Student Iyame; 1	Student Name:	
------------------	---------------	--

2017

YEAR 12

TRIAL EXAMINATION

Mathematics Extension 1

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- · A reference sheet is provided at the back of this paper
- · Show relevant mathematical reasoning and/or calculations in Questions 11-14

Total marks - 70

Section I

10 marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II

60 marks

- Attempt Questions 11-14
- Allow about 1 hour 45 minutes for this section

Section I

10 marks Attempt Questions 1 - 10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10

1 The points A, B and C lie on a circle with centre O, as shown in the diagram. The size of $\angle AOC$ is $\frac{4\pi}{5}$ radians.

Not to scale

What is the size of *LABC* in radians?

- Which of the following is the exact value of $\int_{\frac{3}{\sqrt{2}}}^{3} \frac{4dx}{\sqrt{9-x^2}}$?

 - (D) π

- What are the coordinates of the point that divides the interval joining P(2, 1) and Q(2, 8) internally in the ratio 3: 4?
 - (A) (1,7)
 - (B) (2, 4)
 - (C) (2,7)
 - (D) (4, 2)
- 4 What is the exact value of the definite integral $\int_0^{\frac{\pi}{3}} \sin^2 x dx$?
 - (A) $\frac{\pi}{3} \frac{1}{4}$
 - (B) $\frac{\pi}{3} \frac{\sqrt{3}}{4}$
 - (C) $\frac{\pi}{6} \frac{1}{8}$
 - (D) $\frac{\pi}{6} \frac{\sqrt{3}}{8}$
- 5 How many ways can a football team of eleven be chosen from 15 players?
 - (A) 15
 - (B) 165
 - (C) 1365
 - (D) 5.44×10^{10}
- 6 Which integral is obtained when the substitution u = 1 + 3x is applied to $\int x\sqrt{1 + 3x} dx$?
 - (A) $\frac{1}{9}\int (u-1)\sqrt{u}du$
 - (B) $\frac{1}{3}\int (u-1)\sqrt{u}du$
 - (C) $\int (u-1)\sqrt{u}du$
 - (D) $3 \int (u-1)\sqrt{u}du$
- 7 A particle is moving under SHM in a straight line with an acceleration of $\ddot{x} = 25 5x$, where x is the displacement after t seconds. What is the centre of motion?
 - (A) x = 0
 - (B) x = 5
 - (C) x = 10
 - (D) $x = 1\dot{5}$

8 The function $f(x) = \sin x - \frac{2x}{3}$ has a real root close to x = 1.5.

Let x = 1.5 be a first approximation to the root.

What is the second approximation to the root using Newton's method?

- (A) 1.495
- (B) 1.496
- (C) 1.503
- (D) 1.504
- 9 Seven children are seated randomly around a circular table.
 What is the probability that the two oldest children sit together?
 - (A) $\frac{5!2!}{6!}$
 - (B) $\frac{5!}{6!2!}$
 - (C) $\frac{5!2!}{7!}$
 - (D) $\frac{5!}{7!2!}$
- 10 A bottle of water has a temperature of 20°C and is placed in a refrigerator whose temperature is 2°C. The cooling rate of the bottle of water is proportional to the difference between the temperature of the refrigerator and the temperature T of the bottle of water. This is expressed by the equation $\frac{dT}{dt} = -k(T-2)$ where k is a constant of proportionality and T is the number of minutes after the bottle of water is placed in the refrigerator. After 20 minutes in the refrigerator the temperature of the bottle of water is 10°C. What is the value of k in the above equation?
 - (A) $k = -\frac{1}{20} \log_{e} \frac{9}{4}$
 - (B) $k = -\frac{1}{10} \log_e \frac{4}{9}$
- (C) $k = \frac{1}{20} \log_e \frac{9}{4}$
- (D) $k = \frac{1}{10} \log_e \frac{4}{9}$

Section II

60 marks Attempt Questions 11 -- 14

Allow about 1 hour and 45 minutes for this section

Answer each question in the appropriate writing booklet.

Your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks)

Marks

- (a) Find the size of the acute angle between the lines x-y-4=0 and 3x-y+4=0. Answer to the nearest degree.
- 2

(b) Solve the inequality $\frac{1}{|x-1|} < 1$

2

(c) Newton's law of cooling states that when an object at temperature $T^{\circ}C$ is placed in an environment at temperature $T_{0}^{\circ}C$, the rate of the temperature loss is given by the equation:

$$\frac{dT}{dt} = -k(T - T_0)$$

where t is the time in minutes and k is a positive constant.

(i) Show that $T = T_0 + Ae^{-h}$ satisfies the above equation.

T

(ii) An object whose initial temperature is 60°C is placed in a room in which the internal temperature is maintained at 12°C,
 After 25 minutes, the temperature of the object is 30°C.
 How long will it take for the object's temperature to reduce to 15°C?

(d) The diagram below shows the trajectory of a ball thrown horizontally, at a speed of 50 ms⁻¹, from the top of a tower 90 metres above ground level.

The ball strikes the ground d metres from the base of the tower.

(i) Show that the equations describing the trajectory of the ball are:

2

1

$$x = 50t$$
 and $y = 90 - \frac{1}{2}gt^2$

where g is the acceleration due to gravity and t is the time in seconds.

(ii) Prove that the ball strikes the ground at time $t = 6\sqrt{\frac{5}{g}}$ seconds.

1

(iii) How far from the base of the tower does the ball strike the ground?

(e) Find the term independent of x in the binomial expansion of $\left(3x^8 - \frac{2}{x^3}\right)^{11}$.

Question 12 (15 marks)

Marks

2

1

(a) The region bounded by the graph $y = 3\cos\frac{x}{2}$ and the x-axis between x = 0 and $x = \pi$ is rotated about the x-axis to form a solid.

Find the exact volume of the solid.

(b) $P(2at, at^2)$ is any point on the parabola $x^2 = 4ay$. The line d is parallel to the tangent at P and passes through the focus S of the parabola.

(i) Find the equation of the line d.

(ii) The line d intersects the x-axis at the point R.
 2 Find the coordinates of the midpoint, M, of the interval RS.

(iii) Find the equation of the locus of M.

(c) Find $\int \frac{1}{x^2 + 2x + 2} dx$ 2

(d) A <u>particle moves</u> in a straight line so that its acceleration is given by $a = x + 1.5 \text{ ms}^{-2}$. Initially, the particle is 5 metres to the right of O and moving towards O with a velocity of 6 ms⁻¹.

(i) Is the particle speeding up or slowing down? Give a reason. 1

(ii) Show that $v^2 = x^2 + 3x - 4$.

ii) Where does the particle first change direction?

Question 13 (15 marks)

Marks

1

- (a) (i) Prove that $\frac{\sec^2 x}{\tan x} = \csc x \sec x$
 - Use the substitution $u = \tan x$ to find the exact value of this integral: 2

 $\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \cos \sec x \, dx$

- (b) Prove by mathematical induction that $5^n + 12n 1$ is divisible by 16 for all positive integers $n \ (n \ge 1)$.
- (c) ABCD is a cyclic quadrilateral with $\angle FAE = \angle ECD = 90^\circ$.

- (i) Why is AECF a cyclic quadrilateral?
- (ii) Hence show that EF is parallel to BD.

3

2

- (d) It is given that $P(x) = (x-a)^3 + (x-b)^2$ and the remainder when P(x) is divided by (x-b) is -8.
 - What is the remainder when P(x) is divided by (x-a)?
 - (ii) Prove that $x = \frac{a+b}{2}$ is a zero of P(x).
 - (iii) Prove that P(x) has no stationary points.

Question 14 (15 marks)

Marks

- (a) A shooter hits the target 87% of the time. In a competition he will have fifty shots at the target.
 - What is the probability he hits 40 targets? Answer correct to 4 decimal places.

- 1
- What is the probability he misses at most two times? Answer correct to 4 decimal places.

- (b) Consider the function $f(x) = \frac{x}{x+4}$.
 - Show that f'(x) > 0 for all x in the domain.

2

2

- (ii) State the equation of the horizontal asymptote of y = f(x).
- Without using any further calculus, sketch the graph of y = f(x).
- (iii)
- Explain why f(x) has an inverse function $f^{-1}(x)$. (iv)
- Find an expression for the inverse function $f^{-1}(x)$.
- (c) A particle is moving in a straight line under SHM. At any time (t seconds) its displacement (x metres) from a fixed point O is given by:

$$x = A\cos\left(\frac{\pi}{4}t + \alpha\right)$$
 where $A > 0$ and $0 < \alpha < \frac{\pi}{2}$

After 1 second the particle is 2 metres to the right of Q and after 3 seconds the particle is 4 metres to the left of O.

- Show that $A \sin \alpha A \cos \alpha = -2\sqrt{2}$ and $A \sin \alpha + A \cos \alpha = 4\sqrt{2}$
- Show that $A = 2\sqrt{5}$ and $\alpha = \tan^{-1} \frac{1}{3}$
- When does the particle first pass through O.

End of paper

ACE Examination 2017

. HSC Mathematics Extension 1 Yearly Examination

Worked solutions and marking guidelines

•	Solution	Criteria
	Reflex $\angle AOC = 2\pi - \frac{4\pi}{5} = \frac{6\pi}{5}$	
1	$\angle ABC = \frac{1}{2} \times \angle AOC = \frac{1}{2} \times \frac{6\pi}{5} = \frac{3\pi}{5}$	1 Mark: C
	Angle at the centre is twice the angle at the circumference standing on the same arc.	
	$\int_{\frac{3}{\sqrt{12}}}^{3} \frac{4}{\sqrt{9 - x^2}} dx = 4x \int_{\frac{3}{\sqrt{22}}}^{3} \frac{1}{\sqrt{9 - x^2}} dx = 4 \left[\sin^{-1} \frac{x}{3} \right]_{\frac{3}{\sqrt{22}}}^{3}$	·
2	$=4\left[\left(\sin^{-1}\frac{3}{3}\right)-\left(\sin^{-1}\frac{1}{\sqrt{2}}\right)\right]$	1 Mạrk; D
	$=4\left[\frac{\pi}{2}-\frac{\pi}{4}\right]=\pi$	
	P(2, 1) and Q(2, 8). Internally 3:4.	
^	$x = \frac{mx_2 + nx_1}{m + n}$ $y = \frac{my_2 + ny_1}{m + n}$	1 Mark: B
3	$= \frac{3 \times 2 + 4 \times 2}{3 + 4} = 2 \qquad \qquad = \frac{3 \times 8 + 4 \times 1}{3 + 4} = 4$	
	The coordinates are (2, 4).	
	$\int_0^{\frac{\pi}{3}} \sin^2 x dx = \int_0^{\frac{\pi}{3}} \frac{1}{2} (1 - \cos 2x) dx$	-
4 .	$=\frac{1}{2}\left[x-\frac{1}{2}\sin 2x\right]^{\frac{x}{3}}$	
	$= \frac{1}{2} \left[\left(\frac{\pi}{3} - \frac{1}{2} \sin \frac{2\pi}{3} \right) - \left(0 - \frac{1}{2} \sin 0 \right) \right]$	1 Mark: D
	$= \frac{1}{2} \left[\frac{\pi}{3} - \frac{1}{2} \times \frac{\sqrt{3}}{2} \right] = \frac{\pi}{6} - \frac{\sqrt{3}}{8}$	
5	Unordered selection	
J	$^{15}C_{11} = 1365$	1 Mark: C

6	$u = 1 + 3x \text{ or } x = \frac{1}{3}(u - 1)$ $\frac{du}{dx} = 3 \text{ or } dx = \frac{1}{3}du$ $\int x\sqrt{1 + 3x}dx = \int \frac{1}{3}(u - 1)\sqrt{u}\frac{1}{3}du = \frac{1}{9}\int (u - 1)\sqrt{u}du$	I Mark: A
7	$\frac{d^2x}{dt^2} = 25 - 5x = -5(x - 5)$ Centre of motion at $x = 5$ (SHM $\frac{d^2x}{dt^2} = -n^2(x - b)$ with centre of motion at $x = b$)	1 Mark: B
8	$f(x) = \sin x - \frac{2x}{3}$ $f'(x) = \cos x - \frac{2}{3}$ $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$ $= 1.5 - \frac{\sin 1.5 - \frac{2}{3} \times 1.5}{\cos 1.5 - \frac{2}{3}} = 1.49579 \approx 1.496$	1 Mark: B
9	No restrictions = $(7-1)! = 6!$ Arrangements = $2 \times (6-1)! = 2!5!$ $P(E) = \frac{5!2!}{6!}$	l Mark: A
10	$T = 2 + Ae^{-k} \text{ satisfies the equation } \frac{dT}{dt} = -k(T-2)$ Initially $t = 0$ and $T = 20$ $T = 2 + Ae^{-k}$ $20 = 2 + Ae^{-k \cdot 0}$ $A = 18$ Also $t = 20$ and $T = 10$ $T = 2 + 18e^{-k}$ $10 = 2 + 18e^{-k \cdot 20}$ $e^{-k \cdot 20} = \frac{8}{18}$ $-20k = \log_e \frac{4}{9}$ $k = -\frac{1}{20} \log_e \frac{4}{9} = \frac{1}{20} \log_e \frac{9}{4}$	1 Mark; C

$\begin{vmatrix} x-y-4=0 & 3x-y+4=0 \\ y=x-4 & y=3x+4 \\ m_1=1 & m_2=3 \end{vmatrix}$ $\tan \theta = \begin{vmatrix} \frac{m_1-m_2}{1+m_1m_2} \\ 1+m_1m_2 \end{vmatrix} = \begin{vmatrix} \frac{1-3}{1+1\times 3} \\ 1+1\times 3 \end{vmatrix} = \frac{1}{2}$ $\theta = 26.56505118$ $\approx 27^*$ $\frac{1}{ x-1 } < 1 x \neq 1$ $ x-1 > 1 or x-1 < -1$ $x > 2 x < 0$	2 Marks: Correct answer. 1 Mark: Finds the gradient of the lines or shows some understanding. 2 Marks: Correct answer. 1 Mark: Finds one correct region or
$\tan \theta = \left \frac{m_1 - m_2}{1 + m_1 m_2} \right = \left \frac{1 - 3}{1 + 1 \times 3} \right = \frac{1}{2}$ $\theta = 26.56505118$ $\approx 27^*$ $\frac{1}{ x - 1 } < 1 x \neq 1$ $ x - 1 > 1 $	1 Mark: Finds the gradient of the lines or shows some understanding. 2 Marks: Correct answer. 1 Mark: Finds one
$\tan \theta = \left \frac{m_1 - m_2}{1 + m_1 m_2} \right = \left \frac{1 - 3}{1 + 1 \times 3} \right = \frac{1}{2}$ $\theta = 26.56505118$ $\approx 27^*$ $\frac{1}{ x - 1 } < 1 x \neq 1$ $ x - 1 > 1 $	gradient of the lines or shows some understanding. 2 Marks: Correct answer, 1 Mark: Finds one
$\theta = 26.56505118$ $\approx 27^{*}$ $\frac{1}{ x-1 } < 1 x \neq 1$ $ x-1 > 1$ $x - 1 > 1 or x - 1 < -1$	understanding. 2 Marks: Correct answer, 1 Mark: Finds one
	2 Marks: Correct answer, 1 Mark: Finds one
$\frac{1}{ x-1 } < 1 x \neq 1$ $ x-1 > 1$ $x - 1 > 1 or x - 1 < -1$	answer, 1 Mark: Finds one
x-1 > 1 x-1 > 1 or $x-1 < -1$	answer, 1 Mark: Finds one
x-1 > 1 x-1 > 1 or $x-1 < -1$	1 Mark: Finds one
x-1>1 or $x-1<-1$	correct region or
x>2 $x<0$	
	makes significant progress.
	1 Mark: Correct
$\frac{dT}{dt} = -kAe^{-\mu}$	answer.
$=-k(T-T_0)$	
Initially $t = 0$ and $T = 60$, $T_0 = 12$	3 Marks: Correct
$T = T_0 + Ae^{-h}$	answer.
$60 = 12 + Ae^{-kx0}$ or $A = 48$	2 Marks: Finds the
Also $t=25$ and $T=30$	value of A and an
$30 = 12 + 48e^{-k \times 25}$	expression for k.
$e^{-25k} = \frac{18}{48} = \frac{3}{8}$:
$-25k = \log_e \frac{3}{8}$	1 Mark: Finds the value of A.
$k = -\frac{1}{25}\log_e \frac{3}{8} = \frac{1}{25}\log_e \frac{8}{3}$	
We need to find t when $T=15$	
$15 = 12 + 48e^{-h}$	
$e^{-u} = \frac{3}{48} = \frac{1}{16}$	
$-kt = \log_{\star} \frac{1}{16}$	
$t = \frac{1}{k} \log_e 16 = 25 \frac{\log_e 16}{\log_e \frac{8}{2}} = 70.66950 \approx 71 \text{ minutes}$,
	$T = T_0 + Ae^{-1t} \text{ or } Ae^{-1t} = T - T_0$ $\frac{dT}{dt} = -kAe^{-1t}$ $= -k(T - T_0)$ Initially $t = 0$ and $T = 60$, $T_0 = 12$ $T = T_0 + Ae^{-1t}$ $60 = 12 + Ae^{-1t} = 30$ $30 = 12 + 48e^{-1t} = 30$ $30 = 12 + 48e^{-1t} = \frac{18}{48} = \frac{3}{8}$ $e^{-25t} = \frac{18}{48} = \frac{3}{8}$ $k = -\frac{1}{25} \log_e \frac{3}{8} = \frac{1}{25} \log_e \frac{8}{3}$ We need to find t when $T = 15$ $15 = 12 + 48e^{-1t}$ $e^{-1t} = \frac{3}{48} = \frac{1}{16}$

11(d)	Horizontal $\ddot{x} = 0$	
(i)	$\dot{x} = 50\cos 0^{\circ} = 50$	2 Marks: Correct
	$x = 50\cos\theta = 50$ $x = 50t + c$	miswel.
	When $t=0$, $x=0$ implies $c=0$	1 Mark: Finds
j	x = 50t	horizontal or vertical
	Vertical $\ddot{y} = -g$	parametric equations
	$\dot{y} = -gt + 50\sin 0' = -gt$	or shows some understanding of the
		problem.
}	$y = -\frac{1}{2}gt^2 + c$	
	When $t=0$, $y=90$ implies $c=90$	
	$y = 90 - \frac{1}{2}gt^2$	
11(d)	Ball strikes the ground $y = 0$	1 Mark: Correct
(ii)	$90 - \frac{1}{2}gt^2 = 0$	answer.
	$\frac{1}{2}gt^2 = 90$	
	$t^2 = \frac{180}{g}$	
1.		
	$t = \sqrt{\frac{180}{g}} = 6\sqrt{\frac{5}{g}} \text{as } t > 0$	
11(d) (iii)	Ball strikes the ground when $t = 6\sqrt{\frac{5}{g}}$ seconds.	1 Mark: Correct
	Now $x=50t$	
	$d = 50 \times 6 \sqrt{\frac{5}{g}} = 300 \sqrt{\frac{5}{g}} \text{ metres}$	
11(e)	$T_{k+1} = {}^{11}C_k(3x^8)^{11-k} \left(-\frac{2}{x^3}\right)^k$	3 Marks: Correct answer.
	$= {}^{11}C_k \times 3^{11-k} \times x^{63-3k} \times (-2)^k \times x^{-3k}$	2 Marks: Finds the
	$= {}^{11}C_{\epsilon}(-2)^{k} \times 3^{11-k} \times x^{8k-11k}$	value of k or makes significant progress.
	The term independent of x: $88-11k=0$	I Mark: Uses the
	k=8	expression for the
	Required term is ${}^{11}C_8(-2)^8 \times 3^{11-3} = 1,140,480$	general term of a binomial expansion.
12(a)	$V = \pi \int_{a}^{b} y^{2} dx = \pi \int_{0}^{\pi} 9 \cos^{2} \frac{x}{2} dx$	3 Marks: Correct answer.
	$=\frac{9\pi}{2}\int_0^x (1+\cos x)dx$	2 Marks: Applies the double angle trig
	$9\pi_{\rm f}$ $9\pi^2$	identity.
	$= \frac{9\pi}{2} [x + \sin x]_0^{\pi} = \frac{9\pi^2}{2} \text{ cubic units}$	1 Mark: Sets up the integral for volume

12(b)	To find the gradient of the tangent	3 Marks: Correct
(i)	$y = \frac{1}{4a}x^2$ and $\frac{dy}{dx} = \frac{1}{2a}x$	answer.
	At $P(2at,at^2)$ $\frac{dy}{dx} = \frac{1}{2a} \times 2at = t$	2 Marks: Makes significant progress.
	Line d has a gradient of t and passes through $S(0,a)$	1 Mark: Finds or
	$y - y_1 = m(x - x_1)$	states the gradient of
	y-a=t(x-0)	the tangent at P.
12(b)	x - y + a = 0	0) (-1 (
(ii)	To find the coordinates of R Substitute $y = 0$ into $tx - y + a = 0$ then $x = -\frac{a}{t}$, $R(-\frac{a}{t}, 0)$	2 Marks: Correct answer.
	To find the coordinates of M	1 Mark: Finds the
	$x = \frac{x_1 + x_2}{2}$ $y = \frac{y_1 + y_2}{2}$ $M(-\frac{a}{2t}, \frac{a}{2})$	coordinates of R.
	2 212	
	$=\frac{-\frac{a}{t}+0}{2} = \frac{0+a}{2}$	
	$= \frac{a}{2t}$	
12(b)	To find the equation of the locus eliminate t.	1 Mark: Correct
(iii)	However y is independent of t.	answer.
	$y = \frac{a}{2}$	
12(c)	$\int \frac{1}{x^2 + 2x + 2} dx = \int \frac{1}{(x+1)^2 + 1} dx$	2 Marks: Correct answer.
	$\begin{cases} x^2 + 2x + 2 & (x+1)^2 + 1 \\ & = \tan^{-1}(x+1) + c \end{cases}$	1 Mark: Completes
10(4)		the square.
12(d) (i)	Initially $x = 5$ and $v = -6$ Acceleration $a = x + 1.5 = 5 + 1.5 = 6.5$	1 Mark: Correct answer.
	Therefore $a > 0$ and $\nu < 0$ (different signs)	
	The particle is slowing down.	
12(d) (ii)	$\frac{d}{dx}(\frac{1}{2}v^2) = x + 1.5$	2 Marks: Correct answer.
	$\frac{1}{2}v^2 = \frac{1}{2}x^2 + 1.5x + c_1$	1 Mark: Determines
	$v^2 = x^2 + 3x + c_2$	$\frac{1}{2}v^2 = \frac{1}{2}x^2 + 1.5x + c_1$
	When $x = 5$, $v = -6$ then $(-6)^2 = 5^2 + 3 \times 5 + c_2$ or $c_2 = -4$	or makes similar
	Therefore $v^2 = x^2 + 3x - 4$	progress.

12(d)	Particle changes direction when $v = 0$	1 Mark: Correct
(iii)		answer.
	$x^2 + 3x - 4 = 0$,
	(x+4)(x-1)=0	
	Particle starts at $x = 5$ and is moving to the left $(y = -6)$.	
	At $x = 1$ the particle is at rest $v = 0$ and $a = 2.5 > 0$,
	It then changes direction and moves to the right $(v > 0)$	
1223	$\therefore x = 1$ metres	
13(a) (i)	$LHS = \frac{\sec^2 x}{4\pi a}$	1 Mark: Correct
(1)	tanx	answer.
	$= \frac{1}{\cos^2 x} + \tan x$,
	200 %	
	$=\frac{1}{\cos^2 x} \times \frac{\cos x}{\sin x}$	
Į.	$=\frac{1}{\cos x} \times \frac{1}{\sin x}$	
	= cosecrsec x	•
	= RHS	
13(a)	T - T	2 Marks: Correct
(ii)	$u = \tan x \qquad u = \tan \frac{\pi}{3} = \sqrt{3} \qquad u = \tan \frac{\pi}{4} = 1$	answer.
	$du = \sec^2 x dx$	
	·	1 Mark: Recognises
	$\int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \csc x \sec x dx = \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{\sec^2 x}{\tan x} dx$	the use of part (i) or
	$\int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \cos \cot s \cot u dt = \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\tan x}{\tan x} dx$	makes progress in the substitution.
	$=\int_{1}^{\sqrt{3}}\frac{1}{u}du$	
	1	
ŀ	$= [\log_e u]_1^{\sqrt{5}}$	
	$=\log_{\star}\sqrt{3}-\log_{\star}1$	
	$=\log_{\epsilon}\sqrt{3}$	
10.7		
13(b)	Step 1: To prove the statement true for $n=1$	3 Marks: Correct answer.
	$5^1 + 12 \times 1 - 1 = 16$ (Divisible by 16)	answer.
	Result is true for $n=1$	2 Marks: Proves the
		result true for $n=1$
1	Step 2: Assume the result true for $n = k$	and attempts to use
	$5^k + 12k - 1 = 16P \text{ where } P \text{ is an integer} $ (1)	the result of $n = k$ to
		prove the result for $n = k + 1$.

,		
	Step 3: To prove the result is true for $n = k+1$	1 Mark: Proves the
	$5^{k+1}+12(k+1)-1=16Q$ where Q is an integer.	result true for $n=1$.
	LHS = $5^{k+1} + 12(k+1) - 1$	•
	$=5^{k+1}+12k+11$	
	$=5(5^k+12k-1)-48k+16$	
	$=5(5^k+12k-1)+16(1-3k)$	
	=5(16P)+16(1-3k) from (1)	
	=16(5P+1-3k)	
	=16Q	
	= RHS	
	Q is an integer as P and k are integers.	
	Result is true for $n = k+1$ if true for $n = k$	
	Step 4: Result true by principle of mathematical induction.	
13(c) (i)	$\angle FAE = \angle ECF = 90^{\circ}$ (given)	1 Mark: Correct
(1)	∴ AECF is a cyclic quadrilateral	answer.
	(if two opposite angles of a quadrilateral are supplementary then the quadrilateral is cyclic)	
13(c) (ii)	$\angle BDC = \angle BAC$ (Angles in the same segment of a circle are equal)	3 Marks: Correct answer.
٠	$\angle EAC = \angle EFC$ (Angles in the same segment of a circle are equal)	2 Marks: Makes some progress towards the
	$\angle BAC = \angle EAC$ (same angle)	solution.
	$\therefore \angle BDC = \angle EFC$	1 Mark: States one
	(corresponding angles are equal if and only if $EF \parallel BD$)	relevant statement and circle theorem.
.	Therefore EF is parallel to BD	
13(d)	Given the remainder of -8 when $P(x)$ is divided by $(x-b)$	2 Marks: Correct
(i)	$P(b) = (b-a)^3 + (b-b)^2$	answer.
	$=(b-a)^3$	1 Mark: Applies the
	$(b-a)^3 = -8$	remainder theorem.
	b-a = -2	·
	a=b+2	
	To find the remainder when $P(x)$ is divided by $(x-a)$	
	$P(a) = (a-a)^3 + (a-b)^2$,
	$=(a-b)^2$	
	$=(b+2-b)^2$	
	= 4	
	Therefore the remainder is 4.	
	- · · · · · · · · · · · · · · · · · · ·	

13(d) (ii)	If $x = \frac{a+b}{2}$ is a zero of $P(x)$ then the remainder is 0.	1 Mark: Correct answer.
	$P(\frac{a+b}{2}) = (\frac{a+b}{2} - a)^3 + (\frac{a+b}{2} - b)^2$	
	$=(\frac{a+b-2a}{2})^3+(\frac{a+b-2b}{2})^2$	
	$=(\frac{b-a}{2})^3+(\frac{a-b}{2})^2$	
	$=-1^{3}(\frac{a-b}{2})^{3}+(\frac{a-b}{2})^{2}$	
	$=-\left(\frac{a-b}{2}\right)^2\left(\frac{a-b}{2}-1\right)$	
	$=-(\frac{b+2-b}{2})^2\left(\frac{b+2-b}{2}-1\right)$	
	=-(1)(0)=0	
13(d) (iii)	$P(x) = (x-a)^{3} + (x-b)^{2}$ $P'(x) = 3(x-a)^{2} + 2(x-b)$	2 Marks: Correct answer.
	Stationary points occur when $P'(x) = 0$	136 1 70 4 4
	$3(x-a)^2+2(x-b)=0$	1 Mark: Finds the derivative and uses
	$3x^2 - 6ax + 3a^2 + 2x - 2b = 0$	the discriminate.
	$3x^2 + (2-6a)x + (3a^2 - 2b) = 0$	
	$\Delta = b^2 - 4ac$,
	$= (2-6a)^2 - 4 \times 3 \times (3a^2 - 2b)$	
	$=4-24a+36a^2-36a^2+24b$	
	=4-24a+24b	•
	$=4-24\times(b+2)+24b$	
	=4-24b-48+24b=-44<0	
14(a)	P(x) has no stationary points.	
(i)	Let p be the probability of hitting the target ($p = 0.87$)	1 Mark: Correct answer.
	Let q be the probability of not hitting the target $(q = 0.13)$	MISWOI.
	$P(k \text{ successes}) = {}^{n}C_{k}(0.87)^{k}(0.13)^{n-k}$	
	$P(40 \text{ targets}) = {}^{50}C_{40}(0.87)^{40}(0.13)^{10}$	
14(a)	≈0.0539	
(ii)	Misses at most 2 targets then $k = 48$, 49 and 50 $P(\text{At most 2 misses})$	2 Marks: Correct answer.
	$= {}^{50}C_{41}0.87^{41}0.13^2 + {}^{50}C_{49}0.87^{49}0.13^1 + {}^{50}C_{50}0.87^{50}$ \$\approx 0.0.339\$	1 Mark: Makes some progress.

[1/0]		
14(b) (i)	$f(x) = \frac{x}{x+4} \text{ is defined for all } x \neq -4$	1 Mark: Correct answer.
	$f'(x) = \frac{(x+4) \times 1 - x \times 1}{(x+4)^2} = \frac{4}{(x+4)^2} > 0 \text{ for all } x \neq -4$	
(ii)	$f(x) = \frac{x+4-4}{x+4}$ $= 1 - \frac{4}{x+4}$	1 Mark: Correct answer.
	As $x \to \pm \infty$ $\frac{4}{x+4} \to 0$	
14(1)	Horizontal asymptote is $y=1$	
14(b) (iii)	64 4 2 -12-10-8-6-4-2-4	2 Marks: Correct answer, 1 Mark: Shows asymptotes or basic shape of the curve.
14(b)	The graph of $y = f(x)$ indicates a one-to-one increasing	1116 1 2
(iv)	function (it satisfies the horizontal line test)	1 Mark: Correct answer.
14(b) (v)	The inverse function is $x = \frac{y}{y+4}$	1 Mark: Correct answer.
	xy + 4x = y $(1-x)y = 4x$	
	$y = \frac{4x}{1-x}$	
	$f^{-1}(x) = \frac{4x}{1-x}$	
14(c)	When $t=1$ then $x=2$	
(i)	$2 = A\cos\left(\frac{\pi}{4} \times 1 + \alpha\right)$	2 Marks: Correct answer.
	$= A \left(\cos \frac{\pi}{4} \cos \alpha - \sin \frac{\pi}{4} \sin \alpha \right)$	1 Mark: Finds one of the equations or uses the compound angle
	$=A\left(\frac{1}{\sqrt{2}}\cos\alpha-\frac{1}{\sqrt{2}}\sin\alpha\right)$	formula with the given information.
	$2\sqrt{2} = A\cos\alpha - A\sin\alpha$	Bereit intormation.
· .	$A\sin\alpha - A\cos\alpha = -2\sqrt{2}$	
		·

ŀ	When $t=3$ then $x=-4$	
	$-4 = A\cos\left(\frac{\pi}{4} \times 3 + \alpha\right)$	
	$= A \left(\cos \frac{3\pi}{4} \cos \alpha - \sin \frac{3\pi}{4} \sin \alpha \right)$	į
	$=A\left(-\frac{1}{\sqrt{2}}\cos\alpha-\frac{1}{\sqrt{2}}\sin\alpha\right)$	
	$-4\sqrt{2} = -A\cos\alpha - A\sin\alpha$	
<u>L</u>	$A\sin\alpha + A\cos\alpha = 4\sqrt{2}$	
14(c)	$A\sin\alpha - A\cos\alpha = -2\sqrt{2} (1)$	2 Marks: Correct
(")	$A\sin\alpha + A\cos\alpha = 4\sqrt{2} \qquad (2)$	answer.
	Adding equations (1) and (2) then $2A\sin\alpha = 2\sqrt{2}$	1 Mark: Finds A or α.
	Subtracting equation (1) from (2) then $2A\cos\alpha = 6\sqrt{2}$	Alternatively shows
	$(2A\sin\alpha)^2 + (2A\cos\alpha)^2 = (2\sqrt{2})^2 + (6\sqrt{2})^2$	some understanding of the problem.
	$4A^2(\sin^2\alpha + \cos^2\alpha) = 8 + 72$	or mo problem.
	$A^2 = 20$ or $A = 2\sqrt{5}$	
	$\frac{2A\sin\alpha}{2A\cos\alpha} = \frac{2\sqrt{2}}{6\sqrt{2}}$	
	$\tan \alpha = \frac{1}{3} \text{ or } \alpha = \tan^{-1} \frac{1}{3}$	
14(c) (iii)	Particle passes through O when $x = 0$	2 Marks: Correct
()	$A\cos\left(\frac{\pi}{4}t+\alpha\right)=0$	answer.
	$\frac{\pi}{4}t + \alpha = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}$	1 Mark: Finds
	First passes through O	$\frac{\pi}{4}t + \alpha = \frac{\pi}{2}$ or shows
	$\frac{\pi}{4}t + \alpha = \frac{\pi}{2}$	some understanding.
i	$\frac{\pi}{4}t + \tan^{-1}\frac{1}{3} = \frac{\pi}{2}$	
	$\frac{\pi}{4}t = \frac{\pi}{2} - \tan^{-1}\frac{1}{3}$	
	$\frac{\pi}{4}t = \tan^{-1}3$	
	$t = \frac{4}{\pi} \tan^{-1} 3$	
	Accept $t = 2 - \frac{4}{\pi} \tan^{-1} \frac{1}{3}$ or 1.59 seconds	
		_!