

Sydney Girls High School 2017

TRIAL HIGHER SCHOOL CERTIFICATE **EXAMINATION**

Mathematics Extension 2

General instructions

- Reading Time 5 minutes
- Working time 3 hours
- Write using black or blue pen Black pen is preferred
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- In Questions 11 16, show relevant mathematical reasoning and/or calculations

Total marks - 100

Section I Pages 3 – 6

10 Marks

- Attempt Questions 1 10
- Answer on the Multiple Choice answer sheet provided
- Allow about 15 minutes for this section

Section II Pages 8 – 19

90 Marks

- Attempt Questions 11 16
- Answer on the blank paper provided
- Begin a new page for each question
- Allow about 2 hours and 45 minutes for this section

	1
Name:	THIS IS A TRIAL PAPER ONLY
Teacher:	It does not necessarily reflect the format or the content of the 2017 HSC Examination Paper in this subject.
<u> </u>	

i : i		

Section I

10 marks

Attempt Questions 1 – 10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10

- (1) What is the double root of the equation $x^3 5x^2 + 8x 4 = 0$?
 - (A) x = -2
 - (B) x = -1
 - (C) x = 1
 - $\mathcal{D} \cdot x = 2$
- (2) A small car of mass 1200 kg is rounding a curve of radius 500 metres on a level road at 84km/h.

What force of friction is necessary between the wheels and the ground?

- (A) .3·36 N
- (B) 52·27 N
- (C) 1306 67 N
- (D) 16 934.4 N
- (3) Which of the following parametric equations represent the hyperbola $x^2 y^2 = 4$?
 - (A) $x = 2 \tan \theta$ and $y = 2 \sec \theta$
 - (B) $x = 4 \tan \theta$ and $y = 4 \sec \theta$
 - (C) $x = 2 \sec \theta$ and $y = 2 \tan \theta$
 - (D) $x = 4 \sec \theta$ and $y = 4 \tan \theta$

- (4) Which of the following is the modulus-argument form of 2-2i?
 - (A) $2\sqrt{2}cis\left(\frac{\pi}{4}\right)$
 - (B) $2\sqrt{2}cis\left(-\frac{\pi}{4}\right)$
 - (C) $2cis\left(\frac{7\pi}{4}\right)$
 - (D) $2cis\left(-\frac{7\pi}{4}\right)$
- (5) The graph of $y = \frac{x^2}{x^2 4}$ has:
 - (X) a single vertical asymptote, two horizontal asymptotes and no turning points
 - (B) a single horizontal asymptote, two vertical asymptotes and no turning points
 - (X) a single vertical asymptote, two horizontal asymptotes and one turning point
 - (D) a single horizontal asymptote, two vertical asymptotes and one turning point
- (6) The point P on the Argand diagram represents the complex number z.

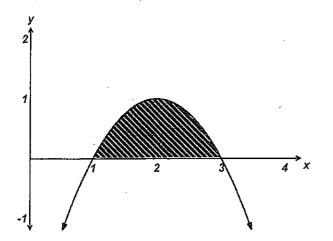
The point P moves such that $|z|^2 + |z + 2i|^2 = 10$.

Which of the following best describes the path traced out by P?

- (A) An ellipse
- (B) A hyperbola
- (É) A circle
- (D) A straight line

(7) A committee of 5 people is to be chosen from a group of 6 girls and 4 boys.

How many different committees could be formed that have at least one boy.


- (A) ${}^{10}C_5 1$
- (B) ${}^{4}C_{1} + {}^{6}C_{2}$
- C) ${}^4C_1 \times {}^6C_2$
- (D) ${}^{10}C_3 6$
- (8) The equation $x^3 y^3 + 3xy + 1 = 0$ defines y implicitly as a function of x.

Which of the following is the expression for $\frac{dy}{dx}$?

- (A) $\frac{y^2 x}{x^2 + y}$
- (B) $\frac{y^2 + x}{x^2 y}$
- $(C) \quad \frac{x^2 + y}{y^2 x}$
- $(D) \quad \frac{x^2 y}{y^2 + x}$
- (9) At time t seconds, $t \ge 0$, the velocity v m/s of a particle moving in a straight line is given by $v = \sqrt{3}\cos(t) + \sin(t) 2$. For what value of t does the particle first attain its maximum speed of 4 m/s?
 - $(A) t = \frac{\pi}{6}$
 - $(B) t = \frac{7\pi}{6}$
 - (C) $x = \frac{4\pi}{3}$
 - (D) The particle never attains a speed of 4 m/s.

~ 5 ~

(10)

The diagram above shows the graph $y=4x-x^2-3$.

The shaded region bounded by the graph and the x-axis is rotated around the y-axis to form a solid.

Which of the integrals below gives the volume of the solid?

(A)
$$\mathcal{L}_{h} \int_{0}^{1} \sqrt{1-y} \, dy$$

(B)
$$8\pi \int_0^1 2 + \sqrt{1-y} \, dy$$

(C) $\pi \int_0^1 1 + \sqrt{1-y} \, dy$
(D) $\pi \int_0^1 \sqrt{1-y} \, dy$

(C)
$$\pi \int_{0}^{1} 1 + \sqrt{1-y} \, dy$$

(D)
$$\pi \int_0^1 \sqrt{1-y} \, dy$$

Section II

90 marks

Attempt Questions 11 – 16

Allow about 2 hours and 45 minutes for this section

Answer on the blank lined paper provided. Begin a new page for each question Your responses should include relevant mathematical reasoning and/or calculations.

Question 11

(15 Marks)

Use a NEW sheet of paper.

(a) Find:

i)
$$\int e^x \left(1+e^x\right)^5 dx.$$

[1]

ii)
$$\int \frac{dt}{\sqrt{7+6t-t^2}}$$

[2]

(b) Let $\alpha = \sqrt{3} + i$ and $\beta = 1 - i$.

i) Express $\bar{\alpha}$ and β in modulus-argument form.

[2]

ii) Find $\overline{\alpha}\beta$ in modulus-argument form.

[1]

iii) Hence, or otherwise, find the exact value of $\tan \frac{11\pi}{12}$.

[2]

Express your answer in its simplest form.

Question 11 continues on the next page

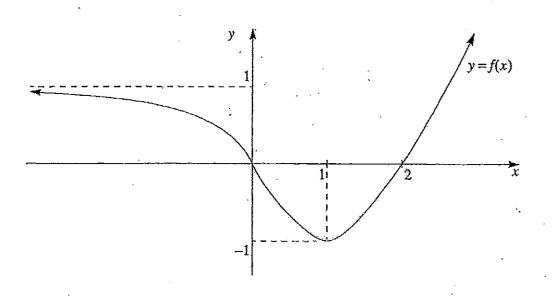
~ 8 ~

Question 11 (Continued)

(c) For the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$

i) Find the eccentricity. [1]

ii) Find the coordinates of the foci S and S'. [1]


iii) Find the equations of the directrices. [1]

iv) Show that the coordinates of any point P on the ellipse can be represented by $(5\cos\theta, 4\sin\theta)$.

v) Show that PS + PS' is a constant. [2]

Use a NEW sheet of paper.

(a)

(15 Marks)

Given the function y = f(x) in the diagram above, sketch on separate diagrams, showing all intercepts, turning points and asymptotes:

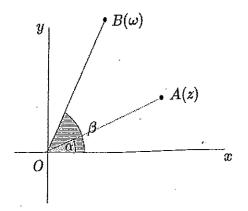
$$i) y = f(|x|) [1]$$

$$|y| = f(x)$$
 [2]

iii)
$$y = f(2x)$$
 [2]

iv)
$$y = \frac{1}{f(x)}$$
 [2]

$$y = e^{f(x)} (2)$$

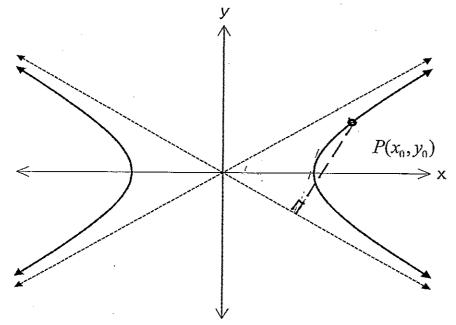

Question 12 continues on the next page

Question 12 (Continued)

(b) Using the substitution
$$t = \tan \frac{\theta}{2}$$
, find $\int \frac{2}{4 + 3\sin \theta} d\theta$.

[3]

(c) [3]


The points A and B on the Argand diagram above represent the complex numbers z and ω respectively and $|z| = |\omega| = 2$.

If $\arg z = \alpha$ and $\arg \omega = \beta$ show that $|z + \omega| = 4\cos\left(\frac{\beta - \alpha}{2}\right)$

(15 Marks)

Use a NEW sheet of paper.

- (a) The roots of the equation $x^3 9x^2 + 31x + m = 0$ are in an arithmetic sequence. [3] Find the roots of the equation and hence the value of m.
- (b) The point $P(x_0, y_0)$ lies on the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$, where a > b > 0.

- i) Write down the equations of the two asymptotes of the hyperbola.
- [1]

[2]

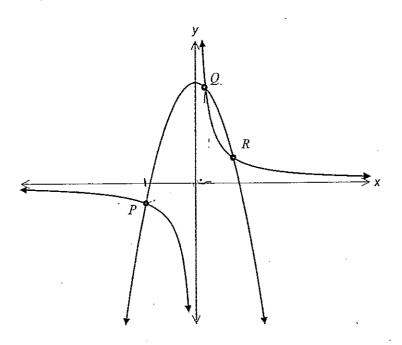
- ii) Show that the acute angle α between the two asymptotes satisfies [2] $\tan \alpha = \frac{2ab}{a^2 b^2}$
- iii) If M and N are the feet of the perpendiculars drawn from P to the asymptotes, show that $MP \times NP = \frac{a^2b^2}{a^2 + b^2}$.
- iv) Hence find the area of $\triangle PMN$ in terms of a and b.

Question 13 continues on the next page

(c)

i) Find the rational values of A, B and C given:

[2]


$$\frac{y^2 + 8}{(y - 2)(y^2 + 2y + 4)} = \frac{A}{y - 2} + \frac{By + C}{y^2 + 2y + 4}$$

ii) Hence find $\int \frac{y^5 - 7y^2 + 8}{y^3 - 8} \, dy$.

[2]

Use a NEW sheet of paper.

(a)

(15 Marks)

[1]

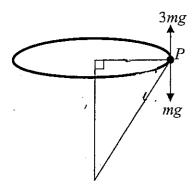
[2]

The curves $y = \frac{1}{x}$ and $y = k - x^2$, for some real number k, intersect at the points P, Q and R where the x-coordinates are $x = \alpha$, $x = \beta$ and $x = \gamma$ respectively.

- i) Show that the monic cubic equation with coefficients in terms of k [3] whose roots are α^2 , β^2 and γ^2 is given by $x^3 2kx^2 + k^2x 1 = 0$.
- ii) Find the monic cubic equation with coefficients in terms of k whose roots are: $\frac{1}{\alpha^2}$, $\frac{1}{\beta^2}$ and $\frac{1}{\gamma^2}$.
- iii) Hence find in simplest form $OP^2 + OQ^2 + OR^2$ in terms of k, where O is the origin.

Question 14 continues on the next page

Question 14 (Continued)


(b)

- i) Show that a reduction formula for $I_n = \int (\ln x)^{\frac{n}{2}} dx$, where n is a positive
- [2]

- integer, is $I_n = x (\ln x)^{\frac{n}{2}} \frac{n}{2} I_{n-2}$.
- ii) Hence, or otherwise, evaluate $\int_{1}^{e} (\ln x)^{4} dx$.

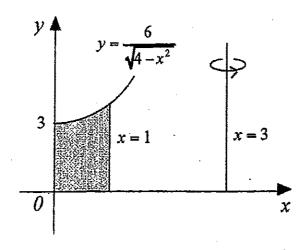
[2]

(c)

A model aircraft P, of mass m=8 kg is attached to the end of a 10 m long inelastic wire, with the other end fixed to the ground.

The model flies in a horizontal circle so that the wire makes an angle of 30° with the ground. The uplift created by the wings of the aircraft is a vertical force 3mg. (take $g = 10ms^{-1}$)

- i) By resolving the forces at P, calculate the tension in the wire. [3]
- ii) Calculate the angular velocity about the centre of the horizontal circle. [2]


(15 Marks)

[2]

[2]

Use a NEW sheet of paper.

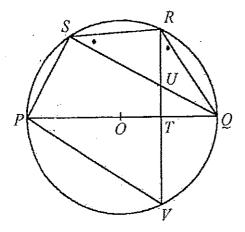
(a)

A mould for a section of concrete piping is made by rotating the region bounded by the curve $y = \frac{6}{\sqrt{4-x^2}}$ and the x axis between the lines x = 0 and x = 1 through one complete revolution about the line x = 3. All measurements are in metres.

i) By considering strips of width δx parallel to the axis of rotation, show that the volume V m³ of the concrete used in the piping is given by

$$V = 12\pi \int_{0}^{1} \frac{3-x}{\sqrt{4-x^2}} \, dx$$

ii) Hence find the volume of the concrete used in the piping, giving your answer correct to the nearest cubic metre.


Question 15 continues on the next page

b)

i) Use De Moivre's Theorem to show that $\cos 4\theta = 8\cos^4 \theta - 8\cos^2 \theta + 1$. [2]

[2]

- ii) Show that the equation $16x^4 16x^2 + 1 = 0$ has roots $x = \cos\frac{\pi}{12}$, $x = -\cos\frac{\pi}{12}$, $x = \cos\frac{5\pi}{12}$ and $x = -\cos\frac{5\pi}{12}$.
- iii) 'By considering this equation as a quadratic equation in x^2 , find the exact value of $\cos \frac{5\pi}{12}$.
- c) In the diagram, PQ is the diameter of the circle with centre O.

RV intersects SQ and PQ at U and T respectively. If $\angle QRT = \angle RSQ$, prove that:

i)
$$\angle TPV = \angle RSQ$$
. [1]

- ii) $\angle RTQ$ is a right angle. [2]
- iii) PU is a diameter of the circle passing through P, T, U and S. [1]

Use a NEW sheet of paper.

(15 Marks)

- (a) Use the letters of the word STRETCH to answer the following.
 - i) How many two-letter arrangements can be made?

[1]

- (i) If the letters are selected at random to create a two-letter arrangement, what is the probability that the two-letter arrangement will be "TT"?
- [1]
- The creation of two-letter arrangements from the word STRETCH is repeated.

[2]

How many two-letter arrangements need to be created to ensure that the probability of obtaining the arrangement "TT" at least once, exceeds 90%?

. (b)

i) Show that $\sin(2r+1)\theta - \sin(2r-1)\theta = 2\sin\theta\cos 2r\theta$, where r is a positive integer.

[1]

ii) Hence show that for $n \ge 1$

[2]

$$\sin\theta \sum_{r=1}^{n}\cos 2r\theta = \frac{1}{2} \{\sin(2n+1)\theta - \sin\theta\}.$$

iii) Hence evaluate $\sum_{r=1}^{100} \cos^2 \left(\frac{r\pi}{100} \right)$

[3]

(c)

i) Use the principle of mathematical induction to prove that $3^n > n^3$ for all integers $n \ge 4$.

[4]

1) Hence or otherwise show that $\sqrt[3]{3} > \sqrt[n]{n}$ for all integers $n \ge 4$.

[1]

End of paper

Sydney Girls High School Mathematics Faculty

Multiple Choice Answer Sheet Trial HSC Mathematics Extension 2

select the	alternative A.	B. C or D tha	thest and	sware the		Trus e	
completel	altemative A, y.			111 C12 III	e question	rm m then	espouse oval
Sample	2+4=7	(4) 1	/D) _				

Sample	2+4=?

 $A \bigcirc B \bullet C \bigcirc D \bigcirc$

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

If you change your mind and have crossed out what you consider to be the correct answer, then indicate this by writing the word correct and drawing an arrow as follows:

 $A \bowtie B \bowtie C O D O$

ANSWERS Student Number:

Completely fill the response oval representing the most correct answer.

1. A O BO

3. A 🔾 $B\bigcirc$

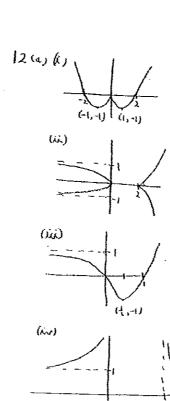
4. A 🔾

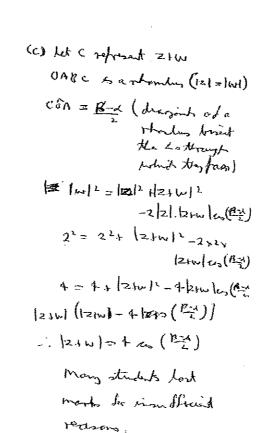
 $B\bigcirc$

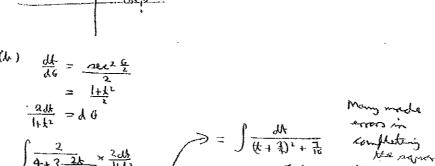
6. A 🔾

7. A O BO CO

8. A 🔾


BO CO DO


2017 THSC EXT2 QUESTION 1 (a) Ci) Jex (Hex) dx


	(iii) $J\beta = 2\sqrt{2} \cos(\frac{\pi}{12}) + i 2\sqrt{2} \sin(\frac{\pi}{12})$
	ZB= (-/3-i) (1-i)
· · · · · · · · · · · · · · · · · · ·	$= (-\sqrt{3} + i\sqrt{3} - i - i)$ $= (-\sqrt{3} - i) + (\sqrt{3} - i)i$
's many	So $2\sqrt{2}\sin(\frac{1}{12})=\sqrt{3}-1$ and $2\sqrt{2}\cos(\frac{1}{12})=-\sqrt{3}-1$
	Thus tan (117) = 13-1
Ė.	Hat 13 Lan ("1") = 13-2
	(c)(i) $b^2 = a^2(1-e^2)$
	$\frac{16 = 25(1-e^2)}{25} = 1-e^2$
The state of the s	$e^{2} = \frac{25}{28} - \frac{16}{25}$ $e^{2} = \frac{9}{25}$
Obligation of Character and Ch	e= 3

	(ii) S(ae, 0) S(-ae, 0)
- ()	$S(5x^3, 0)$
	S(3,0) S'(-3,0)
	(iii) 7= £ 8
	z= ± 5/3
($\chi = \pm \frac{25}{3}$
	(iv) LHJ= x2 y2 25 + 16
	- 5 cos 0 - 4 sin 20
· 	$= co^2\theta + sm^2\theta$
(= 1
	Z KHJ.
** One of the control	(v) Let Mand M' be the feet of the perpendiculars to the corner panding directries from the point P.
	$x = \frac{15}{3} \frac{M^{1}}{M^{2}} $ $x = \frac{25}{3}$ $x = \frac{25}{3}$ $x = \frac{25}{3}$

By the locus definition of an So PS+PS'= EPM+EPM+ +3-(4sin0+25)

Use a NEW sheet of paper.

(15 Marks) ___

(a) The roots of the equation $x^3 - 9x^2 + 31x + m = 0$ are in an arithmetic sequence.

Find the roots of the equation and hence the value of m.

Let the roots be: $\alpha-d$, α , atd

Sum (1 at a time): $\alpha - d + \alpha + \alpha + d = -\frac{b}{a}$

id = 3.

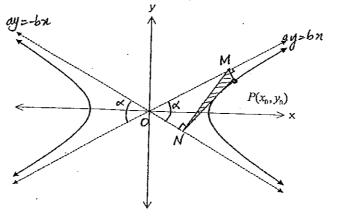
Sum (2 at a time): 2-2d+2-d2+2+dd= c

 $3(3)^2 - d^2 = 31$ $-d^2 = 4$

d = ±2i

: Roots are: 3-2i, 3, 3+2i

Product:


 $3^2 - (-4) \times 3 = -m$

(9+4) x3 =-m

-39 = m m = -39.

* (Students did well in this part

(b) The point $P(x_0, y_0)$ lies on the hyperbola $\frac{x^2}{2}$

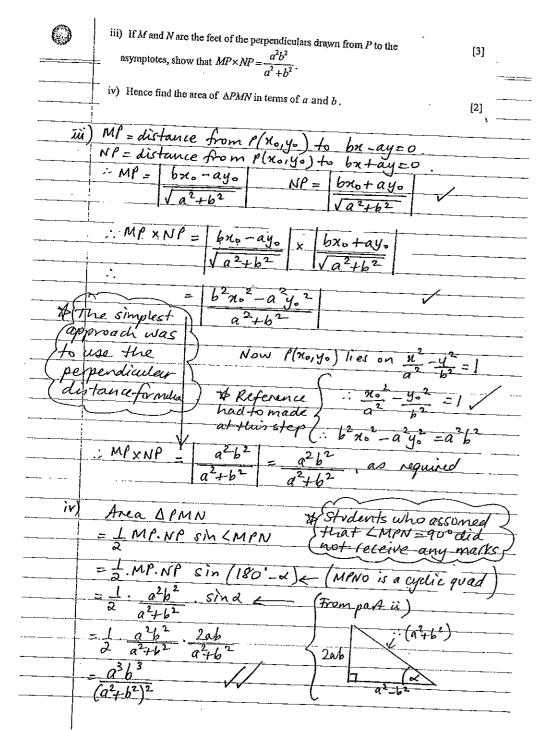
i) Write down the equations of the two asymptotes of the hyperbola.

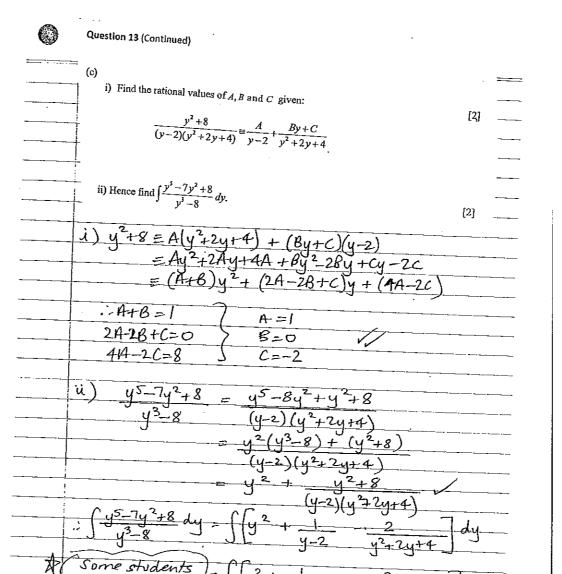
ii) Show that the acute angle α between the two asymptotes satisfies

 $\tan \alpha = \frac{2ab}{a^2 - b^2}$

M1 - M2 tanx= 1+mimz (b/a) - (-b/a)

* Absolute value signs should

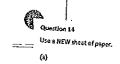

1+ (/a)(-1/a)


be included and then a reference to a7670

 $\frac{2b}{a} \times a^2$

97670

: tand =


- 2 ton / /471

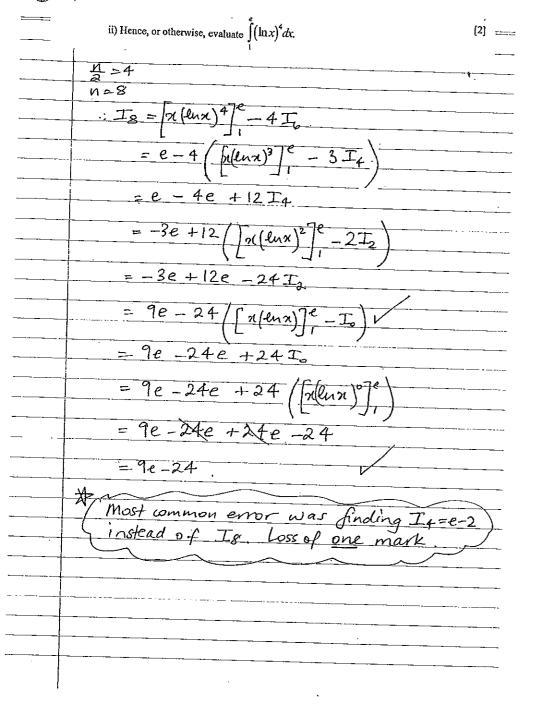
did not read thequestion

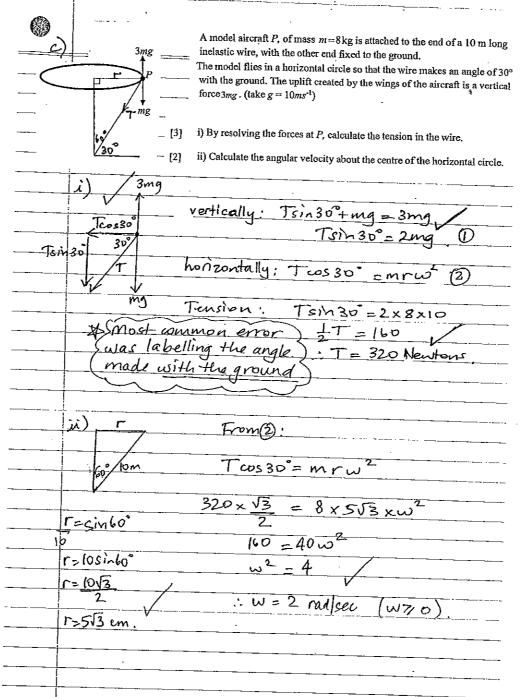
carefully, and integrated the

part i)

answer directly from

 $(\alpha,\frac{1}{\alpha})^{\frac{1}{p}}$


The curves $y = \frac{1}{x}$ and $y = k - x^2$, for some real number k, intersect at the points P, Q and R where the x-coordinates are $x = \alpha$, $x = \beta$ and $x = \gamma$ respectively.


- [3] i) Show that the monic cubic equation with coefficients in terms of k whose roots are α^2 , β^2 and β^2 is given by $x^3 2kx^2 + k^2x 1 = 0$.
- [1] ii) Find the monic cubic equation with coefficients in terms of k whose roots are: $\frac{1}{\alpha^2}$, $\frac{1}{\beta^2}$ and $\frac{1}{\gamma^2}$.
- [2] iii) Hence find in simplest form $QP^2 + QQ^2 + QR^2$ in terms of k, where O is the origin.

i) $\alpha_1\beta_1\gamma$ are the roots $\alpha_1\beta_2\gamma$ are the roots of the equation: $\alpha_1^2\beta_1^2\gamma_2^2 \text{ are the roots of the equation:}$ $(\sqrt{n})^3 + k(\sqrt{n}) + l = 0. \text{(replace } n \text{ by } \sqrt{n})$ $2\sqrt{n} - k\sqrt{n} + l = 0.$ $(n-k)\sqrt{n} = -l \text{(finis step had)}$ $(n-$	where U is the origin.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	·	
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	i) dip, of are the roots as k-x=1	
$(\sqrt{n})^2 + (\sqrt{n}) + l = 0$. (replace $n \text{ by } \sqrt{n}$) $(\sqrt{n})^2 - k(\sqrt{n}) + l = 0$. (replace $n \text{ by } \sqrt{n}$) $(\sqrt{n})^2 - k(\sqrt{n}) + l = 0$. $(\sqrt{n} - k) \sqrt{n} = -l$ $(\sqrt{n} - k) \sqrt{n} = -l$ $(\sqrt{n} - k)^2 (\sqrt{n})^2 = (-l)^2$ $(\sqrt{n} - k)^2 (\sqrt{n} - k)^2 = (-l)^2$	=> x3-kx-1/=0	_
$(\sqrt{n})^{3} - k(\sqrt{n}) + l = 0. (\text{replace } n \text{ by } \sqrt{n})$ $2\sqrt{n} - k\sqrt{n} + l = 0.$ $(n-k)\sqrt{n} = -l$ $(n-k)^{2}(\sqrt{n})^{2} = (-l)^{2} \text{to be shown}$ $(n-k)\sqrt{n} = -l to be sh$	2 R 2 . 2	_
$x\sqrt{2} - k\sqrt{2}x + 1 = 0.$ $(x-k)\sqrt{2}x = -1$ $(x-k)^{2}(\sqrt{2}x)^{2} = (-1)^{2}$ $(x^{2}-2kx+k^{2})x = 1$ $(x^{2}-2kx+k^{2})x = 1$ $\therefore x^{3}-2kx^{2}+k^{2}x-1=0, \text{ as required}$ $ii) Replace \(x + by \frac{1}{x} : \frac{1}{x} \frac{3}{x^{2}} - 2k(\frac{1}{x})^{2} + k^{2}(\frac{1}{x}) - 1 = 0$ $\frac{1}{x^{3}} - 2k(\frac{1}{x})^{2} + k^{2}(\frac{1}{x}) - 1 = 0$ $\frac{1}{x^{3}} - 2k(\frac{1}{x})^{2} + k^{2}(\frac{1}{x}) - 1 = 0$		_
$x\sqrt{2} - k\sqrt{2}x + 1 = 0.$ $(x-k)\sqrt{2}x = -1$ $(x-k)^{2}(\sqrt{2}x)^{2} = (-1)^{2}$ $(x^{2}-2kx+k^{2})x = 1$ $(x^{2}-2kx+k^{2})x = 1$ $\therefore x^{3}-2kx^{2}+k^{2}x-1=0, \text{ as required}$ $ii) Replace \(x + by \frac{1}{x} : \frac{1}{x} \frac{3}{x^{2}} - 2k(\frac{1}{x})^{2} + k^{2}(\frac{1}{x}) - 1 = 0$ $\frac{1}{x^{3}} - 2k(\frac{1}{x})^{2} + k^{2}(\frac{1}{x}) - 1 = 0$ $\frac{1}{x^{3}} - 2k(\frac{1}{x})^{2} + k^{2}(\frac{1}{x}) - 1 = 0$	(1/21) 3 1/2 1/1 0 / colonial C	
$(n-k)\sqrt{n} = -1$ $(n-k)^{2}(\sqrt{n})^{2} = (-1)^{2}$ $(n-k)^{2}(\sqrt{n}$	(VI) = K(VI) = O. (Replace It by VI)	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(n-k) Vn =-1	7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(x-K)2(5x)=(-1) to be shown	#
ii) Replace $\alpha = \frac{kx^2 + k^2x - 1 = 0}{x^3 + k^2}$ as required. $\frac{(\frac{1}{\pi})^3 - 2k(\frac{1}{\pi})^2 + k^2(\frac{1}{\pi}) - 1 = 0}{\frac{1}{\pi^3} - 2k + \frac{k^2}{\pi^2} - 1 = 0}$	$\left(x^{2}-2kx+k^{2}\right)x=1$	_
ii) Replace $\alpha = \frac{ky}{\pi}$:	x-2kx2+k2x-1=0 as required	
$ \frac{(\frac{1}{\pi})^{3} - 2k(\frac{1}{\pi})^{2} + k^{2}(\frac{1}{\pi}) - 1 = 0}{\frac{1}{\pi^{3}} - 2k + k^{2} - 1 = 0} $	ii) Replace or by !:	_
$\frac{1}{x^3} - \frac{2k}{x^2} + \frac{k^2}{x} - 1 = 0$		_
$\frac{1}{x^3} - \frac{2k}{x^2} + \frac{k^2}{x} - 1 = 0$	$(\frac{1}{2c}) - 2k(\frac{1}{2c}) + k^2(\frac{1}{2c}) - 1 = 0$	-
$\Rightarrow 1 - 2kx + k^2x^2 - x^3 = 0$ $\therefore x^3 - k^2x^2 + 2kx - 1 = 0$	$\perp -2k + k^2 + -0$	
$\Rightarrow 1 - 2kx + k^2x^2 - x^3 = 0$ $\therefore x^3 - k^2x^2 + 2kx - 1 = 0$	73 22 2	
$\therefore x^3 - k^2 x^2 + 2k x - 1 = 0$	=> 1-2kx+k2x2-x3 ===	
	x3-122x2+2kxx 1	_
	1. 1. 7. 7. 2. 2. 1. 2. 0. V	
		_
		_
		_

0	
	iii) $0p^2 + 0Q^2 + 0R^2$
 -	$=\left(\lambda^{2}+\frac{1}{2}\right)+\left(\beta^{2}+\frac{1}{\beta^{2}}\right)+\left(\gamma^{2}+\frac{1}{2}\right)$
	$= \left(2 + \beta^2 + y^2\right) + \left(\frac{1}{\lambda^2} + \frac{1}{\beta^2} + \frac{1}{y^2}\right)$
	From 1) 2+16+2=2K
	From ii) to the the to the total of the tota
	: 0p2+022+0R2= K2+2K
	(b)
 	i) Show that a reduction formula for $I_n = \int (\ln x)^{\frac{n}{2}} dx$, where n is a positive [2]
 I	integer, is $I_x = x (\ln x)^{\frac{s}{2}} - \frac{n}{2} I_{s-2}$.
	$I_{n} = \int \{(\ln x)^{\frac{n}{2}} dx \qquad u = (-\ln x)^{\frac{n}{2}} $ $= \pi \{(\ln x)^{\frac{n}{2}} - \int \pi \cdot \frac{n}{2} \{(\ln x)^{\frac{n}{2} - 1} \cdot \int dx \qquad du = n \} \frac{\ln x}{n} dx $ $= \pi \{(\ln x)^{\frac{n}{2}} - \int \pi \cdot \frac{n}{2} \{(\ln x)^{\frac{n}{2} - 1} \cdot \int dx \qquad v = dx \}$ $= \pi \{(\ln x)^{\frac{n}{2}} - \int \pi \cdot \frac{n}{2} \{(\ln x)^{\frac{n}{2} - 1} \cdot \int dx \qquad v = dx \}$
	$= n \left(\ln x \right)^{\frac{n}{2}} - \left(n \cdot n \left(\ln x \right)^{\frac{n}{2} - 1} \right) dx$
-	$= \pi \left(\ln x \right)^{\frac{\eta}{2}} - \frac{\eta}{2} \int \left(\ln \pi \right)^{\frac{\eta}{2} - 1} dx \qquad V = \pi $
	$T_n = n \left(\ln x \right)^{\frac{n}{2}} - n \left(\left(\ln x \right)^{\frac{n-2}{2}} dx \right)$
	$= \pi \left(\ln x \right)^{\frac{n}{2}} - n T_{n-2}$

& (This was achieved by most students.


```
Is (a) (i) Vale = TI (p2-p2) L
                 =T {(1-x)-(7-x-1x)}
                  = 211 (3-2) y J2
          Vsolid = lim \(\frac{1}{5n-30}\) \(\frac{1}{20}\) (1-n)ydn
                 = 211 / (1-1) y dr
                 = 211 \( (1-n) \times \( \frac{c}{4-x^2} dx \)
   W) V= 12 11 ( ). ( 1 - 12 ) A
         =1211 [3 sin 2] -1211 5 1 1 -121 x du
         = 1211 × 3 × # -121 [-(4-w) 1]
         = 611" + 12n x 13 - 2+n
                                                 the sh
         = 6112 + 1261 11 - 24 11
                                     A realistation among.
(16 (200 6+ 2 min 6) + = 200 + 4 + 4 x 60 76 min 6-620 6 min 6- + x 406 pin 6-4 min 6
   aust6 + i mit6 = cost6 + time = - (cos6 (+ cos6) + (1-cos6)2
        200 +6 = 200+6 - 620+6 + 620+6 + 1-2200+6 + 200+6
                 = 8 ca+6 - 8 can 6+1 Q.U.D.
 (in) let == Ron G
     1620+6-162016 +1=0
    2 (trasto - traste +1) -120
          20046ml=0
            25+6=1
            中 = 引, 至, 证, 证
            62年,红、红、虹
 A= Res II , res III, tes III us tes III
F = as the, as the is con the , was the
(iii) x=1(+/162-4x1621
       = 167 115F
                  = 16± 8√3
```

```
(Uti)TPV = GRT (cin some segment)
    ORT = Rão (grèn) _____ Many students dorsat
  -. Thy = Ric GED
 WIL SPEVENDA DVGT
    PAV & Romma
    TVa = RGG (40 m some sagment)
         = TPV ( from 1)
    -. Spay III DVGT (equiangular)
   : OTV = Pla (corresponding Lin similar D)
     pVG = 90° ( Cin a serie reide)
   - GTV = 900
    Rfa + Gfv = 1100 (straight 4)
    - Afa = 90' (0.c.p.)
(iii) psc =90 (2 in a semi wide)
    : PU to a chamble of a wich through P. Sand V.
  219 = 278 ·
 .: PTUI is a cyclic quadritated (interior < equals
                            whire Monte a)
  -: PU is a deameter of the winder
   faring through P.T. Wand J. G.E.D.
                       Boths element are required
```

2017 THSC Ext 2

Question 16

(a)(i) Method 1 Method 2
Case 0, No Ts:
$$5 \times 4 = 20$$
 Distinct letters:

Distinct letters: ${}^6C_2 \times 2! = {}^6P_2 = 30$

Case 1, One T: $5 \times 2! = 10$

Same letter (TT): 1 Case 2, TT: 1 Total = 31

Total = 31

Most students had $\frac{7P_2}{2!} + 1 = 21$ but you only need to divide by 2! if you have the two TTs.

(ii)
$$P(TT) = \frac{1}{31}$$

(iii)
$$P(TT) = 1 - P(not TT)$$

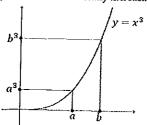
$$1 - \underbrace{\frac{30}{31} \times \frac{30}{31} \times \dots \times \frac{30}{31}}_{n} > 0.9$$

$$0.1 > \left(\frac{30}{31}\right)^{n}$$
 This part was answered poorly by most students.
$$\log \left(\frac{30}{31}\right)^{n} < \log(0.1)$$

$$n > \frac{\log 0.1}{\log \left(\frac{30}{31}\right)}$$
 Since $\log \left(\frac{90}{31}\right) < 0$

$$n > 70.22$$

That is n = 71


You would need to create 71 arrangements to have over 90% chance of getting at least one TT.

(b)(i) LHS =
$$\sin(2r\theta + \theta) - \sin(2r\theta - \theta)$$

= $\sin(2r\theta)\cos\theta + \sin\theta\cos(2r\theta) - \sin(2r\theta)\cos\theta + \sin\theta\cos(2r\theta)$
= $2\sin\theta\cos(2r\theta)$
= RHS
(ii) $2\sin\theta \sum_{r=1}^{n}\cos 2r\theta$
= $2\sin\theta\cos 2\theta + 2\sin\theta\cos 4\theta + 2\sin\theta\cos 6\theta + \cdots$
+ $2\sin\theta\cos 2(n-1)\theta + 2\sin\theta\cos 2n\theta$
= $\sin3\theta - \sin\theta + \sin5\theta - \sin3\theta + \sin(2n-1)\theta - \sin(2n-1)\theta$
= $-\sin\theta + \sin(2n-1)\theta$
So $2\sin\theta \sum_{r=1}^{n}\cos 2r\theta = \sin(2n+1)\theta - \sin\theta$
That is $\sin\theta \sum_{r=1}^{n}\cos 2r\theta = \frac{1}{2}\{\sin(2n+1)\theta - \sin\theta\}$
(iii) $\sum_{r=1}^{100}\cos^2(\frac{r\pi}{100})$ Some students could not see the connection between parts (ii) and (iii).
= $\sum_{r=1}^{100}(\frac{1}{2} + \frac{1}{2}\cos(\frac{2r\pi}{100}))$
= $\frac{1}{2}\times 100 + \frac{1}{2}\{\frac{1}{2\sin(\frac{\pi}{100})}[\sin(201\frac{\pi}{100}) - \sin(\frac{\pi}{100})]\}$ from part (ii)
= $50 + \frac{1}{4\sin(\frac{\pi}{100})}[\sin(2\pi + \frac{\pi}{100}) - \sin(\frac{\pi}{100})]$

 $=50+\frac{1}{4\sin\left(\frac{\pi}{100}\right)}\left[\sin\left(\frac{\pi}{100}\right)-\sin\left(\frac{\pi}{100}\right)\right]$

(c)(i) Method 1

Cubing positive numbers preserves order, since $y = x^3$ is monotonically increasing for all x > 0.

That is, if 0 < a < b then $a^3 < b^3$.

Call this result (*)

Given that $k \ge 4$

$$\Rightarrow k > 2.27$$

$$\Rightarrow k > \frac{1}{\sqrt[3]{3} - 1}$$

Students tended to do these side calculations as part of the induction structure and got $\Rightarrow \sqrt[3]{3}k - k > 1$ themselves very confused.

$$\Rightarrow \sqrt[3]{3}k > k+1 \quad \text{use result (*)}$$

$$\Rightarrow 3k^3 > (k+1)^3$$
 Call this result (**)

Prove $3^n > n^3$ for n = 4.

$$RHS = 4^3$$
 $LHS = 3^4$ $= 64$ $= 81$

> RHS

Assume for n = k. $3^k > k^3$

Prove for n = k + 1.

$$3^{k+1}=3\times 3^k$$

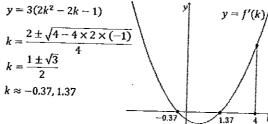
 $3^{k+1} > (k+1)^3$

Required to prove

 $> 3k^3$

by assumption

 $> (k+1)^3$ by result (**)


Therefore by the principle of mathematical induction $3^n > n^3$ for all $n \ge 4$.

(c)(i) Method 2

Most students that gained full marks for this question used this method.

Let
$$f(k) = 2k^3 - 3k^2 - 3k - 1$$

then $f'(k) = 6k^2 - 6k - 3$

then $f'(k) = 6k^2 - 6k - 3$

So for $k \ge 4$, f'(k) > 0.

That is f(k) is an increasing function for $k \ge 4$.

$$f(4) = 2(4)^3 - 3(4)^2 - 3(4) - 1$$

f(4) = 67

At k = 4, f(k) is positive and f(k) is an increasing function for $k \ge 4$. So f(k) > 0 for $k \ge 4$. Call this result (†)

Prove $3^n > n^3$ for n = 4.

$$RHS = 4^{3}$$
 $LHS = 3^{4}$
= 64 = 81
> RHS

Assume for n = k.

$$3^k > k^3$$

Required to prove Prove for n = k + 1. $3^{k+1} > (k+1)^3$

$$3^{k+1} - (k+1)^3 = 3 \times 3^k - (k^3 + 3k^2 + 3k + 1)$$

$$> 3k^3 - k^3 - 3k^2 - 3k - 1$$
 by assumption
$$= 2k^3 - 3k^2 - 3k - 1$$

$$= f(k)$$

$$> 0$$
 for $k \ge 4$ by result (†)

So
$$3^{k+1} - (k+1)^3 > 0$$

That is
$$3^{k+1} > (k+1)^3$$

Therefore by the principle of mathematical induction $3^n > n^3$ for all $n \ge 4$.

```
(c)(i) Method 3
```

Prove $3^n > n^3$ for n = 4.

$$RHS = 4^3$$
 $LHS = 3^4$
= 64 = 81
> RHS

Nobody used this method correctly, you must break the algebra down to obviously true statements.

Assume for n = k.

$$3^k > k^3$$

That is
$$3^k - k^3 > 0$$

Prove for
$$n = k + 1$$
.

Required to prove
$$3^{k+1} > (k+1)^3$$

$$3^{k+1} - (k+1)^3 = 3 \times 3^k - (k^3 + 3k^2 + 3k + 1)$$

$$= 3(3^k - k^3) + 2k^3 - 3k^2 - 3k - 1$$

$$= 3(3^k - k^3) + (k^3 - 3k^2 + 3k - 1) + (k^3 - 6k)$$

$$= 3(3^k - k^3) + (k - 1)^3 + k(k^2 - 6)$$

Now $3(3^k - k^3)$ is positive by assumption,

and
$$(k-1)^3$$
 is positive since $k \ge 4$,

and
$$k(k^2 - 6)$$
 is positive since $k \ge 4$,

So
$$3^{k+1} - (k+1)^3 > 0$$

That is
$$3^{k+1} > (k+1)^3$$

Therefore by the principle of mathematical induction $3^n > n^3$ for all $n \ge 4$.

(ii) Method 1 Method 2
$$3^{n} > n^{3} \qquad 3^{n} > n^{3}$$
$$(3^{n})^{\frac{1}{3n}} > (n^{3})^{\frac{1}{3n}} \qquad \log(3^{n}) > \log(n^{3})$$
$$3^{\frac{1}{3}} > n^{\frac{1}{n}} \qquad n\log(3) > 3\log(n)$$
$$\frac{3}{\sqrt{3}} > \sqrt[n]{n} \qquad \frac{1}{3}\log(3) > \frac{1}{n}\log(n)$$
$$\log(\sqrt[3]{3}) > \log(\sqrt[n]{n})$$
$$\log(\sqrt[3]{3}) > \log(\sqrt[n]{n})$$
$$\sqrt[3]{3} > \sqrt[n]{n}$$