

HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total marks - 120

- Attempt Questions 1–8
- All questions are of equal value

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx \qquad = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$$

NOTE:
$$\ln x = \log_e x$$
, $x > 0$

Total marks – 120 Attempt Questions 1–8 All questions are of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Marks

Question 1 (15 marks) Use a SEPARATE writing booklet.

(a) Find
$$\int \frac{1}{\sqrt{9-4x^2}} dx$$
.

(b) Find
$$\int \tan^2 x \sec^2 x \, dx$$
.

(c) Evaluate
$$\int_0^{\pi} x \cos x \, dx$$
.

(d) Evaluate
$$\int_0^{\frac{3}{4}} \frac{x}{\sqrt{1-x}} dx.$$

(e) It can be shown that

$$\frac{2}{x^3 + x^2 + x + 1} = \frac{1}{x + 1} - \frac{x}{x^2 + 1} + \frac{1}{x^2 + 1}.$$
 (Do NOT prove this.)

Use this result to evaluate $\int_{\frac{1}{2}}^{2} \frac{2}{x^3 + x^2 + x + 1} dx.$

Question 2 (15 marks) Use a SEPARATE writing booklet.

(a) Let z = 4 + i and $w = \overline{z}$. Find, in the form x + iy,

(i) *w*

Marks

(ii) w-z

(iii) $\frac{z}{w}$.

(b) (i) Write 1+i in the form $r(\cos\theta+i\sin\theta)$.

(ii) Hence, or otherwise, find $(1+i)^{17}$ in the form a+ib, where a and b are integers.

(c) The point P on the Argand diagram represents the complex number z, where z satisfies

$$\frac{1}{z} + \frac{1}{\overline{z}} = 1.$$

Give a geometrical description of the locus of P as z varies.

Question 2 continues on page 5

Question 3 (15 marks) Use a SEPARATE writing booklet.

Marks

(d)

The points P, Q and R on the Argand diagram represent the complex numbers z_1 , z_2 and a respectively.

The triangles OPR and OQR are equilateral with unit sides, so $|z_1| = |z_2| = |a| = 1$.

Let $\omega = \cos\frac{\pi}{3} + i\sin\frac{\pi}{3}$.

(i) Explain why $z_2 = \omega a$.

.

(ii) Show that $z_1 z_2 = a^2$.

(iii) Show that z_1 and z_2 are the roots of $z^2 - az + a^2 = 0$.

1

.

2

End of Question 2

The diagram shows the graph of y = f(x). The line y = x is an asymptote.

Draw separate one-third page sketches of the graphs of the following:

(i)
$$f(-x)$$

1

(ii)
$$f(|x|)$$

2

(iii)
$$f(x)-x$$
.

2

(b) The zeros of $x^3 - 5x + 3$ are α , β and γ .

2

Find a cubic polynomial with integer coefficients whose zeros are 2α , 2β and 2γ .

Question 3 continues on page 7

Question 3 (continued)

 $y = \frac{\log_e x}{x}$

Use the method of cylindrical shells to find the volume of the solid formed when the shaded region bounded by

$$y = 0$$
, $y = \frac{\log_e x}{x}$, $x = 1$ and $x = e$

is rotated about the y-axis.

(d)

A particle P of mass m undergoes uniform circular motion with angular velocity ω in a horizontal circle of radius r about O. It is acted on by the force due to gravity, mg, a force F directed at an angle θ above the horizontal and a force N which is perpendicular to F, as shown in the diagram.

(i) By resolving forces horizontally and vertically, show that

 $N = mg\cos\theta - mr\omega^2\sin\theta.$

(ii) For what values of ω is N > 0?

1

3

End of Question 3

2

Marks

(a)

Two circles intersect at A and B.

The lines LM and PQ pass through B, with L and P on one circle and M and Q on the other circle, as shown in the diagram.

Copy or trace this diagram into your writing booklet.

Show that $\angle LAM = \angle PAQ$.

(b) (i) Show that $\sin 3\theta = 3\sin \theta \cos^2 \theta - \sin^3 \theta$.

(ii) Show that $4\sin\theta\sin\left(\theta + \frac{\pi}{3}\right)\sin\left(\theta + \frac{2\pi}{3}\right) = \sin 3\theta$.

(iii) Write down the maximum value of $\sin\theta\sin\left(\theta+\frac{\pi}{3}\right)\sin\left(\theta+\frac{2\pi}{3}\right)$.

Question 4 continues on page 9

2

Question 4 (continued)

(c)

The base of a solid is the region bounded by the curve $y = \log_{e} x$, the x-axis and the lines x = 1 and x = e, as shown in the diagram.

Vertical cross-sections taken through this solid in a direction parallel to the x-axis are squares. A typical cross-section, PQRS, is shown.

Find the volume of the solid.

- The polynomial $P(x) = x^3 + qx^2 + rx + s$ has real coefficients. It has three distinct zeros, α , $-\alpha$ and β .
 - (i) Prove that qr = s.

3

(ii) The polynomial does not have three real zeros. Show that two of the zeros are purely imaginary. (A number is purely imaginary if it is of the form iy, with y real and $y \neq 0$.)

End of Question 4

Marks

1

2

Question 5 (15 marks) Use a SEPARATE writing booklet.

- A bag contains 12 red marbles and 12 yellow marbles. Six marbles are selected at random without replacement.
 - (i) Calculate the probability that exactly three of the selected marbles are red. Give your answer correct to two decimal places.
 - (ii) Hence, or otherwise, calculate the probability that more than three of the selected marbles are red. Give your answer correct to two decimal places.

(b)

The points at $P(x_1, y_1)$ and $Q(x_2, y_2)$ lie on the same branch of the hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1.$$

The tangents at P and Q meet at $T(x_0, y_0)$.

- (i) Show that the equation of the tangent at P is $\frac{xx_1}{a^2} \frac{yy_1}{b^2} = 1$. 2
- (ii) Hence show that the chord of contact, PQ, has equation $\frac{xx_0}{a^2} \frac{yy_0}{h^2} = 1$.
- (iii) The chord PQ passes through the focus S(ae, 0), where e is the eccentricity of the hyperbola. Prove that T lies on the directrix of the hyperbola.

Marks

. 1

2

3

Question 6 (15 marks) Use a SEPARATE writing booklet.

- (c) (i) Write (x-1)(5-x) in the form $b^2-(x-a)^2$, where a and b are real numbers.
 - Using the values of a and b found in part (i) and making the substitution $x a = b \sin \theta$, or otherwise, evaluate $\int_{-\infty}^{\infty} \sqrt{(x-1)(5-x)} \, dx.$

(d)

In the diagram, ABCDE is a regular pentagon with sides of length 1. The perpendicular to AC through B meets AC at P.

Copy or trace this diagram into your writing booklet.

(i) Let $u = \cos \frac{\pi}{5}$.

2

Use the cosine rule in $\triangle ACD$ to show that $8u^3 - 8u^2 + 1 = 0$.

(ii) One root of $8x^3 - 8x^2 + 1 = 0$ is $\frac{1}{2}$.

2

Find the other roots of $8x^3 - 8x^2 + 1 = 0$ and hence find the exact value of $\cos \frac{\pi}{5}$.

End of Question 5

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \dots + b^n$$

to show that, for $n \ge 2$,

$$2^n > \binom{n}{2}$$
.

(ii) Hence show that, for $n \ge 2$,

$$\frac{n+2}{2^{n-1}} < \frac{4n+8}{n(n-1)}.$$

(iii) Prove by induction that, for integers $n \ge 1$,

$$1 + 2\left(\frac{1}{2}\right) + 3\left(\frac{1}{2}\right)^2 + \dots + n\left(\frac{1}{2}\right)^{n-1} = 4 - \frac{n+2}{2^{n-1}}.$$

(iv) Hence determine the limiting sum of the series

$$1+2\left(\frac{1}{2}\right)+3\left(\frac{1}{2}\right)^2+\cdots$$

Question 6 continues on page 13

Marks

2

2

1

1

Question 6 (continued)

(b) A raindrop falls vertically from a high cloud. The distance it has fallen is given by

$$x = 5\log_e \left(\frac{e^{1.4t} + e^{-1.4t}}{2} \right)$$

where x is in metres and t is the time elapsed in seconds.

(i) Show that the velocity of the raindrop, ν metres per second, is given by

$$v = 7 \left(\frac{e^{1.4t} - e^{-1.4t}}{e^{1.4t} + e^{-1.4t}} \right).$$

(ii) Hence show that

$$v^2 = 49 \bigg(1 - e^{-\frac{2x}{5}} \bigg).$$

(iii) Hence, or otherwise, show that

$$\ddot{x} = 9.8 - 0.2v^2$$
.

(iv) The physical significance of the 9.8 in part (iii) is that it represents the acceleration due to gravity.

What is the physical significance of the term $-0.2v^2$?

(v) Estimate the velocity at which the raindrop hits the ground.

End of Question 6

_	13	_

Question 7 (15 marks) Use a SEPARATE writing booklet.

Marks

2

(a) (i) Show that $\sin x < x$ for x > 0.

- (ii) Let $f(x) = \sin x x + \frac{x^3}{6}$. Show that the graph of y = f(x) is concave up for x > 0.
- (iii) By considering the first two derivatives of f(x), show that $\sin x > x \frac{x^3}{6} \text{ for } x > 0.$

Question 7 continues on page 16

(b)

In the diagram the secant PQ of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ meets the directrix at R. Perpendiculars from P and Q to the directrix meet the directrix at U and V respectively. The focus of the ellipse which is nearer to R is at S.

Copy or trace this diagram into your writing booklet.

(i) Prove that $\frac{PR}{QR} = \frac{PU}{QV}$.

(ii) Prove that $\frac{PU}{QV} = \frac{PS}{QS}$.

(iii) Let $\angle PSQ = \phi$, $\angle RSQ = \theta$ and $\angle PRS = \alpha$. By considering the sine rule in $\triangle PRS$ and $\triangle QRS$, and applying the results of part (i) and part (ii), show that $\phi = \pi - 2\theta$.

(iv) Let Q approach P along the circumference of the ellipse, so that $\phi \to 0$. What is the limiting value of θ ? Question 7 (continued)

(c)

The diagram shows an ellipse with eccentricity e and foci S and S'.

The tangent at P on the ellipse meets the directrices at R and W. The perpendicular to the directrices through P meets the directrices at N and M as shown. Both $\angle PSR$ and $\angle PS'W$ are right angles.

Let $\angle MPW = \angle NPR = \beta$.

(i) Show that

2

$$\frac{PS}{PR} = e\cos\beta$$

where e is the eccentricity of the ellipse.

(ii) By also considering $\frac{PS'}{PW}$ show that $\angle RPS = \angle WPS'$.

End of Question 7

1

Question 8 (15 marks) Use a SEPARATE writing booklet.

- (a) (i) Using a suitable substitution, show that $\int_0^a f(x) dx = \int_0^a f(a-x) dx.$ 1
 - (ii) A function f(x) has the property that f(x) + f(a x) = f(a). 2

 Using part (i), or otherwise, show that

$$\int_0^a f(x) dx = \frac{a}{2} f(a).$$

(b) (i) Let n be a positive integer. Show that if $z^2 \neq 1$ then $1 + z^2 + z^4 + \dots + z^{2n-2} = \left(\frac{z^n - z^{-n}}{z - z^{-1}}\right) z^{n-1}.$

(ii) By substituting $z = \cos \theta + i \sin \theta$, where $\sin \theta \neq 0$, into part (i), show that

$$1 + \cos 2\theta + \dots + \cos(2n - 2)\theta + i \left[\sin 2\theta + \dots + \sin(2n - 2)\theta\right]$$
$$= \frac{\sin n\theta}{\sin \theta} \left[\cos(n - 1)\theta + i\sin(n - 1)\theta\right].$$

(iii) Suppose $\theta = \frac{\pi}{2n}$. Using part (ii), show that $\sin \frac{\pi}{n} + \sin \frac{2\pi}{n} + \dots + \sin \frac{(n-1)\pi}{n} = \cot \frac{\pi}{2n}.$

Question 8 continues on page 19

Question 8 (continued)

(c)

 X_2 X_3 X_4 X_5 X_6 X_n X_{n-1}

The diagram shows a regular n-sided polygon with vertices X_1, X_2, \cdots, X_n . Each side has unit length. The length d_k of the 'diagonal' X_nX_k where $k=1,\ 2,\ \cdots,\ n-1$ is given by

$$d_k = \frac{\sin\frac{k\pi}{n}}{\sin\frac{\pi}{n}}.$$
 (Do NOT prove this.)

(i) Show, using the result in part (b) (iii), that

 $d_1 + \dots + d_{n-1} = \frac{1}{2\sin^2\frac{\pi}{2n}}.$

(ii) Let p be the perimeter of the polygon and $q=\frac{1}{n}(d_1+\cdots+d_{n-1})$. 2 Show that

$$\frac{p}{q} = 2\bigg(n\sin\frac{\pi}{2n}\bigg)^2.$$

(iii) Hence calculate the limiting value of $\frac{p}{q}$ as $n \to \infty$.

End of paper

2007 Higher School Certificate Solutions Mathematics Extension 2

Question 1

(a) METHOD I

$$\int \frac{1}{\sqrt{9-4x^2}} dx = \frac{1}{2} \int \frac{1}{\sqrt{\frac{9}{4}-x^2}} dx$$

$$= \frac{1}{2} \int \frac{1}{\sqrt{\left(\frac{3}{2}\right)^2 - x^2}} dx$$

$$= \frac{1}{2} \sin^{-1} \left(\frac{2x}{3}\right) + c.$$

METHOD 2

Let
$$u = 2x$$
, $du = 2dx$

$$\int \frac{1}{\sqrt{9-4x^2}} dx = \frac{1}{2} \int \frac{2}{\sqrt{3^2 - (2x)^2}} dx.$$

$$= \frac{1}{2} \int \frac{1}{\sqrt{3^2 - u^2}} du$$

$$= \frac{1}{2} \sin^{-1} \frac{u}{5} + c$$

$$= \frac{1}{2} \sin^{-1} \left(\frac{2x}{3}\right) + c.$$

(b) Let
$$u = \tan x$$
, $du = \sec^2 x \, dx$

$$\int \tan^2 x \sec^2 x \, dx = \int u^2 du$$

$$= \frac{u^3}{3} + c$$

$$= \frac{\tan^3 x}{2} + c.$$

(c) Let
$$u = x$$
, $du = dx$
 $v = \sin x$, $dv = \cos x \, dx$

$$\int u \, \frac{dv}{dx} \, dx = uv - \int v \, \frac{du}{dx} \, dx$$

$$\therefore \int_0^{\pi} x \cos x \, dx = [x \sin x]_0^{\pi} - \int_0^{\pi} \sin x \, dx$$

$$= (\pi \sin \pi - 0) - [-\cos x]$$

$$= 0 - (-\cos \pi + \cos 0)$$

$$= -(1 + 1)$$

(d) METHOD 1

Let
$$u=1-x$$
, $du=-dx$
When $x=0$, $u=1$
When $x=\frac{3}{4}$, $u=\frac{1}{4}$

$$\int_{0}^{\frac{3}{4}} \frac{x}{\sqrt{1-x}} dx = \int_{1}^{\frac{1}{4}} \frac{1-u}{\sqrt{u}} \left(-du\right)$$

$$= \int_{\frac{1}{4}}^{1} \left(\frac{1}{\sqrt{u}} - \sqrt{u}\right) du$$

$$= \int_{\frac{1}{4}}^{1} \left(u^{-\frac{1}{2}} - u^{\frac{1}{2}}\right) du$$

$$= \left[2u^{\frac{1}{2}} - \frac{2}{3}u^{\frac{3}{2}}\right]_{\frac{1}{4}}^{1}$$

$$= \left(2 - \frac{2}{3}\right) - \left(2 \times \frac{1}{2} - \frac{2}{3} \times \left(\frac{1}{2}\right)\right)$$

$$= \left(2 - \frac{2}{3}\right) - \left(2 \times \frac{1}{2}\right) - \left(2 \times \frac{1}{2}\right)$$

$$= \left(2 - \frac{2}{3}\right) - \left(2 \times \frac{1}{2}\right) - \left(2 \times \frac{1}{2}\right)$$

$$= \left(2 - \frac{2}{3}\right) - \left(2 \times \frac{1}{2}\right) - \left(2 \times \frac{1}{2}\right)$$

$$= \left(2 - \frac{2}{3}\right) - \left(2 \times \frac{1}{2}\right) - \left(2 \times \frac{1}{2}\right)$$

$$= \left(2 - \frac{2}{3}\right) - \left(2 \times \frac{1}{2}\right) - \left(2 \times \frac{1}{2}\right)$$

$$= \left(2 - \frac{2}{3}\right) - \left(2 \times \frac{1}{2}\right) - \left(2 \times \frac{1}{2}\right)$$

$$= \left(2 - \frac{2}{3}\right) - \left(2 \times \frac{1}{2}\right) - \left(2 \times \frac{1}{2}\right)$$

$$= \left(2 - \frac{2}{3}\right) - \left(2 \times \frac{1}{2}\right) - \left(2 \times \frac{1}{2}\right)$$

$$= \left(2 - \frac{2}{3}\right) - \left(2 \times \frac{1}{2}\right) - \left(2 \times \frac{1}{2}\right)$$

$$= \left(2 - \frac{2}{3}\right) - \left(2 \times \frac{1}{2}\right) - \left(2 \times \frac{1}{2}\right)$$

$$= \left(2 - \frac{2}{3}\right) - \left(2 \times \frac{1}{2}\right) - \left(2 \times \frac{1}{2}\right)$$

$$= \left(2 - \frac{2}{3}\right) - \left(2 \times \frac{1}{2}\right) - \left(2 \times \frac{1}{2}\right)$$

$$= \left(2 - \frac{2}{3}\right) - \left(2 \times \frac{1}{2}\right) - \left(2 \times \frac{1}{2}\right)$$

$$= \left(2 - \frac{2}{3}\right) - \left(2 \times \frac{1}{2}\right)$$

$$= \left(2 - \frac{2}{3}\right)$$

METHOD 2

Let
$$u^2 = 1 - x$$
, $2u du = -dx$
When $x = 0$, $u = 1$

When
$$x = \frac{3}{4}$$
, $u = \frac{1}{2}$

$$\int_{0}^{\frac{3}{4}} \frac{x}{\sqrt{1-x}} \, dx = \int_{1}^{\frac{1}{2}} \frac{\left(1-u^{2}\right)}{u} \left(-2u \, du\right)$$

$$= 2 \int_{\frac{1}{2}}^{1} (1 - u^{2}) du$$

$$= 2 \left[u - \frac{u^{3}}{3} \right]_{\frac{1}{2}}^{1}$$

$$= 2 \left[\left(1 - \frac{1}{3} \right) - \left(\frac{1}{2} - \frac{1}{24} \right) \right]$$

$$= \frac{5}{12}.$$

(e)
$$\int_{\frac{1}{2}}^{2} \frac{2}{x^3 + x^2 + x + 1} dx$$

$$= \int_{\frac{1}{2}}^{2} \frac{1}{x+1} - \frac{x}{x^2+1} + \frac{1}{x^2+1} dx,$$

using the given result

$$= \left[\ln(x+1) - \frac{1}{2}\ln(x^2+1) + \tan^{-1}x\right]_{\frac{1}{2}}^{2}$$

$$= \left(\ln 3 - \frac{1}{2}\ln 5 + \tan^{-1}2\right)$$

$$- \left(\ln\left(\frac{3}{2}\right) - \frac{1}{2}\ln\frac{5}{4} + \tan^{-1}\frac{1}{2}\right)$$

$$= \ln\left(3 \times \frac{1}{\sqrt{5}} \times \frac{2}{3} \times \frac{\sqrt{5}}{2}\right) + \tan^{-1}2 - \tan^{-1}\frac{1}{2}$$

$$= \tan^{-1} 2 - \tan^{-1} \frac{1}{2}.$$

Note that $\tan^{-1} 2 - \tan^{-1} \frac{1}{2}$ can be

'simplified' to $\tan^{-1} \frac{3}{4}$.

Question 2

(a) (i)
$$w = \overline{z}$$

= $4-i$.

(ii)
$$w-z = 4-i-(4+i)$$

= $4-i-4-i$
= $-2i$.

(iii)
$$\frac{z}{w} = \frac{4+i}{4-i} \times \frac{4-i}{4+i}$$
$$= \frac{(4+i)^2}{16+1}$$
$$= \frac{16+8i-1}{17}$$
$$= \frac{15}{17} + \frac{8i}{17}.$$

(b) (i)
$$y$$

$$1$$

$$\sqrt{2} \frac{\pi}{4}$$

$$0$$

$$1$$

$$x$$

$$1+i=\sqrt{2}\left(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\right)$$

(ii)
$$(1+i)^{17} = \left[\sqrt{2} \left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)\right]^{17}$$

$$= \left(\sqrt{2}\right)^{17} \left(\cos\frac{17\pi}{4} + i\sin\frac{17\pi}{4}\right)$$
by de Moivre's theorem
$$= 256\sqrt{2} \left(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}\right)$$

$$= 256(1+i)$$

$$= 256 + 256i.$$

- (c) Let z = x + iv $\therefore \quad \text{If} \quad \frac{1}{2} + \frac{1}{2} = 1$ $\frac{1}{x+iy} + \frac{1}{x-iy} = 1$ $\frac{2x}{x^2+y^2}=1$ $2x = x^2 + y^2$ $x^2 - 2x + v^2 = 0$ $(x-1)^2 + y^2 = 1$
 - \therefore The locus of P as z varies is the circle, centre (1, 0) with radius 1.
- (d) (i) $|z_2| = |a| = 1$ $\angle QOR = \frac{\pi}{2}$ ($\triangle OQR$ is equilateral) Multiplication by $\omega = \cos \frac{\pi}{3} + i \sin \frac{\pi}{3}$ is a rotation about O in the anticlockwise direction through an angle of $\frac{\pi}{2}$. $\therefore z_2 = a \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right)$
 - (ii) $|z_1| = |a| = 1$ $\angle ROP = \frac{\pi}{2}$ ($\triangle OPR$ is equilateral) Similarly to (i), $a = z_1 \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right)$ Now $z_2 = \omega a$ from (i) $\therefore z_1 z_2 = \frac{a}{\omega} \cdot \omega a$

(iii) Observing that

$$z_{1} = a \left(\cos \left(-\frac{\pi}{3} \right) + i \sin \left(-\frac{\pi}{3} \right) \right)$$

$$z_{1} + z_{2} = a \left(\cos \left(-\frac{\pi}{3} \right) + i \sin \left(-\frac{\pi}{3} \right) \right)$$

$$+ a \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right)$$

$$= a \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right)$$

$$+ a \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3} \right)$$

$$= 2a \cos \frac{\pi}{3}$$

$$= a$$

Now $z_1 z_2 = a^2$ from (ii).

 \therefore The equation with roots z_1 and z_2 $z^2 - (z_1 + z_2)z + z_1z_2 = 0$ i.e. $z^2 - az + a^2 = 0$.

Ouestion 3

(i) The graph of f(-x) is a reflection the graph of f(x) about the y-axi

(ii) f(|x|) = f(x) when $x \ge 0$. f(|x|) = f(-x) when x < 0.

Note that the gradient is -1 at the points (-1, 2) and (0, 0).

METHOD 1

Use the substitution m = 2x (i.e. $x = \frac{m}{2}$) to create a polynomial with the required roots: 2α , 2β , 2γ .

$$x^{3} - 5x + 3 = \left(\frac{m}{2}\right)^{3} - 5 \times \frac{m}{2} + 3$$
$$= \frac{m^{3}}{8} - \frac{5m}{2} + 3.$$

In terms of x this is $\frac{x^3}{8} - \frac{5x}{2} + 3$.

Any multiple of this polynomial would also be correct. The simplest example with integer coefficients is

$$8\left(\frac{x^3}{8} - \frac{5x}{2} + 3\right) = x^3 - 20x + 24.$$

METHOD 2

$$\alpha + \beta + \gamma = 0$$

$$\alpha\beta + \alpha\gamma + \beta\gamma = -5$$

$$\alpha\beta\gamma = -3$$

Let the new polynomial be

$$x^3 + bx^2 + cx + d$$

$$-b = 2\alpha + 2\beta + 2\gamma$$

$$=2(0)$$

$$\therefore b = 0$$

$$c = (2\alpha)(2\beta) + (2\alpha)(2\gamma) + (2\beta)(2\gamma)$$

$$=4(\alpha\beta+\alpha\gamma+\beta\gamma)$$

$$=4(-5)$$

$$=-20$$

$$-d = (2\alpha)(2\beta)(2\gamma)$$

$$=8\alpha\beta\gamma$$

$$=8(-3)$$

$$=-24$$

$$\therefore d = 24$$

Since these coefficients are all integers, a suitable polynomial is

$$x^3 + 0x^2 - 20x + 24$$

$$=x^3-20x+24.$$

 $\Delta V = 2\pi x \times y \times \Delta x$ $V = \int_{1}^{e} 2\pi x y \, dx$ $= 2\pi \int_{1}^{e} x \frac{\log_{e} x}{x} \, dx$ $= 2\pi \int_{1}^{e} \log_{e} x \, dx$ Let $u = \log_{e} dx$, $du = \frac{dx}{x}$ v = x, dv = dx $\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$ $\therefore V = 2\pi \left[\left[x \log_{e} x \right]_{1}^{e} - \int_{1}^{e} x \times \frac{1}{x} \, dx \right]$ $= 2\pi \left[\left(e - 0 \right) - \left[x \right]_{1}^{e} \right]$ $= 2\pi \left[e - e + 1 \right]$

(d) (i) $F \sin \theta = \frac{N}{\theta} N \cos \theta$ $O \qquad r \quad F \cos \theta \qquad N \sin \theta$

 2π units³.

Vertically: $F \sin \theta + N \cos \theta - mg = 0$ $F \sin \theta + N \cos \theta = mg$ —①

Horizontally: $F \cos \theta - N \sin \theta = m\omega^2 r$ —(

 $N(\cos^2\theta + \sin^2\theta) = mg\cos\theta - m\omega^2r\sin\theta$ $\therefore N = mg\cos\theta - m\omega^2r\sin\theta.$

(ii) N > 0 implies $mg \cos \theta > m\omega^2 r \sin \theta$ $\frac{mg \cos \theta}{mr \sin \theta} > \omega^2$ $\omega^2 < \frac{g}{r \tan \theta}$

Question 4

Let $\angle LAP = \alpha$ $\therefore \angle LBP = \angle LAP$ ($\angle s$ in the same segment on $= \alpha$ $\therefore \angle OBM = \angle LBP$ (Vertically opposite

. $\angle QBM = \angle LBP$ (Vertically opposite $= \alpha$

 \therefore $\angle QAM = \angle QBM$ (\angle s in the same segment on $\underline{}$) $\underline{}$ $\underline{}$ $\underline{}$ $\underline{}$

 \therefore $\angle LAP = \angle QAM$

Now $\angle LAM = \angle LAP + \angle PAM$ (from ab $= \angle QAM + \angle PAM$

 \therefore $\angle LAM = \angle PAQ$.

(b) (i) METHOD 1 $\cos 3\theta + i \sin 3\theta = (\cos \theta + i \sin \theta)^3$ by de Moivre's theorem

 $= \cos^3 \theta + 3i \cos^2 \theta \sin \theta$ $+3i^2 \cos \theta \sin^2 \theta + i^3 \sin^3 \theta$ $= \cos^3 \theta + 3i \cos^2 \theta \sin \theta$ $-3 \cos \theta \sin^2 \theta - i \sin^3 \theta$

Equating imaginary parts,

 $i\sin 3\theta = 3i\cos^2\theta i\sin\theta - i\sin^3\theta$ i.e. $\sin 3\theta = 3\sin\theta\cos^2\theta - \sin^3\theta$.

METHOD 2

 $\sin 3\theta = \sin(2\theta + \theta)$ $= \sin 2\theta \cos \theta + \cos 2\theta \sin \theta$ $= 2\sin \theta \cos^2 \theta + (\cos^2 \theta - \sin^2 \theta)\sin \theta$ $= 3\sin \theta \cos^2 \theta - \sin^3 \theta.$

(ii) $4\sin\theta\sin\left(\theta + \frac{\pi}{3}\right)\sin\left(\theta + \frac{2\pi}{3}\right)$ $= 4\sin\theta\left(\sin\theta\cos\frac{\pi}{3} + \sin\frac{\pi}{3}\cos\theta\right)$ $\left(\sin\theta\cos\frac{2\pi}{3} + \sin\frac{2\pi}{3}\cos\theta\right)$ $= 4\sin\theta\left(\frac{1}{2}\sin\theta + \frac{\sqrt{3}}{2}\cos\theta\right)$ $\left(-\frac{1}{2}\sin\theta + \frac{\sqrt{3}}{2}\cos\theta\right)$ $= 4\sin\theta\left(\frac{3}{4}\cos^2\theta - \frac{1}{4}\sin^2\theta\right)$ $= 3\sin\theta\cos^2\theta - \sin^3\theta$ $= \sin 3\theta \quad \text{from (i) above.}$

(iii) $\sin\theta \sin\left(\theta + \frac{\pi}{3}\right) \sin\left(\theta + \frac{2\pi}{3}\right)$ $= \frac{1}{4}\sin 3\theta \quad \text{from (ii) above}$

As the maximum value of $\sin 3\theta$ is 1, the maximum value of $\frac{1}{4}\sin 3\theta$ is $\frac{1}{4}$. \therefore Maximum value of $\sin \theta \sin \left(\theta + \frac{\pi}{3}\right) \sin \left(\theta + \frac{2\pi}{3}\right)$ is $\frac{1}{4}$.

(c) $y = \log_{e}^{x}$ $Q \quad \delta y$ $Q \quad \delta y$

METHOD 1 PQ = e - x

... Area of square $PQRS = (e - x)^2$ The volume of the slice is

 $\delta V = \left(e - x\right)^2 \delta y$

:. Volume of the solid is

$$V = \lim_{\delta y \to 0} \sum \delta V$$

$$= \int_{x=1}^{x=e} \left(e-x\right)^2 dy$$

But $y = \log_e x$ $dy = \frac{1}{x} dx$

$$\therefore V = \int_{1}^{e} (e - x)^{2} \cdot \frac{1}{x} dx$$

$$= \int_{1}^{e} \left(\frac{e^{2}}{x} - 2e + x \right) dx$$

$$= \left[e^{2} \log_{e} x - 2ex + \frac{x^{2}}{2} \right]_{1}^{e}$$

$$= \left(e^{2} \log_{e} e - 2e^{2} + \frac{e^{2}}{2} \right) - \left(e^{2} \log_{e} 1 - 2e + \frac{1}{2} \right)$$

$$= -\frac{e^{2}}{2} + 2e - \frac{1}{2}$$

 \therefore Volume of solid is $-\frac{e^2}{2} + 2e - \frac{1}{2}$ units³.

METHOD 2

$$y = \log_e x$$

$$\therefore x = e^y$$

$$\therefore PQ = e - e^y$$

 \therefore Area of square $PQRS = (e - e^y)^2$

$$\delta V = \left(e - e^{y}\right)^{2} \delta y$$

.. Volume of the solid is

$$V = \lim_{\delta y \to 0} \sum \delta V$$

$$= \int_{0}^{1} (e^{2} - 2e^{y+1} + e^{2y}) dy$$

$$= \left[e^{2} y - 2e^{y+1} + \frac{1}{2} e^{2y} \right]_{0}^{1}$$

$$= \left(e^{2} - 2e^{2} + \frac{1}{2} e^{2} \right) - \left(0 - 2e + \frac{1}{2} e^{0} \right)$$

$$= -\frac{e^{2}}{2} + 2e - \frac{1}{2}$$

 \therefore Volume of solid is $-\frac{e^2}{2} + 2e - \frac{1}{2}$ units³.

Sum of roots = $\alpha + -\alpha + \beta$ =-a

 $\therefore \beta = -q$

Sum of roots two at a time

$$= -\alpha^2 + \alpha\beta - \alpha\beta$$
$$= r$$

 $\therefore a^2 = r$

Sum of roots three at a time

$$=-\alpha^2\beta$$

=-s

METHOD 1

$$r\beta = -s$$

$$r \times -q = -s$$

$$\therefore qr = s$$

METHOD 2

Since $\beta = -q$ is a root, substitute x = -q into the polynomial

$$-\dot{q}^3 + q \cdot (-q)^2 - qr + s = 0$$

$$\therefore qr = s$$

METHOD 1

Since the polynomial has real coefficients, complex zeros occur ir conjugate pairs.

We know that one zero, $\beta = -q$, is resince q is a coefficient

 α and α are complex, and must be conjugate pairs

i.e.
$$-\alpha = \bar{\alpha}$$

Let $\alpha = a + ib$

$$\therefore -(a+ib) = \overline{a+ib}$$

$$-a-ib=a-ib$$

$$2a = 0$$

$$a = 0$$

 $\therefore \alpha$ and $-\alpha$ are purely imaginary

METHOD 2

Since $\beta = -q$ is a zero then x + q is a factor.

Using polynomial division and qr = s from (i),

$$x^{3} + qx^{2} + rx + s = (x+q)(x^{2} + r)$$

 \therefore Zeros are -q and $\pm i\sqrt{r}$

i.e. Two zeros are purely imaginar

Ouestion 5

- (a) (i) P(3 red, 3 yellow) $=\frac{{}^{12}C_3\times{}^{12}C_3}{{}^{24}C}$ = 0.3595...= 0.36 (to 2 d.p.).
 - METHOD 1 P(>3 red)= P(4 red, 2 yellow)+ P(5 red. 1 vellow)+ P(6 red, 0 yellow) $=\frac{{}^{12}C_{4}\times{}^{12}C_{2}+{}^{12}C_{5}\times{}^{12}C_{1}+{}^{12}C_{6}{}^{12}C_{0}}{{}^{24}C_{4}}$ =0.3202...

METHOD 2

By symmetry,

 ± 0.32 (to 2 d.p.)

$$P(> 3 \text{ red}) = P(< 3 \text{ red})$$

∴
$$P(> 3 \text{ red}) = \frac{1}{2} (1 - P(3 \text{ red}))$$

 $= \frac{1}{2} (1 - 0.36) \text{ from (i)}$
 $= 0.32 \text{ (to 2 d.p.)}.$

(i) Differentiating

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 implicitly

$$\frac{2x}{a^2} - \frac{2y}{b^2} \frac{dy}{dx} = 0$$
$$\frac{2y}{b^2} \frac{dy}{dx} = \frac{2x}{a^2}$$

$$\frac{dy}{dx} = \frac{b^2x}{a^2y}$$

... The gradient of the curve at

$$P(x_1, y_1)$$
 is $\frac{b^2 x_1}{a^2 y_1}$.

The equation of the tangent at P is

$$y - y_1 = \frac{b^2 x_1}{a^2 y_1} (x - x_1)$$

$$a^2 y_1 y - a^2 y_1^2 = b^2 x_1 x - b^2 x_1^2$$

$$b^2 x_1 x - a^2 y_1 y = b^2 x_1^2 - a^2 y_1^2$$

$$\frac{x_1 x}{a^2} - \frac{y_1 y}{b^2} = \frac{x_1^2}{a^2} - \frac{y_1^2}{b^2}$$

$$\therefore \frac{x_1 x}{a^2} - \frac{y_1 y}{b^2} = 1$$
since (x_1, y_1) lies on the ellipse.

(ii) $T(x_0, y_0)$ belongs to TP and TQ. .. Its coordinates must satisfy the tangents at both P and O.

i.e.
$$\frac{x_1 x_0}{a^2} - \frac{y_1 y_0}{b^2} = 1$$
 for P

$$\frac{x_2x_0}{a^2} - \frac{y_2y_0}{h^2} = 1$$
 for Q

 \therefore The equation of PQ is

$$\frac{x x_0}{a^2} - \frac{y y_0}{b^2} = 1$$

as (x, y) can be replaced by (x_1, y_1) or (x_2, y_2) .

(iii) Substituting
$$(x, y)$$
 with $(ae, 0)$ in

the equation of PQ,

$$\frac{ae x_0}{a^2} - 0 = 1 \quad \text{from (ii)}$$

$$\therefore x_0 = \frac{a}{e}$$

 $\therefore T$ lies on the directrix.

(c) (i)
$$(x-1)(5-x) = -5+6x-x^2$$

 $= -(x^2-6x+5)$
 $= -[(x-3)^2-9+5]$
 $= 4-(x-3)^2$
 $= 2^2-(x-3)^2$

which matches the given form with a = 3 and b = 2 (or -2).

(ii)
$$\int_{1}^{5} \sqrt{(x-1)(5-x)} dx = \int_{1}^{5} \sqrt{2^{2}-(x-3)^{2}} dx$$
Let $x-3=2\sin\theta$

$$dx = 2\cos\theta d\theta$$
When $x=1, \ 1-3=2\sin\theta$

$$\sin\theta = -1$$

$$\theta = -\frac{\pi}{2}$$
When $x=5, \ 5-3=2\sin\theta$

$$\sin\theta = 1$$

$$\theta = \frac{\pi}{2}$$

$$\therefore \int_{1}^{5} \sqrt{2^{2}-(x-3)^{2}} dx$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{1-\sin^{2}\theta} \cos\theta d\theta$$

$$= 4\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^{2}\theta d\theta$$

$$= 8\int_{0}^{\frac{\pi}{2}} \cos^{2}\theta d\theta$$

$$= 8\int_{0}^{\frac{\pi}{2}} (1+\cos 2\theta) d\theta$$

 $=4\int_{0}^{\frac{\pi}{2}} (1+\cos 2\theta) d\theta$

 $=4\left[\theta+\frac{1}{2}\sin 2\theta\right]^{\frac{1}{2}}$

 $=4\left[\left(\frac{\pi}{2}+\frac{1}{2}\sin\pi\right)-(0)\right]$

Note: The substitution and subsequent working can be avoid by realising that the curve is a semi-circle of radius 2 having an $\frac{\pi \times 2^2}{2} = 2\pi.$

(d) (i)
$$AD = AC = 2AP$$

= $2\cos\frac{\pi}{5}$
= $2u$

The angle sum of a pentagon is

$$(n-2)\pi = (5-2)\pi$$
$$= 3\pi$$

$$\therefore \angle BAE = \frac{3\pi}{5}$$

By symmetry,

$$\angle DAE = \angle CAB$$

$$= \frac{\pi}{5}$$

$$\therefore \angle CAD = \frac{3\pi}{5} - 2 \times \frac{\pi}{5}$$

Using the cosine rule in $\triangle ACD$, $CD^2 = AC^2 + AD^2 - 2ACAD$ co

$$1^{2} = (2u)^{2} + (2u)^{2} - 2.2u.2u.u$$

$$1 = 8u^2 - 8u^3$$

$$\therefore 8u^3 - 8u^2 + 1 = 0.$$

(ii)
$$8x^3 - 8x^2 + 1 = 0$$

Since
$$x = \frac{1}{2}$$
 is a root,

2x-1 is a factor.

$$\therefore 8x^3 - 8x^2 + 1 = (2x - 1)(4x^2 + bx - 1)$$

where b can be determined from the coefficient of x (or x^2) on both sides

$$\therefore 0 = -1 \times b + 2 \times -1$$

$$b = -2$$

$$\therefore 8x^3 - 8x^2 + 1 = (2x - 1)(4x^2 - 2x)$$

The other roots satisfy

$$4x^2-2x-1=0$$

Using the quadratic formula,

$$x = \frac{2 \pm \sqrt{20}}{8}$$
$$= \frac{1 \pm \sqrt{5}}{4}$$

i.e.
$$\cos \frac{\pi}{5} = \frac{1 \pm \sqrt{5}}{4}$$
 from (i)

Since
$$\cos \frac{\pi}{5} > 0$$
,

$$\cos\frac{\pi}{5} = \frac{1+\sqrt{5}}{4}.$$

Question 6

(a) (i)
$$(a+b)^n =$$

$$a^n + \binom{n}{1} a^{n-1} b + \binom{n}{2} a^{n-2} b^2 + \dots + \binom{n}{n} b^n$$
Let $a = b = 1$

$$\therefore (1+1)^n = 1 + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n}$$

Since
$$\binom{n}{r} > 0$$
 for all $r = 1, 2, 3 \dots n$,
 $2^n > \binom{n}{2}$

(ii)
$$2^{n} > \binom{n}{2} \quad \text{for } n \ge 2$$
$$2^{n} > \frac{n!}{2!(n-2)!}$$
$$2^{n} > \frac{n(n-1)}{2}$$
$$\frac{1}{2^{n}} < \frac{2}{n(n-1)}$$
$$\frac{2(n+2)}{2^{n}} < \frac{4(n+2)}{n(n-1)}$$
$$\therefore \frac{n+2}{2^{n-1}} < \frac{4n+8}{n(n-1)}.$$

(iii) When
$$n=1$$
,
LHS=1
RHS= $4-\frac{1+2}{2^0}$
=1
=LHS

.. The equation is true for n=1. Let k be a value of n for which the result is true,

i.e.
$$1+2\left(\frac{1}{2}\right)+3\left(\frac{1}{2}\right)^2+...+$$
 —①
$$=4-\frac{k+2}{2^{k-1}}$$

We need to show that the result $a_i = a_i$; is true for n = k + 1,

i.e.
$$1+2\left(\frac{1}{2}\right)+3\left(\frac{1}{2}\right)^2+\dots+k\left(\frac{1}{2}\right)^{k-1}$$

 $+(k+1)\left(\frac{1}{2}\right)^k=4-\frac{k+3}{2^k}$

In ②:

LHS =
$$4 - \frac{k+2}{2^{k-1}} + (k+1) \left(\frac{1}{2}\right)^k$$
 from ①
= $4 - \frac{k+2}{2^{k-1}} + \frac{k+1}{2^k}$
= $4 - \frac{2(k+2) - (k+1)}{2^k}$
= $4 - \frac{2k+4-k-1}{2^k}$
= $4 - \frac{k+3}{2^k}$

... When the result is true for n = k, it is also true for n = k + 1.

.. By the principle of mathematical induction, the result is true for all integers $n \ge 1$:

(vi)

From (ii):
$$\frac{n+2}{2^{n-1}} < \frac{4n+8}{n(n-1)}$$

$$0 < \lim_{n \to \infty} \frac{n+2}{2^{n-1}} < \lim_{n \to \infty} \frac{4n+8}{n(n-1)}$$
 as $n > 0$

But
$$\lim_{n\to\infty} \frac{4n+8}{n(n-1)} = 0$$

$$\lim_{n\to\infty} \frac{n+2}{2^{n-1}} = 0$$

Now

$$1+2\left(\frac{1}{2}\right)+3\left(\frac{1}{2}\right)^2+\ldots=\lim_{n\to\infty}\left(4-\frac{n+2}{2^{n-1}}\right)$$

= 4.

(b) (i)
$$x = 5\log_e\left(\frac{e^{1.4t} + e^{-1.4t}}{2}\right)$$
$$\frac{dx}{dt} = 5 \cdot \frac{2}{e^{1.4t} + e^{-1.4t}} \cdot \frac{1.4e^{1.4t} - 1.4e^{-1.4t}}{2}$$
$$= \frac{5(1.4)\left(e^{1.4t} - e^{-1.4t}\right)}{e^{1.4t} + e^{-1.4t}}$$
$$\therefore v = \frac{7\left(e^{1.4t} - e^{-1.4t}\right)}{e^{1.4t} + e^{-1.4t}}$$

(ii) From (i):
$$v^2 = 7^2 \left(\frac{e^{1.4t} - e^{-1.4t}}{e^{1.4t} + e^{-1.4t}} \right)^2$$

$$= 49 \left(\frac{e^{1.4t} - e^{-1.4t}}{e^{1.4t} + e^{-1.4t}} \right)^2 - 0$$

$$= 1 - e^{-\frac{2x}{5}} = 1 - e^{-2\log_e \left(\frac{e^{1.4t} + e^{-1.4t}}{2} \right)^2}$$

$$= 1 - e^{-\frac{\log_e \left(\frac{e^{1.4t} + e^{-1.4t}}{2} \right)^2}{2}}$$

$$= 1 - \left(\frac{e^{1.4t} + e^{-1.4t}}{2} \right)^{-2}$$

$$= 1 - \frac{4}{\left(e^{1.4t} + e^{-1.4t} \right)^2}$$

$$= \frac{\left(e^{1.4t} + e^{-1.4t}\right)^2 - 4}{\left(e^{1.4t} + e^{-1.4t}\right)^2}$$

$$= \frac{e^{2.8t} + 2 + e^{-2.8t} - 4}{\left(e^{1.4t} + e^{-1.4t}\right)^2}$$

$$= \left(\frac{e^{1.4t} - e^{-1.4t}}{e^{1.4t} + e^{-1.4t}}\right)^2$$
From ①: $v^2 = 49\left(\frac{e^{1.4t} - e^{-1.4t}}{e^{1.4t} + e^{-1.4t}}\right)^2$

$$\therefore v^2 = 49\left(1 - e^{\frac{2x}{5}}\right)$$

(iii)
$$\dot{x}^2 = v^2$$

 $2\ddot{x} = \frac{d}{dx}v^2$
 $\therefore \ddot{x} = \frac{1}{2}\frac{d}{dx}v^2$
 $= \frac{1}{2}\frac{d}{dx}\left(49\left(1 - e^{-\frac{2x}{5}}\right)\right)$
 $= \frac{49}{2}\left(\frac{2}{5}e^{\frac{2x}{5}}\right)$
 $= 9.8e^{\frac{2x}{5}}$
 $= -9.8\left[\left(1 - e^{\frac{2x}{5}}\right) - 1\right]$
 $= -9.8\left(\frac{v^2}{49}\right) + 9.8$
 $= 9.8 - 0.2v^2$.

(iv) The term $-0.2v^2$ in \ddot{x} represents the deceleration due to resistive forces sur as air resistance.

(v) METHOD 1

Assuming that the particle hits the ground with terminal velocity,

$$\ddot{x} = 0$$

i.e.
$$9.8-0.2v^2=0$$
 from (ii)

$$v^2 = 49$$

$$|v|=7$$

: the raindrop hits the ground at 7 ms⁻¹.

METHOD 2

$$\lim_{t \to \infty} v = \lim_{t \to \infty} 7 \left(\frac{e^{1.4t} - e^{-1.4t}}{e^{1.4t} + e^{-1.4t}} \right)$$

∴ the raindrop hits the ground at 7 ms⁻¹.

Question 7

(a) (i) Let
$$g(x) = \sin x - x$$

 $g'(x) = \cos x - 1$
 $< 0 \text{ for } x > 0$

g(x) is decreasing for all x > 0.

When
$$x = 0$$
, $g(0) = 0$

 \therefore When x > 0, g(x) < 0

$$\therefore \sin x - x < 0$$

 $\sin x < x$ for x > 0.

(ii)
$$f(x) = \sin x - x + \frac{x^3}{6}$$

$$f'(x) = \cos x - 1 + \frac{x^2}{2}$$

$$f''(x) = -\sin x + x$$

 $\sin x < x$ for x > 0 from (i)

 $\therefore f''(x) > 0 \text{ for } x > 0$

f(x) is concave up for x > 0.

(iii) As f''(x) > 0, f'(x) is increasing. Also, when x = 0, f'(0) = 0f'(x) > 0

As f(x) is concave up and its gradient is positive.

$$\therefore \sin x - x + \frac{x^3}{6} > 0$$

$$\therefore \sin x > x - \frac{x^3}{6} \quad \text{for } x > 0.$$

(b)

(i) In $\triangle PUR$ and $\triangle QVR$,

∠R is common

$$\angle PUR = \angle QVR = 90^{\circ}$$

∴ ∆PUR ||| ∆OVR (equiangular)

$$\frac{PR}{R} = \frac{PU}{R}$$

(matching sides in similar triangles are proportional).

(ii) PS = ePU and QS = eQV

$$\therefore \frac{PU}{QV} = \frac{ePU}{eQV}$$
$$= \frac{PS}{OS}.$$

(iii) In $\triangle PRS$,

$$\frac{\sin(\phi + \theta)}{PR} = \frac{\sin \alpha}{PS}$$

$$\frac{\sin(\phi + \theta)}{\sin \alpha} = \frac{PR}{PS}$$

In $\triangle QRS$, $\sin \theta$

$$\frac{\sin\theta}{QR} = \frac{\sin\alpha}{QS}$$

$$\frac{\sin \theta}{\sin \alpha} = \frac{QR}{QS} - QS$$

$$\frac{\sin (\phi + \theta)}{\sin \theta} = \frac{PR}{PS} \times \frac{QS}{QR}$$

$$= \frac{PR}{QR} \times \frac{QS}{PS}$$

$$= 1 \text{ from (i) and (ii)}$$

(iv) As
$$\phi \to 0$$
 $\pi - 2\theta \to 0$

(i) Since PS = ePN $\frac{PS}{PR} = e\frac{PN}{PR}$ $= e \cos \beta$

(ii) Similarly,
$$\frac{PS'}{PR} = e \frac{PM}{PW}$$

 $= e \cos \beta$
 $\therefore \frac{PS}{PR} = \frac{PS'}{PW}$
i.e. $\cos^{-1} \angle RPS = \cos^{-1} \angle WPS'$
Since these are both acute angles,

 $\angle RPS = \angle WPS'$.

Question 8

(a) (i) Let
$$u = a - x$$
, $du = -dx$
When $x = a$, $u = 0$
When $x = 0$, $u = a$

$$\int_0^a f(x) dx = \int_a^0 f(a-u)(-du)$$
$$= \int_0^a f(a-u) du$$
$$= \int_0^a f(a-x) dx.$$

(ii) Given
$$f(x) + f(a-x) = f(a)$$

$$\therefore \int_0^a f(x) dx + \int_0^a f(a-x) dx = \int_0^a f(a) dx$$

$$\int_0^a f(x) dx + \int_0^a f(x) dx = \int_0^a f(a) dx$$
from (i)
$$2 \int_0^a f(x) dx = \left[x f(a) \right]_0^a$$

$$= a f(a) - 0 f(a)$$

$$= a f(a)$$

$$\therefore \int_0^a f(x) dx = \frac{a}{2} f(a).$$

(b) (i)
$$1+z^2+z^4+...+z^{2n-2}$$

is a geometric series with $r=z^2$,
and n terms.
 $1+z^2+z^4+...+z^{2n-2}$

$$1 + z^{2} + z^{4} + \dots + z^{2n-2}$$

$$= 1 + z^{2} + (z^{2})^{2} + \dots + (z^{2})^{n-1}$$

$$= \frac{(z^{2})^{n} - 1}{z^{2} - 1} \quad \text{for } z^{2} \neq 0$$

$$= \frac{z^{2n} - 1}{z^{2} - 1} \times \frac{z^{-1}}{z^{-1}}$$

$$= \frac{z^{2n-1} - z^{-1}}{z - z^{-1}}$$

$$= \frac{z^{n-1}(z^{n} - z^{-n})}{z - z^{-1}}$$

$$= \left(\frac{z^{n} - z^{-n}}{z - z^{-1}}\right)z^{n-1}.$$

(ii) Let
$$z = \cos \theta + i \sin \theta$$

Then $z^k = \cos k\theta + i \sin k\theta$
by de Moivre's theorem
and $z^n - z^{-n} = 2i \sin n\theta$
Substituting both these results into (i),
 $1 + (\cos 2\theta + i \sin 2\theta) + (\cos 4\theta + i \sin 4\theta)$
 $+ \dots + (\cos (2n-2)\theta + i \sin (2n-2)\theta)$

$$= \frac{2i \sin n\theta}{2i \sin \theta} \left[\cos (n-1)\theta + i \sin (n-1)\theta\right]$$

$$\therefore 1 + \left[\cos 2\theta + \cos 4\theta + \dots + \cos (2n-2)\theta\right]$$

$$+ i \left[\sin 2\theta + \sin 4\theta + \dots + \sin (2n-2)\theta\right]$$

 $= \frac{\sin n\theta}{\sin \theta} \Big[\cos (n-1)\theta + i \sin (n-1)\theta \Big].$

(iii) Equating the imaginary parts of (ii),
$$\sin 2\theta + \sin 4\theta + \dots + \sin (2n-2)\theta$$

$$= \frac{\sin n\theta}{\sin \theta} \cdot \sin (n-1)\theta$$
Substituting $\theta = \frac{\pi}{2n}$,
$$\sin \frac{2\pi}{2n} + \sin \frac{4\pi}{2n} + \dots + \sin \frac{(2n-2)\pi}{2n}$$

$$= \frac{\sin \frac{n\pi}{2n}}{\sin \frac{\pi}{2n}} \cdot \sin \frac{(n-1)\pi}{2n}$$

$$\sin \frac{\pi}{n} + \sin \frac{2\pi}{n} + \dots + \sin \frac{(n-1)\pi}{n}$$

$$= \frac{1}{\sin \frac{\pi}{2n}} \cdot \sin \left(\frac{\pi}{2} - \frac{\pi}{2n}\right)$$

$$= \frac{\cos \frac{\pi}{2n}}{\sin \frac{\pi}{2n}}$$

$$= \cot \frac{\pi}{2n}$$

(c) (i)
$$d_1 + d_2 + \dots + d_{n-1}$$

$$= \frac{1}{\sin \frac{\pi}{n}} \left(\sin \frac{\pi}{n} + \sin \frac{2\pi}{n} + \dots + \sin \frac{(n-1)\pi}{n} \right)$$

$$= \frac{1}{\sin \frac{\pi}{n}} \left(\cot \frac{\pi}{2n} \right) \text{ using (b) (iii)}$$

$$= \frac{\cos \frac{\pi}{2n}}{\sin \frac{\pi}{n} \sin \frac{\pi}{2n}}$$

$$= \frac{\cos \frac{\pi}{2n}}{2\sin \frac{\pi}{2n} \cos \frac{\pi}{2n} \sin \frac{\pi}{2n}}$$

$$= \frac{1}{2\sin^2 \frac{\pi}{2n}}.$$

(ii) Since
$$X_1 X_2 = X_2 X_3 = \dots = X_n X_1 = 1$$

$$p = n$$
Also $q = \frac{1}{n} (d_1 + d_2 + \dots + d_{n-1})$

$$= \frac{1}{2n \sin^2 \frac{\pi}{2n}} \text{ using (i)}$$

$$\therefore \frac{p}{q} = \frac{n}{\frac{1}{2n \sin^2 \frac{\pi}{2n}}}$$

$$= 2n^2 \sin^2 \frac{\pi}{2n}$$

$$= 2\left(n \sin \frac{\pi}{2n}\right)^2.$$

(iii)
$$\lim_{n \to \infty} \frac{p}{q} = \lim_{n \to \infty} 2\left(n\sin\frac{\pi}{2n}\right)^2$$
$$= \lim_{n \to \infty} 2\left(\frac{\sin\frac{\pi}{2n}}{\frac{\pi}{2n}} \cdot \frac{\pi}{2}\right)^2$$
$$= 2\left(\frac{\pi}{2}\right)^2$$
$$= \frac{\pi^2}{2}.$$

End Mathematics Extension 2 solutions