frac{\frac{b^2}{a^2} \sec^2 \theta + \sec^2 \theta - 1}{\frac{\sec^2 \theta}{a^2} + \frac{\tan^2 \theta}{b^2}} = b^2.$$

Problem C'ON3 14.

The point $P(a\cos\theta, b\sin\theta)$ lies on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. The normal at the P cuts the x-axis at G, and N is the foot of the perpendicular from P to the x-axis. Show that SG = eSP, and S'G = eS'P.

Solution:

The normal to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at the point $P(a\cos\theta, b\sin\theta)$ has equation

$$\frac{ax}{\cos\theta} - \frac{by}{\sin\theta} = a^2 - b^2$$
. The point G has coordinates $\left(\frac{a^2 - b^2}{a}\cos\theta, 0\right)$. Since the focus S has

coordinates
$$(ae,0)$$
, then $SG = \left| ae - \frac{a^2 - b^2}{a} \cos \theta \right| = ae(1 - e \cos \theta)$ and

$$SP = \sqrt{(ae - a\cos\theta)^2 + b^2 \sin^2\theta} = a\sqrt{(e - \cos\theta)^2 + (1 - e^2)\sin^2\theta}$$
$$= a\sqrt{1 - 2e\cos\theta + e^2\cos^2\theta} = a(1 - e\cos\theta).$$

Hence SG = eSP. Since the focus S' has coordinates (-ae,0),

then
$$S'G = -ae - \frac{a^2 - b^2}{a} \cos \theta = ae(1 + e \cos \theta)$$

and
$$S'P = \sqrt{(-ae - a\cos\theta)^2 + b^2\sin^2\theta} = a\sqrt{(e + \cos\theta)^2 + (1 - e^2)\sin^2\theta}$$

= $a\sqrt{1 + 2e\cos\theta + e^2\cos^2\theta} = a(1 + e\cos\theta)$.

Hence S'G = eS'P.

Problem CON3_15.

The point $P(a \sec \theta, b \tan \theta)$ lies on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. The normal at P cuts the x-axis at G, and N is the foot of the perpendicular from P to the x-axis. Show that SG = eSP, and S'G = eS'P.

Solution:

The normal to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ at the point $P(a \sec \theta, b \tan \theta)$ has equation

$$\frac{ax}{\sec \theta} + \frac{by}{\tan \theta} = a^2 + b^2$$
. The point G has coordinates $\left(\frac{a^2 + b^2}{a} \sec \theta, 0\right)$.

Since the focus S has coordinates (ae,0).

then
$$SG = \left| ae - \frac{a^2 + b^2}{a} \sec \theta \right| = ae \left| 1 - e \sec \theta \right|$$

and $SP = \sqrt{\left(ae - a \sec \theta \right)^2 + b^2 \tan^2 \theta} = a\sqrt{\left(e - \sec \theta \right)^2 + \left(e^2 - 1 \right) \tan^2 \theta}$

$$= a\sqrt{1 - 2e\sec\theta + e^2\sec^2\theta} = a|1 - e\sec\theta|.$$

Hence SG = eSP. Since the focus S' has coordinates (-ae, 0),

then
$$S'G = -ae - \frac{a^2 + b^2}{a} \sec \theta = ae |1 + e \sec \theta|$$

and
$$S'P = \sqrt{(-ae - a\sec\theta)^2 + b^2 \tan^2 \theta} = a\sqrt{(e + \sec\theta)^2 + (e^2 - 1)\tan^2 \theta}$$

= $a\sqrt{1 + 2e\sec\theta + e^2\sec^2 \theta} = a|1 + e\sec\theta|$.

Hence S'G = eS'P.

Problem CON3 16.

Show that the chord of contact of the tangents from the point $P_0(x_0, y_0)$ to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ has equation $\frac{x_0x}{a^2} + \frac{y_0y}{b^2} = 1$.

Solution;

Since $P_0(x_1, y_0)$ lies on the tangent P_0Q , then $\frac{x_0x_1}{a^2} + \frac{y_0y_1}{b^2} = 1$. Since $P_0(x_0, y_0)$ lies on the tangent P_0R , then $\frac{x_0x_2}{a^2} + \frac{y_0y_2}{b^2} = 1$. Hence both $Q(x_1, y_1)$ and $R(x_2, y_2)$ satisfy $\frac{x_0x}{a^2} + \frac{y_0y}{b^2} = 1$. But this is the equation of a straight line and is thus the equation of the chord of contact of tangents from $P_0(x_0, y_0)$.

Problem CON3 17.

Write down the equation of the chord of contact of the tangents from the point (4,-1) to the ellipse $x^2 - 2y^2 = 6$. Hence find the coordinates of the points of contact and the equations of these tangents.

Answer:
$$2x - y = 3$$
; $\left(\frac{2}{3}, -\frac{5}{3}\right)$, $x - 5y = 9$; $(2,1)$, $x + y = 3$.

Solution: $x^2 + 2y^2 = 6 \Rightarrow \frac{x^2}{6} + \frac{y^2}{3} = 1$. The chord of contact of tangents from the point (4,-1) to the ellipse $\frac{x^2}{6} + \frac{y^2}{3} = 1$ has equation $\frac{4x}{6} - \frac{y}{3} = 1 \Rightarrow 2x - y = 3$. Let T(x', y') be the extremity of the chord, then $2x' - y' = 3 \Rightarrow y' = 2x' - 3$. Since the point T(x', y') lies on the ellipse, then $x'^2 + 2y'^2 = 6$. Hence $x'^2 + 2(2x' - 3)^2 = 6 \Rightarrow 9x'^2 - 24x' + 12 = 0 \Rightarrow (3x' - 2)(x' - 2) = 0$. Therefore the tangents to the ellipse $x^2 + 2y^2 = 6$ from the point (4,-1) are $\frac{2}{3}x - \frac{10}{3}y = 6 \Rightarrow x - 5y = 9$, with point of contact $T\left(\frac{2}{3}, -\frac{5}{3}\right)$ and $2x + 2y = 6 \Rightarrow x + y = 3$, with point of contact T(2,1).

Problem CON3 18.

Show that if y = mx + k is a tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, then $m^2 a^2 - b^2 = k^2$. Hence find the equation of the tangents from the point (1,3) to the hyperbola $\frac{x^2}{4} - \frac{y^2}{15} = 1$ and the coordinates of their points of contact.

Answer:
$$y = 2x + 1$$
, $(-8, -15)$; $y = -4x + 7$, $\left(\frac{16}{7}, -\frac{15}{7}\right)$

Solution: The hyperbola has parametric equations $x = a \sec \theta$ and $y = b \tan \theta$. Hence

$$\frac{dy}{dx} = \frac{b \sec \xi}{a \tan \xi}.$$
 If $y = mx + k$ is a tangent to the hyperbola at $P(a \sec \phi, b \tan \phi)$, then

$$m = \frac{dy}{dx}$$
 at $^{D} \Rightarrow ma \tan \phi - b \sec \phi = 0$ (1)

P lies on
$$y = mx + k$$
 $\Rightarrow ma \sec \phi - b \tan \phi = -k$ (2)

$$(2)^2 - (1)^2 \Rightarrow m^2 a^2 (\sec^2 \phi - \tan^2 \phi) + b^2 (\tan^2 \phi - \sec^2 \phi) = k^2 \Rightarrow m^2 a^2 - b^2 = k^2$$

$$(2) \times \sec \phi - (1) \times \tan \phi \Rightarrow ma(\sec^2 \phi - \tan^2 \phi) = -k \sec \phi \Rightarrow a \sec \phi = -\frac{ma^2}{k},$$

$$(2) \times \tan \phi - (1) \times \sec \phi \Rightarrow b(\sec^2 \phi - \tan^2 \phi) = -k \tan \phi \Rightarrow b \tan \phi = -\frac{b^2}{k}.$$

Therefore the point of contact of the tangent y = mx + k is $P\left(-\frac{ma^2}{k}, -\frac{b^2}{k}\right)$. Now tangents from

the point (1.3) to the hyperbola $\frac{x^2}{4} - \frac{y^2}{15} = 1$ have equations of the form y - 3 = m(x - 1), that is, y = mx + (3 - m).

Hence
$$m^2c^2 - b^2 = k^2 \Rightarrow 4m^2 - 15 = (3 - m)^2 \Rightarrow 3m^2 + 6m - 24 = 0 \Rightarrow (m - 2)(m + 4) = 0$$

$$\therefore m = 2, k = 3 - m = 1 \text{ and } P\left(-\frac{ma^2}{k}, -\frac{b^2}{k}\right) = P(-8, -15),$$

or
$$m = -4, k = 3 - m = 7$$
 and $P\left(-\frac{ma^2}{k}, -\frac{b^2}{k}\right) = P\left(\frac{16}{7}, -\frac{15}{7}\right)$.

Hence the tangents from the point (1,3) to the hyperbola $\frac{x^2}{4} - \frac{y^2}{15} = 1$ are y = 2x + 1, with point of contact P(-8,-15) and y = -4x + 7, with point of contact $P\left(\frac{16}{7}, -\frac{15}{7}\right)$.

Problem CON3 19.

Find the equations and the coordinates of the points of contact of the tangents to $x^2 + 2y^2 = 19$ which are parallel to x + 6y = 5.

Answer:
$$x + 6y = 19$$
, (1,3); $x + 6y = -19$, (-1,-3)

Solution: The tangent to the ellipse $x^2 + 2y^2 = 19$ at the point $P(x_0, y_0)$ has equation $xx_0 + 2yy_0 = 19$. If this tangent is parallel to x + 6y = 5, then $\frac{2y_0}{x_0} = 6 \Rightarrow y_0 = 3x_0$. Since the point $P(x_0, y_0)$ lies on the ellipse, then $x_0^2 + 2y_0^2 = 19$. Therefore $x_0^2 + 2 \cdot 9x_0^2 = 19 \Rightarrow x_0^2 = 1$. Hence the tangents to the ellipse $x^2 + 2y^2 = 19$ are x + 6y = 19, with point of contact P(1,3) and x + 6y = -19, with point of contact P(-1,-3).

Problem CON3 20.

Find the equations and the coordinates of the points of contact of the tangents to $2x^2 - 3y^2 = 5$ which are parallel to 8x = 9y.

Answer:
$$8x - 9y = 5$$
, (4,3); $8x - 9y = -5$, (-4,-3)

Solution: The tangent to the hyperbola $2x^2 - 3y^2 = 5$ at the point $P(x_0, y_0)$ has equation $2xx_0 - 3yy_0 = 5$. If this tangent is parallel to 8x = 9y, then $\frac{2x_0}{3y_0} = \frac{8}{9} \Rightarrow y_0 = \frac{3}{4}x_0$. Since the point $P(x_0, y_0)$ lies on the hyperbola, then $2x_0^2 - 3y_0^2 = 5$. Therefore $2x_0^2 - 3 \cdot \frac{9}{16}x_0^2 = 5 \Rightarrow x_0^2 = 16$. Hence the tangents to the hyperbola $2x^2 - 3y^2 = 5$ are 8x - 9y = 5, with point of contact P(4,3) and 8x - 9y = -5, with point of contact P(4,3).

Problem CON3 21.

Find the equations and the coordinates of the points of contact of the tangents to $x^2 - y^2 = 7$ which are parallel to 3y = 4x.

Answer:
$$4x - 3y = 7$$
, (4,3); $4x - 3y = -7$, (-4,-3)

Solution: The tangent to the hyperbola $x^2 - y^2 = 7$ at the point $P(x_0, y_0)$ has equation $xx_0 - yy_0 = 7$. If this tangent is parallel to 3y = 4x, then $\frac{x_0}{y_0} = \frac{4}{3} \Rightarrow y_0 = \frac{3}{4}x_0$. Since the point $P(x_0, y_0)$ lies on the hyperbola, then $x_0^2 - y_0^2 = 7$. Therefore $x_0^2 - \frac{9}{16}x_0^2 = 7 \Rightarrow x_0^2 = 16$. Hence the tangents to the hyperbola $x^2 - y^2 = 7$ are 4x - 3y = 7, with point of contact P(4,3) and 4x - 3y = -7, with point of contact P(-4,-3).

Problem C'ON3 22.

Find the equations and the coordinates of the points of contact of the tangents to $8x^2 + 3y^2 = 35$ from the point $\left(\frac{5}{4}, 5\right)$.

Answer:
$$16x + 3y = 35$$
, (2.1); $-8x + 9y = 35$, (-1.3)

Solution: The tangent to the ellipse $8x^2 + 3y^2 = 35$ at the point $P(x_0, y_0)$ has equation $8xx_0 + 3yy_0 = 35$. The point $\left(\frac{5}{4}, 5\right)$ lies on this tangent. So $10x_0 + 15y_0 = 35 \Rightarrow y_0 = \frac{7}{3} - \frac{2}{3}x_0$. Since the point $P(x_0, y_0)$ lies on the ellipse, then $8x_0^2 + 3y_0^2 = 35$.

Therefore $8x_0^2 + 3 \cdot \left(\frac{7}{3} - \frac{2}{3}x_0\right)^2 = 35 \Rightarrow 28x_0^2 - 28x_0 - 56 = 0 \Rightarrow (x_0 - 2)(x_0 + 1) = 0$. Hence the tangents to the ellipse $8x^2 + 3y^2 = 35$ from the point $\left(\frac{5}{4}, 5\right)$ are 16x + 3y = 35, with point of contact P(2,1) and -8x + 9y = 35, with point of contact P(-1,3).

Problem CON3 23.

Find the equations and the coordinates of the points of contact of the tangents to $x^2 - 9y^2 = 9$ from the point (3,2).

Answer:
$$x = 3$$
, (3,0); $-5x + 12y = 9$, $\left(-5, -\frac{4}{3}\right)$

Solution: The tangent to the hyperbola $x^2 - 9y^2 = 9$ at the point $P(x_0, y_0)$ has equation $xx_0 - 9yy_0 = 9$. The point (3,2) lies on this tangent. So $3x_0 - 18y_0 = 9 \Rightarrow x_0 = 3 + 6y_0$. Since the point $P(x_0, y_0)$ lies on the hyperbola, then $x_0^2 - 9y_0^2 = 9$.

Therefore $(3+6y_0)^2 - 9y_0^2 = 9 \Rightarrow 3y_0^2 + 4y_0 = 0 \Rightarrow y_0(3y_0 + 4) = 0$. Hence the tangents to the hyperbola $x^2 - 9y^2 = 9$ from the point (3,2) are x = 3, with point of contact P(3,0) and -5x + 12y = 9, with point of contact $P\left(-5, -\frac{4}{3}\right)$.

Problem CON3 24.

The point $P(a\cos\theta, b\sin\theta)$ lies on an extremity of a latus rectum through one focus S of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. The tangent at P cuts the y-axis at Q. Show that the normal at P is parallel to QS', where S' is the other focus.

Solution:

The tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at the point $P(a\cos\theta, b\sin\theta)$ has equation $\frac{x\cos\theta}{a} + \frac{y\sin\theta}{b} = 1$. Hence the point Q has coordinates $(0, b\csc\theta)$. Thus the gradient of QS' is $\frac{b\csc\theta}{ae}$. The gradient of the normal to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at the point $P(a\cos\theta, b\sin\theta)$ is $\frac{a\sin\theta}{b\cos\theta}$. Since P lies at an extremity of a latus rectum through the focus S(ae,0), then $\cos\theta = e$ and $\sin\theta = \sqrt{1-e^2} = \frac{b}{a}$. Therefore the gradient of QS' is $\frac{b}{ae} \cdot \frac{a}{b} = \frac{1}{e}$ and the gradient of the normal at P is $\frac{a}{be} \cdot \frac{b}{a} = \frac{1}{e}$. Hence the normal at P is parallel to QS'.

Problem C'ON3 25.

The point $P(a\cos\theta, b\sin\theta)$ lies on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. The tangent at P cuts the tangent at A(a,0) at R. Show that OR is parallel to A'P, where A' is the point (-a,0).

Solution:

The tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at the point $P(a\cos\theta, b\sin\theta)$ has equation

 $\frac{x\cos\theta}{a} + \frac{y\sin\theta}{b} = 1. \text{ Hence the point } R \text{ has coordinates } \left(a, \frac{b(1-\cos\theta)}{\sin\theta}\right). \text{ Thus the gradient of } OR$ is $\frac{b(1-\cos\theta)}{a\sin\theta}. \text{ The gradient of } A'P \text{ is }$

 $\frac{b\sin\theta}{a(\cos\theta+1)} = \frac{b\sin\theta(1-\cos\theta)}{a(\cos\theta+1)(1-\cos\theta)} = \frac{b\sin\theta(1-\cos\theta)}{a(1-\cos^2\theta)} = \frac{b(1-\cos\theta)}{a\sin\theta}.$ Therefore *OR* is parallel to A'P.

Problem CON3_26.

The point $P(a\cos\theta, b\sin\theta)$ lies on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with foci S and S'. The normal at P meets SS' at G. Show that $PG^2 = (1 - e^2)PS \cdot PS'$.

Solution:

The normal to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at the point $P(a\cos\theta, b\sin\theta)$ has equation

$$\frac{ax}{\cos\theta} - \frac{by}{\sin\theta} = a^2 - b^2$$
. The point G has coordinates $\left(\frac{a^2 - b^2}{a}\cos\theta, 0\right)$. Therefore

$$PG^{2} = \left(a - \frac{a^{2} - b^{2}}{a}\right)^{2} \cos^{2}\theta + b^{2} \sin^{2}\theta = \frac{b^{2}}{a^{2}} \left(b^{2} \cos^{2}\theta + a^{2} \sin^{2}\theta\right).$$

But for the ellipse $b^2 = a^2(1 - e^2)$. Hence $PG^2 = a^2(1 - e^2)(1 - e^2\cos^2\theta)$

$$PS^{2} = a^{2}(e - \cos \theta)^{2} + b^{2}\sin^{2}\theta = a^{2}(1 - 2e\cos\theta + e^{2}\cos^{2}\theta) = a^{2}(1 - e\cos\theta)^{2},$$

$$PS'^{2} = a^{2}(e^{2} + \cos\theta)^{2} + b^{2}\sin^{2}\theta = a^{2}(1 + 2e\cos\theta + e^{2}\cos^{2}\theta) = a^{2}(1 + e\cos\theta)^{2}.$$

Thus $PG^2 = (1 - e^2) \cdot a(1 - e \cos \theta) \cdot a(1 + e \cos \theta) = (1 - e^2)PS \cdot PS'$.

Problem CON3 27.

The point $P(a \sec \theta, b \tan \theta)$ lies on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. The tangent and the normal at P cut the y-axis at T and G respectively. Show that the circle on GT as diameter passes through the foci S and S'.

Solution:

The tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ at the point $P(a \sec \theta, b \tan \theta)$ has equation $\frac{x \sec \theta}{a} - \frac{y \tan \theta}{b} = 1$. The point T has coordinates $(0, -b \cot \theta)$. The normal to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ at the point $P(a \sec \theta, b \tan \theta)$ has equation $\frac{ax}{\sec \theta} + \frac{by}{\tan \theta} = a^2 + b^2$. The point G has

coordinates $\left(0,\frac{a^2+b^2}{b}\tan\theta\right)$. So gradient $SG \times \operatorname{gradient} ST = \frac{a^2+b^2}{-bae}\tan\theta \cdot \frac{-b\cot\theta}{-ae}$. Since for the hyperbola $b^2 = a^2(e^2-1)$, then gradient $SG \times \operatorname{gradient} ST = -\frac{a^2+b^2}{a^2e^2} = -1$. Thus $SG \perp ST$ and consequently GT subtends a right angle at focus S. Similarly gradient $S'G \times \operatorname{gradient} S'T = \frac{a^2+b^2}{bae}\tan\theta \cdot \frac{-b\cot\theta}{ae} = -\frac{a^2+b^2}{a^2e^2} = -1$. Thus $S'G \perp S'T$ and consequently GT subtends a right angle at focus S'. Therefore S,G,S',T are concyclic with GT the diameter of the circle through the points.

Problem CON3 28.

Show that the gradient of the tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ at the extremity in the first quadrant of its latus rectum is equal to the eccentricity of the hyperbola.

Solution: The tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ at the point $P(a \sec \theta, b \tan \theta)$ has gradient $\frac{b \sec \theta}{a \tan \theta}$. If P is an extremity in the first quadrant of a latus rectum, then $a \sec \theta = ae$. Thus $\sec \theta = e \Rightarrow \tan \theta = \sqrt{\sec^2 \theta - 1} = \sqrt{e^2 - 1}$. Since for the hyperbola $b^2 = a^2(e^2 - 1)$, then $\sqrt{e^2 - 1} = \frac{b}{a}$. Hence the gradient of the tangent is $\frac{be}{a\left(\frac{b}{a}\right)} = e$.

Problem CON3 29.

The point $P(a\cos\theta, b\sin\theta)$ lies on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, a > b > 0. The tangent and the normal at P cut the y-axis at P and P respectively, and P is a focus of the ellipse. (i) Show that P is a focus of the circle through P in P in P in P and P are concyclic and state the location of the center of the circle through P, P, P and P.

Solution:

The tangent to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at the point $P(a\cos\theta, b\sin\theta)$ has equation $\frac{x\cos\theta}{a} + \frac{y\sin\theta}{b} = 1$. Therefore the point A has coordinates $(0, b\csc\theta)$. The normal to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at the point $P(a\cos\theta, b\sin\theta)$ has equation $\frac{ax}{\cos\theta} - \frac{by}{\sin\theta} = a^2 - b^2$. Hence the point B has coordinates $\left(0, \frac{b^2 - a^2}{b}\sin\theta\right)$.

(i) Gradien: $AS \times \text{gradient } BS = \frac{b \csc \theta}{-ae} \cdot \frac{(b^2 - a^2) \sin \theta}{b(-ae)} = \frac{(b^2 - a^2)}{a^2 e^2}$. Since for the ellipse

 $b^2 = a^2 (1 - e^2)$, then gradient $AS \times$ gradient BS = -1. Hence AB subtends a right angle at S. (ii) Since AB subtends a right angle at B, then A, B, B are concyclic with AB the diameter of the circle through the points. The center of the circle is the midpoint of AB.

Problem CON3 30.

Show that the ellipse $4x^2 + 9y^2 = 36$ and the hyperbola $4x^2 - y^2 = 4$ meet at the right angles. Find the equation of the circle through the points of intersection of these two curves.

Answer: $x^2 + y^2 = 5$.

Solution: Let $P(x_0, y_0)$ be the point of intersection. Then

P lies on the ellipse:
$$4x_0^2 + 9y_0^2 = 36$$
, (1)

P lies on the hyperbola:
$$4x_0^2 - y_0^2 = 4$$
. (2)

$$(1) - (2) \Rightarrow .0y_0^2 = 32 \Rightarrow y_0^2 = 3.2, \tag{3}$$

$$(1) + 9 \times (2) \Rightarrow 40x_0^2 = 72 \Rightarrow x_0^2 = 1.8. \tag{4}$$

Since $x_0^2 + y_0^2 = 5$, then the points of intersection of the ellipse and the hyperbola lie on the circle $x^2 + y^2 = 5$. The tangent to the ellipse at P has gradient $g_e = -\frac{4x_0}{9y_0}$ and the tangent to the

hyperbola at P has gradient $g_h = \frac{4x_0}{y_0}$. Therefore, using (3),(4) we obtain

$$g_e \cdot g_h = -\frac{16x_0^2}{9y_0^2} = -\frac{16 \cdot 1.8}{9 \cdot 3.2} = -1$$
. Hence the ellipse $4x^2 + 9y^2 = 36$ and the hyperbola

 $4x^2 - y^2 = 4$ meet at right angles.

Problem CON3 31.

The point $P(a \sec \theta, b \tan \theta)$ lies on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, where a > b > 0. The tangent at P passes through a focus of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. Show that it is parallel to one of the lines y = x and y = -x and that its point of contact with the hyperbola lies on a directrix of the ellipse.

Solution: The tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ at the point $P(a\sec\theta, b\tan\theta)$ has equation $\frac{x\sec\theta}{a} - \frac{y\tan\theta}{b} = 1$. Let e be the eccentricity of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the tangent to the hyperbola passes through the focus $S(\pm ae, 0)$ of the ellipse. Then $\pm e\sec\theta = 1$ and consequently $|\tan\theta| = \sqrt{\sec^2\theta - 1} = \sqrt{\frac{1}{e^2} - 1} = \frac{\sqrt{1 - e^2}}{e} = \frac{b}{ae}$. Hence the tangent to the hyperbola has equation $\pm \frac{x}{ae} - \frac{y}{ae} = 1$ or $\pm \frac{x}{ae} + \frac{y}{ae} = 1$. So the tangent is parallel to the line y = x or to the line y = -x. Then the point $P(a\sec\theta, b\tan\theta)$ has coordinates $\left(\pm \frac{a}{e}, \frac{b^2}{ae}\right)$ or $\left(\pm \frac{a}{e}, -\frac{b^2}{ae}\right)$. Therefore the point $P(a\sec\theta, b\tan\theta)$ has coordinates $P(a\sec\theta, b\tan\theta)$ has $P(a\sec\theta, ba)$ has P

Problem CON3 32.

For the rectangular hyperbola xy = 18, find (a) the eccentricity; (b) the coordinates of the foci; (c) the equations of the directrices, (d) the equations of the asymptotes. Sketch the rectangular hyperbola.

Answer: (a) $\sqrt{2}$; (b) (6,6), (-6,-6); (c) $x + y = \pm 6$; (d) x = 0, y = 0.

Solution:

For the hyperbola xy=18 we have $c^2=18\Rightarrow c=3\sqrt{2}$. Hence the hyperbola xy=18 has eccentricity $e=\sqrt{2}$, foci $S(c\sqrt{2}\ c\sqrt{2})=S(6,6)$ and $S'(-c\sqrt{2},-c\sqrt{2})=S(-6,-6)$, directrices $x+y=\pm c\sqrt{2}\Rightarrow x+y=\pm 6$, asymptotes x=0 and y=0.

Problem C'ON3_33.

Show that if y = mx + k is a tangent to the rectungular hyperbola $xy = c^2$, then $k^2 + 4mc^2 = 0$. Hence find the equation of the tangents from the point (-1,-3) to the rectangular hyperbola xy = 4 and find the coordinates of their points of contact.

Answer:
$$y = -x - 4$$
, $(-2,-2)$; $y = -9x - 12$, $\left(-\frac{2}{3},-6\right)$.

Solution: The hyperbola $xy = c^2$ has parametric equations x = ct and $y = \frac{c}{t}$. Hence

$$\frac{dy}{dx} = \frac{dy}{dt} \frac{dt}{dx} = -\frac{1}{t^2}. \text{ If } y = mx + k \text{ is a tangent to the hyperbola at } P\left(cp, \frac{c}{p}\right), \text{ then}$$

$$m = \frac{dy}{dx} \text{ at } p \implies mp^2 + 1 = 0 \tag{1}$$

P lies on
$$y = mx + k \implies mcp - \frac{c}{p} = -k$$
 (2)

$$\therefore (1) \Rightarrow p^2 = -\frac{1}{m}. \text{ Thus squaring (2) we get } m^2c^2p^2 - 2mc^2 + \frac{c^2}{n^2} = k^2 \Rightarrow 4mc^2 + k^2 = 0.$$

$$(1) \times \frac{c}{p} + (2) \Rightarrow 2mcp = -k \Rightarrow cp = -\frac{k}{2m}$$

$$(1) \times \frac{c}{p} - (2) \Rightarrow \frac{2c}{p} = k \Rightarrow \frac{c}{p} = \frac{k}{2}$$

Therefore the point of contact of the tangent y = mx + k is $P\left(-\frac{k}{2m}, \frac{k}{2}\right)$. Now tangents from the point (-1, -3) to the hyperbola xy = 4 have equations of the form y + 3 = m(x + 1), i.e. y = mx + (n - 3).

Hence
$$4mc^2 + k^2 = 0 \Rightarrow 16m + (m-3)^2 = 0 \Rightarrow m^2 + 10m + 9 = 0 \Rightarrow (m+1)(m+9) = 0$$

$$\therefore m = -1, k = m - 3 = -4 \text{ and } P\left(-\frac{k}{2m}, \frac{k}{2}\right) = P(-2, -2)$$

or
$$m = -9, k = m - 3 = -12$$
 and $P\left(-\frac{k}{2m}, \frac{k}{2}\right) = P\left(-\frac{2}{3}, -6\right)$.

Hence the tangents from the point (-1,-3) to the hyperbola xy = 4 are y = -x - 4, with point of contact P(-2,-2) and y = -9x - 12, with point of contact $P\left(-\frac{2}{3},-6\right)$.

Problem CON3 34.

The points $P\left(cp,\frac{c}{p}\right)$ and $Q\left(cq,\frac{c}{q}\right)$ lie on the rectangular hyperbola $xy=c^2$. The tangents at P and Q meet at R, and QR cuts PQ at M. Show that M is the midpoint of PQ.

Solution:

Since $R(x_0, y_0)$ lies on the tangent at the point $P\left(cp, \frac{c}{p}\right)$, then $x_0 + p^2y_0 = 2cp$. Since $R(x_0, y_0)$ lies on the tangent at the point $P\left(cq, \frac{c}{q}\right)$, then $x_0 + q^2y_0 = 2cq$. $\begin{cases} x_0 + p^2y_0 = 2cp \\ x_0 + q^2y_0 = 2cq \end{cases} \Rightarrow x_0 = \frac{2cpq}{p+q} \text{ and } y_0 = \frac{2c}{p+q}. \text{ Then } OR \text{ has equation } y = \frac{y_0}{x_0}x = \frac{x}{pq}. \text{ The point } M(x_1, y_1) \text{ lies on } OR. \text{ Therefore } y_1 = \frac{x_1}{pq}. \text{ Since } PQ \text{ is the chord of contact of tangents } from the point <math>R(x_0, y_0)$, then PQ has equation $xy_0 + yx_0 = 2c^2$ or substituting the values of $x_0 = \frac{2cpq}{p+q}$ and $y_0 = \frac{2c}{p+q}$ have $\frac{x}{pq} + y = c\frac{p+q}{pq}$. $M(x_1, y_1)$ lies on PQ. Hence $\frac{x_1}{pq} + y_1 = c\frac{p+q}{pq}$. Thus $y_1 = \frac{1}{2}\left(\frac{c}{p} + \frac{c}{q}\right)$ and $x_1 = \frac{1}{2}(cp+cq)$. Therefore M is the midpoint of PQ.

Problem CON3 35.

The point $P\left(ct, \frac{c}{t}\right)$ lies on the rectangular hyperbola $xy = c^2$. The normal at P meets the rectangular hyperbola $x^2 - y^2 = a^2$ at Q and R. Show that P is the midpoint of QR.

Solution: The normal to the hyperbola $xy = c^2$ at the point $P\left(ct, \frac{c}{t}\right)$ has equation $tx - \frac{y}{t} = c\left(t^2 - \frac{1}{t^2}\right)$. Let the point Q, R have coordinates (x_1, y_1) and (x_2, y_2) respectively. Since Q, P: lie on the hyperbola $x^2 - y^2 = a^2$, then subtracting $x_2^2 - y_2^2 = a^2$ from $x_1^2 - y_1^2 = a^2$ we get:

 $(x_1^2 - v_2^2) - (y_1^2 - y_2^2) = 0 \Rightarrow (x_1 - x_2)(x_1 + x_2) = (y_1 - y_2)(y_1 + y_2).$ (1)
The points Q, R lie on the normal to the hyperbola. Therefore subtracting $tx_2 - \frac{y_2}{t} = c\left(t^2 - \frac{1}{t^2}\right)$ from $tx_1 - \frac{y_1}{t} = c\left(t^2 - \frac{1}{t^2}\right)$ we have:

$$t(x_1 - x_2) - \frac{y_1 - y_2}{t} = 0, (2)$$

$$t(x_1 + x_2) - \frac{y_1 + y_2}{t} = 2c\left(t^2 - \frac{1}{t^2}\right). \tag{3}$$

Substituting (2) into (1), we obtain

$$x_1 + x_2 = t^2 (y_1 + y_2). (4)$$

Then (3), (4)
$$\Rightarrow t^2(y_1 + y_2) - \frac{1}{t^2}(y_1 + y_2) = \frac{2c}{t} \left(t^2 - \frac{1}{t^2} \right)$$

Hence
$$y_1 + y_2 = \frac{2c}{t}$$
. (5)

Using (5) we get from (4)

$$x_1 + x_2 = 2ct. (6)$$

Thus, according to (5) and (6), the midpoint of QR the point $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ has coordinates $\left(ct, \frac{c}{t}\right)$. Hence the point $P\left(ct, \frac{c}{t}\right)$ is the midpoint of QR.

Problem C'ON3 36.

The point $P\left(ct, \frac{c}{t}\right)$ lies on the rectangular hyperbola $xy = c^2$. The normal at P meets the hyperbola again at Q. The circle on PQ as diameter meets the hyperbola again at R. Find the coordinates of Q and R.

Answer:
$$\left(-\frac{c}{t^3}, -ct^3\right), \left(-ct, -\frac{c}{t}\right)$$

Solution: The normal to the hyperbola $xy=c^2$ at the point $P\left(ct,\frac{c}{t}\right)$ has equation $tx-\frac{y}{t}=c\left(t^2-\frac{1}{t^2}\right)$. The point $Q\left(cq,\frac{c}{q}\right)$ lies on the normal. Hence $tcq-\frac{c}{tq}=c\left(t^2-\frac{1}{t^2}\right)\Rightarrow \left(tq-t^2\left(1+\frac{1}{t^3q}\right)=0$. Since $Q\neq P$, then $q\neq t$. Therefore $q=-\frac{1}{t^3}$ and Q has coordinates $\left(-\frac{c}{t^3},-ct^3\right)$. The point $R\left(cr,\frac{c}{r}\right)$ lies on the circle on PQ as diameter. Hence gradient $RP\times$ gradient RQ=-1. But gradient of RP is $c\left(\frac{1}{r}-\frac{1}{t}\right)\cdot\frac{1}{c(r-t)}=-\frac{1}{rt}$ and gradient of RQ is $c\left(\frac{1}{r}-\frac{1}{q}\right)\cdot\frac{1}{c(r-q)}=-\frac{1}{rq}$. Thus $\frac{1}{r^2tq}=-1\Rightarrow r^2=-\frac{1}{tq}$. Since $q=-\frac{1}{t^3}$, then $r^2=t^2$. Therefore r=-t, because $R\neq P$. So the point R has coordinates $\left(-ct,-\frac{c}{t}\right)$.

Problem C'ON3 37.

The point $P\left(ct, \frac{c}{t}\right)$ lies on the rectangular hyperbola $xy = c^2$. The normal at P meets the hyperbola again at Q. M is the midpoint of PQ. Find the equation of the locus of M.

Answer: $4x^3y^3 + c^2(x^2 - y^2)^2 = 0$.

Solution: The normal to the hyperbola $xy=c^2$ at the point $P\left(ct,\frac{c}{t}\right)$ has equation $tx-\frac{y}{t}=c\left(t^2-\frac{1}{t^2}\right).$ The point $Q\left(cq,\frac{c}{q}\right)$ lies on the normal. Hence $tcq-\frac{c}{tq}=c\left(t^2-\frac{1}{t^2}\right)\Rightarrow \left(tq-t^2\left(1+\frac{1}{t^3q}\right)=0.$ Since $Q\neq P$, then $q\neq t$. Therefore $q=-\frac{1}{t^3}$

and Q has coordinates $\left(-\frac{c}{t^3}, -ct^3\right)$. If M(x, y) is the midpoint of PQ, then

$$x = \frac{c}{2}(t+q) = \frac{c}{2t}\left(t^2 - \frac{1}{t^2}\right) \tag{1}$$

and

$$y = \frac{c}{2} \left(\frac{1}{t} + \frac{1}{q} \right) = \frac{ct}{2} \left(\frac{1}{t^2} - t^2 \right). \tag{2}$$

We obtain from (1), (2) that $\frac{2tx}{c} = -\frac{2y}{ct} \Rightarrow t^2 = -\frac{y}{x}$. Substituting this formula for t^2 into (1), we get $x = \frac{2}{2\sqrt{-\frac{y}{x}}} \left(-\frac{y}{x} + \frac{x}{y}\right) \Rightarrow x^2 = \frac{-c^2x}{4y} \cdot \frac{(x^2 - y^2)}{x^2y^2} \Rightarrow 4x^3y^3 + c^2(x^2 - y^2)^2 = 0$. Therefore the locus of M has equation $4x^3y^3 + c^2(x^2 - y^2)^2 = 0$.

Problem CON3 38.

The point $P\left(ct,\frac{c}{t}\right)$, where $t \neq 1, t \neq -1$, lies on the rectangular hyperbola $xy = c^2$. The tangent at P meets the x-axis and the y-axis at Q and R respectively. The normal at P meets the lines y = x and y = -x at S and T respectively. Show that QSRT is a rhombus.

Solution: The tangent to the hyperbola $xy=c^2$ at the point $P\left(ct,\frac{c}{t}\right)$ has equation $x+t^2y=2ct$. Hence the tangent meets the x-axis at Q(2ct,0) and the y-axis at $R\left(0,\frac{2c}{t}\right)$. The normal to the hyperbola $xy=c^2$ at the point $P\left(ct,\frac{c}{t}\right)$ has equation $tx-\frac{y}{t}=c\left(t^2-\frac{1}{t^2}\right)$. Thus the normal meets the line y=x at $S\left(c\left(t+\frac{1}{t}\right),c\left(t+\frac{1}{t}\right)\right)$ and the line y=-x at $T\left(c\left(t-\frac{1}{t}\right),-c\left(t-\frac{1}{t}\right)\right)$. Therefore $QS^2=c^2\left(t+\frac{1}{t}-2t\right)^2+c^2\left(t+\frac{1}{t}\right)^2=2c^2\left(t^2+\frac{1}{t^2}\right)$, $SR^2=c^2\left(t+\frac{1}{t}\right)^2+c^2\left(\frac{2}{t}-t-\frac{1}{t}\right)^2=2c^2\left(t^2+\frac{1}{t^2}\right)$,

So QS = SF = RT = TQ and, consequently, QSRT is a rhombus

Problem CON3 39.

The point $P\left(ct,\frac{c}{t}\right)$ lies on the rectangular hyperbola $xy=c^2$. Show that the normal at P cuts the hyperbola again at the point Q with coordinates $\left(-\frac{c}{t^3}, -ct^3\right)$. Hence find the coordinates of the point R where the normal at Q cuts the hyperbola again.

Answer:
$$\left(ct^9, \frac{c}{t^9}\right)$$
.

Solution: The normal to the hyperbola $xy=c^2$ at the point $P\left(ct,\frac{c}{t}\right)$ has equation $tx-\frac{y}{t}=c\left(t^2-\frac{1}{t^2}\right)$. The point $Q\left(cq,\frac{c}{q}\right)$ lies on the normal. Hence $tcq-\frac{c}{tq}=c\left(t^2-\frac{1}{t^2}\right)$. Therefore $tq-t^2\left(1+\frac{1}{t^3q}\right)=0$. Since $Q\neq P$, then $q\neq t$. Thus $q=-\frac{1}{t^3}$ and Q has coordinates $\left(-\frac{c}{t^3},-ct^3\right)$. Similarly the normal at Q cuts the hyperbola again at $R\left(cr,\frac{c}{r}\right)$ with $r=-\frac{1}{q^3}=t^9$. So R has coordinates $\left(ct^9,\frac{c}{t^9}\right)$.

Problem C'ON3 40.

The point $P\left(ct,\frac{c}{t}\right)$ lies on the rectangular hyperbola $xy=c^2$. The normal at P meets the x-axis at A and the tangent at P meets the y-axis at B. M is the midpoint of AB. Find the equation of the locus of M as P moves on the hyperbola.

Answer:
$$2c^2xy = c^4 - y^4$$

Solution: The normal to the hyperbola $xy = c^2$ at the point $P\left(ct, \frac{c}{t}\right)$ has equation $tx - \frac{y}{t} = c\left(t^2 - \frac{1}{t^2}\right)$. The normal at P meets the x-axis at $A\left(\frac{c}{t}\left(t^2 - \frac{1}{t^2}\right)0\right)$. The tangent to the hyperbola $xy = c^2$ at the point $P\left(ct, \frac{c}{t}\right)$ has equation $x + t^2y = 2ct$. Hence the tangent meets the y-axis at $B\left(0, \frac{2c}{t}\right)$. If M(x, y) is the midpoint of AB, then $x = \frac{c}{2t}\left(t^2 - \frac{1}{t^2}\right)$ and $y = \frac{c}{t}$. Thus

 $t = \frac{c}{y}$ and, consequently, $x = \frac{y}{2} \left(\frac{c^2}{y^2} - \frac{y^2}{c^2} \right)$. Therefore the locus of M has equation $2c^2xy = c^4 - y^4$.