

2012 Trial Examination

FORM VI MATHEMATICS EXTENSION 1

Thursday 9th August 2012

General Instructions

- Writing time 2 hours
- Write using black or blue pen.
- Board-approved calculators and templates may be used.
- A list of standard integrals is provided at the end of the examination paper.

Total -- 70 Marks

• All questions may be attempted.

Section I - 10 Marks

- Questions 1-10 are of equal value.
- Record your solutions to the multiple choice on the sheet provided.

Section II -60 Marks

- Questions 11-14 are of equal value.
- All necessary working should be shown in every question.
- Start each question in a new booklet.

Checklist

- SGS booklets 4 per boy
- Multiple choice answer sheet
- Candidature 128 boys

Collection

- Write your candidate number clearly on each booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Place your multiple choice answer sheet inside the answer booklet for Question Eleven.
- Write your candidate number on this question paper and submit it with your answers.

Examiner

SO/MLS

SGS Trial 2012 Form VI Mathematics Extension 1 Page 14

The following list of standard integrals may be used:

$$\int x^n \, dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1; \ x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} \, dx = \ln x, \ x > 0$$

$$\int e^{ax} \, dx = \frac{1}{a} e^{ax}, \ a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \ a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \ a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \cot ax, \ a \neq 0$$

$$\int \frac{1}{a^2 + x^2} \, dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} \, dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} \, dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \ x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} \, dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

$$\text{NOTE: } \ln x = \log_e x, \ x > 0$$

SGS Trial 2012 Form VI Mathematics Extension 1 Page 2

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

What is the remainder when $P(x) = x^2 + 5x + 7$ is divided by (x+3)?

1

- (A) $-\frac{109}{9}$
- (B) 19 9
- (C) 31
- (D) 1

QUESTION TWO

The point R divides the interval joining P(a, 2b) and Q(3a, -b) externally in the ratio 2:3. $\boxed{1}$ What are the coordinates of R?

- (A) (-3a, 8b)
- (B) $\left(\frac{11a}{5}, \frac{4b}{5}\right)$
- (C) (7a, -7b)
- (D) $\left(\frac{9a}{5}, \frac{8b}{5}\right)$

QUESTION THREE

The term independent of x in the expansion of $\left(x+\frac{2}{x}\right)^6$ is:

1

- (A) 160
- (B) 80
- (C) 40
- (D) 20

QUESTION FOUR

A simplified expression for $\binom{n+1}{n-1}$ is:

SGS Trial 2012 Form VI Mathematics Extension 1 Page 3

$$(A) \quad \frac{1}{2}(n^2-n)$$

(B)
$$\frac{1}{2}(n^2+n)$$

(C)
$$n^2 - n$$

(D)
$$n^2 + n$$

QUESTION FIVE

It is given that x_1 is a good approximate solution of $\cos x = x$. Using one step of Newton's method, a better approximation is:

(A)
$$x_2 = x_1 - \frac{\cos x_1 + x_2}{\sin x_1 + 1}$$

(B)
$$x_2 = x_1 - \frac{\cos x_1 - x_1}{\sin x_1 - 1}$$

(C)
$$x_2 = x_1 + \frac{\cos x_1 - x_1}{-\sin x_1 + 1}$$

(D)
$$x_2 = x_1 + \frac{\cos x_1 - x_1}{\sin x_1 + 1}$$

1

SGS Trial 2012 Form VI Mathematics Extension 1 Page 4

QUESTION SIX

Which diagram best represents $P(x) = (x - a)^2(b^2 - x^2)$, where a > b?

(A)

(B

(C)

(D)

1

QUESTION SEVEN

What is the inverse function of $f(x) = \frac{5 + e^{2x}}{3}$?

3

(C)
$$\frac{1}{2}\ln(3x-5)$$

(D)
$$\frac{1}{2}\ln(5x-3)$$

SGS Trial 2012 Form VI Mathematics Extension 1 Page 5

QUESTION EIGHT

Consider the polynomial $P(x) = x^4 + ax^3 + bx^2 + cx + d$, where a, b, c and d are real numbers. One of the zeros of this polynomial is 1. What is the value of a + b + c + d?

$$(A) -1$$

(B)
$$-1 - \alpha^2$$

(C)
$$-2-\alpha$$

QUESTION NINE

An expression for the general solution to the trigonometric equation $\tan 3x = -\sqrt{3}$ is:

(A)
$$x = \frac{n\pi}{3} - \frac{2\pi}{9}$$
 where *n* is any integer

(B)
$$x = \frac{n\pi}{3} + \frac{\pi}{3}$$
 where *n* is any integer

(C)
$$x = \frac{n\pi}{3} - \frac{\pi}{3}$$
 where *n* is any integer

(D)
$$x = \frac{n\pi}{3} + \frac{2\pi}{9}$$
 where *n* is any integer

QUESTION TEN

A ball is thrown into the air from a point O, where x=0, with an initial velocity of 25 m/s at an angle $\theta=\tan^{-1}\frac{3}{4}$ to the horizontal. If air resistance is neglected and the acceleration due to gravity is taken as -10 m/s², then the ball reaches its greatest height after:

- (A) 1.5 seconds
- (B) 15 seconds
- (C) $\frac{2}{3}$ of a second
- (D) 3 seconds

End of Section I

SGS Trial 2012 Form VI Mathematics Extension 1	Page 6
SECTION II - Written Response	
Answers for this section should be recorded in the booklets provided. Show all necessary working. Start a new booklet for each question.	
QUESTION ELEVEN (15 marks) Use a separate writing booklet.	Marks
(a) Factorise $a^3 + 27b^3$.	1
(b) Differentiate $\sin^{-1} 5x$.	1
(c) Find $\int \frac{dx}{36+x^2}$.	1
(d) Evaluate $\int_0^{\pi} \sin^2 x dx$.	2
(e) Find $\int x\sqrt{2+x^2} dx$ using the substitution $u=2+x^2$.	2
(f) Solve $\frac{4}{x+1} < 3$.	2
(g) The variable point $(3t,4t^2)$ lies on a parabola. Find the Cartesian equation parabola.	of this 2
(h) Find the coefficient of x^4 in the expansion of $(3+x^2)^5$.	2
(i) Prove that $\tan(\frac{\pi}{4} + x) = \frac{\cos x + \sin x}{\cos x - \sin x}$, where $\cos x - \sin x \neq 0$.	2

Exam continues next page ...

SGS Trial 2012 Form VI Mathematics Extension 1 Page 7

QUESTION TWELVE (15 marks) Use a separate writing booklet.

Marks

(a) Evaluate $\lim_{x\to 0} \frac{2\sin 3x}{5x}$.

In the diagram above, AB and CD are intersecting chords. The tangent at B is a parallel to CD.

Copy this diagram into your exam booklet. Let $\angle XBC = \alpha$.

Prove that AB bisects $\angle CAD$.

(b)

HMAS Tarakan is enroute to carry out its latest mission in Cairns. It is first observed from the top of a 200 m cliff, AB at an angle of depression of 8° when it is at the point Q. Ten minutes later it is observed at point P with an angle of depression of 11°. Let $\angle PBQ = \theta$. The bearing of Q from B is 130° T and the bearing of P from B is 210° T.

- (i) Show that $PQ^2 = 200^2 (\tan^2 79^\circ + \tan^2 82^\circ 2 \tan 79^\circ \tan 82^\circ \cos \theta)$.
- (ii) Find the speed of HMAS Tarakan in km/h correct to three significant figures.

Exam continues overleaf ...

2

SGS Trial 2012 Form VI Mathematics Extension 1 Page 8

QUESTION TWELVE (Continued)

- (d) (i) Show that $\frac{d}{dx} (e^{4x}(\cos x 4\sin x)) = -17e^{4x}\sin x$.
 - (ii) Hence find $\int e^{4x} \sin x \, dx$.
- (e) The rate at which a body warms in air is proportional to the difference between its temperature T and the constant temperature A of the surrounding air. This rate can be expressed by the differential equation $\frac{dT}{dt} = k(T-A)$ where t is the time in minutes and k is a constant.
 - (i) Show that $T = A + Be^{kt}$, where B is a constant, is a solution of the differential equation.
 - (ii) An object warms from 5°C to 15°C in 20 minutes. The temperature of the surrounding air is 25°C. Find the temperature of the object after a further 50 minutes have elapsed. Give your answer to the nearest degree.

SGS Trial 2012 Form VI Mathematics Extension 1 Page 9

QUESTION THIRTEEN (15 marks) Use a separate writing booklet.

(a) The polynomial $P(x) = ax^3 - 3x - 1$ has a remainder of -27 when divided by (x+2).

The polynomial
$$F(x) = ax - 5x - 1$$
 has a remainder of -27 when divided by $(x+2)$.

(ii) Show that
$$(x-1)$$
 is a factor of $P(x)$.

(iii) Hence factorise P(x) fully and sketch the curve y = P(x) showing clearly all intercepts with the axes.

Marks

1

1

2

(b) Use the principle of mathematical induction to show that $n^3 + 2n$ is divisible by 3 for all positive integers n.

A, B, C, P, Q and R are points on a circle such that $\angle ABC$ and $\angle PQR$ are right angles.

Copy this diagram into your answer booklet.

(i) Show that a = 4.

(i) Explain why
$$PR = CA$$
.

(ii) Prove that
$$AP$$
 is equal and parallel to CR .

(d) Consider the identity of $(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$.

(i) Show that
$$1 - \binom{n}{1} + \binom{n}{2} - \binom{n}{3} + \ldots + (-1)^n = 0$$
.

(ii) Show that
$$1 + \frac{1}{2} \binom{n}{1} + \frac{1}{3} \binom{n}{2} + \dots + \frac{1}{n} \binom{n}{n-1} = \frac{2(2^n - 1)}{n+1}$$
.

SGS Trial 2012 Form VI Mathematics Extension 1 Page 10

QUESTION FOURTEEN (15 marks) Use a separate writing booklet.

Mark

(a)

A conical vessel has height 20 cm and radius 20 cm. Water is poured into this vessel at a constant rate of 24 cm^3 per second. The depth of water is h cm at time t seconds.

(i) Show that the volume can be written $V = \frac{1}{3}\pi h^3$.

1

- (ii) What is the rate of increase of the cross-sectional area A of the surface of the liquid when the depth is 16 cm?
- (b) A particle moves along the x-axis starting at x=0.5. Its velocity, v metres per second, is described by $v=\sqrt{6x}\,e^{-x^2}$, where x is the displacement of the particle from the origin.
 - (i) Find the acceleration of the particle as a function of x.

2

(ii) Find the maximum speed attained by the particle.

2

(iii) Show that T, the time taken to travel from x = 1 to x = 3, can be expressed as

 $T = \frac{1}{\sqrt{6}} \int_{1}^{3} x^{-\frac{1}{2}} e^{x^{2}} dx.$

Do NOT evaluate this integral.

SGS Trial 2012 Form VI Mathematics Extension 1 Page 11

(c)

Points A, B and C lie on a circle as shown above. The length of the chord AB is a constant k. The sum of the lengths of the chords CA and CB is ℓ . Suppose that $\angle ABC = \theta$ radians and $\angle BCA = \alpha$ radians.

(i) Show that
$$\ell = \frac{k}{\sin \alpha} (\sin \theta + \sin(\theta + \alpha))$$
.

(ii) Explain why α is a constant.

(iii) Show that
$$\frac{d\ell}{d\theta} = 0$$
 when $\theta = \frac{\pi}{2} - \frac{\alpha}{2}$.

1

(iv) Hence show that the maximum value of
$$\ell$$
 occurs when $\theta = \frac{\pi}{2} - \frac{\alpha}{2}$.

End of Section II

END OF EXAMINATION

. 25

Twal 03+276 = (a+36)(a-3ab+96~ M = SIN-150L SINXdx = 5

(30H)[A-3(x+1)]<0 (24)(1-32)<0y = 422 or 94 = 4022 5/2 3° (50) is term in 2 145 = ton (+ + ton) -

(0) (i) 4 = e (cosx - usinon 7-CO2- 45/11X dy = vu' + uv' = $4e^{4x}(\cos x - 4\sin x) + e^{4x}(-\sin x - 4\cos x)$ = $4e^{4x}\cos x - 16e^{4x}\sin x - e^{4x}\sin x - 4e^{6x}$ = $-17e^{4x}\sin x$ -17e sinxdx = e (cosx - 4 sinx) + C e sinadoi = - 17 e (cos 26 - 45/1006 (e)(i) T = A + Be bt dt = B Be bt Bett = T-A = &(T-A) A=25 (ii) t=0, T=55 = 25+B B = -20 So T = 25-20e At B=20, T=15 gws 15=25-200 7=25-20e (-0) ~ 22°

(13, $P(x) = ax^{3} - 3x - 1$ p(-2) = -8a +6-1 =-27 $P(x) = 4x^{2} - 3x - 1$ P(1) = 4 - 3 - 1 = 0 $4x^{2} - 0x^{2} - 3x -$ 423-422 422-32 MOW 452 +4x+1 = Cxx + 1/2x + D 50 4x3-3x-1 = (x-1)(2x+1)(2x+1

(i) PR and CA subtend nightangles of the circumference, 50 they are both drag and therefores agreal. low, (b+1) +2(b+1) = b3+ there are many acres to

 $\binom{n}{o}\chi^o + \binom{n}{i}\chi^i + \binom{n}{2}\chi^2 + \binom{n}{3}\chi^2 + \cdots + \binom{n}{n}\chi^i$ But (b) = (n) = 1. 0=1-(1)+(2)-(3)+...(1) (ii) integrate both sides of the expansion. (1+x)n+1 = (n)x+ \(\frac{1}{2}\left(\frac{1}{2}\right)\chi^2 + \frac{1}{3}\left(\frac{1}{2}\right)\chi^2 + \frac{1}{4}\left(\frac{1}{3}\right)\chi^4 + \fr + n+1 (n) x n+1 Find B: let x = 0 then 1 = 0+0+0+....+ b. 2nd (+2) m = (0) x + 2(1)2 + 3(2) x + 4(3)x + ... ~ / (n-) 2 + / (n) x + / A+ x=1 2 = 1 + 2(1) + 3(2) + 4(1) + ... + h (4) 2(2)-1)=1+=(1)+=(1)+=(1)+=(1)+...+(1)

014 = カナント = dA dh dk V = 371 h 50 dv = 11 h2 SO dA = aTh A = #62 dA = 27th × The × 24 $\frac{dA}{dt} = \frac{2}{16} \times 24$ $= 3 \text{ cm}^2 \text{ per sec}$ 7=16,

v = 16x

 $\frac{d\theta}{d\theta} = \frac{1}{8} \left(-\sin\theta - \sin(\theta + \omega) \right) = -1$ since 100, this means that dil < 0