Trial Higher School Certificate Examination

2013

Mathematics

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using blue or black pen
- · Begin each question in a new booklet
- · Write your student number on each
- · Board-approved calculators may be used.
- · A table of standard integrals is provided at the back of this paper.
- · Show all necessary working in Questions 11 - 16.
- Diagrams are not to scale.
- · The mark allocated for each question is listed at the side of the question.

Total Marks - 100

Section I - Pages 2 - 4

10 marks

- Attempt Questions 1 10 using the answer sheet provided at the end of the paper
- Allow about 15 minutes for this section

Section II - Pages 5 - 10 90 marks

- Attempt Questions 11 16
- · Allow about 2 hours 45 minutes for this section

STANDARD INTEGRALS
$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx \qquad = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$$

NOTE: $\ln x = \log_a x$, x > 0

Section I

10 marks

Attempt Questions 1 to 10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

- 1. If the line 4x ky = 6 passes through the point (-1, -2). The value of k is:
 - (A) -1
 - (B) 1
 - (C) -5
 - (D) 5
- 2. A parabola with equation $(x-2)^2 = 8(y+4)$ has its focus at the point:
 - (A) (2,-4)
 - (B) (2,-2)
 - (C) (4, -4)
 - (D) (4,-2)
- 3. From a block of clay exactly 10 statues can be made. If the linear dimensions of the statues are all halved then the number of smaller statues that can be made is:
 - (A) 10
 - (B) 20
 - (C) 40
 - (D) 80

(A) 44°

(B) 68°

C. 24°

D. 112°

If $AB \parallel CD$, ED = FD

and $\angle DFG = 112^{\circ}$ then $\angle BED = 112^{\circ}$

Section I (cont'd)

Marks

5. Which graph best illustrates y = x(x-1)(2-x)

(A)

(B)

(C)

(D)

- 6. $y = 4\sin\frac{1}{2}x$ has amplitude and period of
 - (A) 4, $\frac{1}{2}$
 - (B) 4, 2π
 - (C) $\frac{1}{2}$, 4
 - (D) 4, 4π
- 7. A particle moves according to the rule $x = \frac{1}{2}t^2 4t + c$ where x is the displacement from the origin after t seconds. Initially the particle is 8 metres from the origin. When the particle is at rest its displacement from the origin is:
 - (A) 0 metres
 - (B) 4 metres
 - (C) 8 metres
 - (D) 16 metres

Section I (cont'd)

Marks

Which of the following is true at x = a

- (A) f'(a) > 0 and f''(a) < 0
- (B) f'(a) > 0 and f''(a) > 0
- (C) f'(a) < 0 and f''(a) < 0
- (D) f'(a) < 0 and f''(a) > 0

The shaded region is best described by the inequality.

- (C) $2x y 4 \le 0$ -
- (D) $2x y 4 \ge 0$
- 10. The perpendicular distance from the line 3x y = 4 and the point (2, 1) is given by:
- (B) $\frac{9}{\sqrt{10}}$ (C) $\frac{1}{\sqrt{5}}$ (D) $\frac{1}{\sqrt{10}}$

Section II

90 Marks

Attempt Questions 11 - 16

All about 2 hours and 45 minutes for this section

Answer each question in the appropriate writing booklet. Extra writing booklets are available,

In Questions 11 – 16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 - Start A New Booklet - (15 marks)

Marks

a) Evaluate
$$\frac{1.9^3-18}{\sqrt{2.1^4-0.8^3}}$$
 to 2 decimal places.

Solve $|4-2x| \leq 6$

2

- Express as a single fraction with a rational denominator $\frac{1}{2-\sqrt{3}} + \frac{1}{2\sqrt{2}+3}$
- Differentiate $x^3 \ln x$

2

Solve $\tan \theta = \sqrt{3}$ for $0 \le \theta \le 2\pi$

2

Factorise $125 - 8p^3$

Find the primitive of $\frac{6-3x^2}{x^2}$

2

Question 12 - Start A New Booklet - (15 marks)

Marks

Evaluate $e^{3.7}$ correct to 4 significant figures.

2

AB is an arc of the circle centre O.

 $OA = 16 \text{ cm} \text{ and } \angle AOB = \frac{\pi}{2}$.

Find the exact area of the sector AOB

If

$$f(x) = \begin{cases} x+2 & \text{for } x \le -2\\ 4-x^2 & \text{for } -2 < x < 2\\ 3x-6 & \text{for } x \ge 2 \end{cases}$$

Evaluate f(3) + f(0) - f(-2)

Solve $3^{2x} - 6(3^x) - 27 = 0$

2

- The first term of an arithmetic series is 5 and the 10th term is 4 times the
 - second. Find the common difference.

Prove $AB \parallel CD$, stating all reasons.

Find $\frac{d}{dx} \log_e(\cos x)$, and hence find $\int \tan x \ dx$

Question 13 - Start A New Booklet - (15 marks)

Marks

The points A, B and C have co-ordinates (1,0), (0,8) and (7,4) as shown on the diagram. The angle between CA and the positive x-axis is θ° .

- Find the gradient of CA
- (ii) Calculate the size of θ , to the nearest degree.
- (iii) Find the equation of CA
- (iv) Find the coordinates of D, the midpoint of $CD \otimes A$.
- Show $CA \perp BD$
- (vi) Calculate the area of $\triangle ABC$
- Prove $2\cos^2\theta + 1 = 3 2\sin^2\theta$
- Differentiate with respect to x
- Integrate xe^{x^2}

1

2

\1

Question 14 - Start A New Booklet - (15 marks)

Marks

1

1

2

2

2 .

1

2

a)

Ship A sails 20 nautical miles from Port P on a bearing of 035°. Ship B is 36 nautical miles from Port P on a bearing of 110°.

- Copy the diagram into your answer booklet and mark on it all the given information.
- (ii) Show $\angle APB = 75^{\circ}$
- (iii) Use the cosine rule to determine the distance between the two ships, to the nearest nautical mile.
- State the domain and range of $y = \sqrt{1-x}$
- The gradient function of a curve is given by f'(x) = 2(x-1)(x+4) and the curve passes through the point (0,8)
 - Find the equation of f(x)
 - (ii) Sketch the curve clearly labelling turning points and the y-intercept.
 - For what values of x is the curve concave up?

Consider the function

$$y = \ln(x - 3) \quad x > 3$$

- Sketch the function, showing its essential features.
- (ii) Use Simpson's Rule with 3 function values to find an approximation to 2

$$\int_{1}^{6} \ln (x-3) \ dx$$

Que	estion	. 15 – Start A N
a)	The	first three ter
	(i)	Find the 40 th
	(ii)	Calculate the
b)		article moves n by:
	whe	ere t is measu
	(i)	What is the d
((ii)	Show that <i>x</i> and accelerat
	(iii)	Is the particle
->	. ml	nonulation of

ew Booklet - (15 marks) Marks rms of a GP are 0.1, 0.12, 0.144 term, correct to 1 decimal place. sum of the first 40 terms, correct to 1 decimal place. in a straight line so that its displacement, in metres, is ired in seconds. displacement when t=0 $x = 1 - \frac{5}{t+1}$, and hence find expressions for the velocity tion in terms of t e ever at rest? Give a reason for your answer.

The population of a certain insect is growing exponentially according to

$$N = 400e^{kt}$$

where t is the time in weeks after the insects are first counted. At the end of five weeks the insect population has doubled.

- Calculate the exact value of k.
- (ii) How many insects will there be after 8 weeks?
- (iii) At what rate is the population increasing after 5 weeks.
- Write down the discriminant of $2x^2 + 4x + k$
 - (ii) For what values of k does $2x^2 + 4x + k = 0$ have real roots.

Question 16 - Start A New Booklet - (15 marks)
--

Marks

a) (i) Find the equations of the tangent and normal to the curve with equation

$$y = 4x^2(1-x)$$

at the point (1,0).

23

- (ii) The tangent and normal cut the y-axis at A and B respectively. If the point of intersection of the tangent and the normal is C find the area of $\triangle ABC$.
- b) (i) Sketch the graphs of $y = e^{-x}$, y = x + 1 and x = 2 on the same set of axes. (1)
 - (ii) Find, by integration, the area bounded by $y = e^{-x}$, y = x + 1 and x = 2 (leave your answer in exact form)
- c). Find:
 - (i) $\lim_{x \to 3} \frac{x^2 9}{x 3}$

(1)

 $\lim_{x\to 0} \frac{\sin x}{x}$

1

d) A store offers a special deal where it will charge no interest on loans on purchases for the first year, and charge 1% per month on the balance owing each month thereafter. However, normal repayments must be made at the end of each month. Emily decides to buy a \$4000 television using the special deal.

She agrees to repay the loan over 24 equal monthly repayments of \$M. Let $\$A_n$ be the amount owing at the end of the *n*th month.

(i) Find an expression for A_1 and A_{12}

2

(ii) Show $A_{15} = (4000 - 12M)(1.01)^3 - M(1 + 1.01 + 1.01^2)$

1

(iii) Find the value of M

2

2013 Trial Higher School Certificate Examination Mathematics

Mathematics		
Section 1 Multiple Choice		
1. D 6. D		
2. B 7. A		
3. D 8. D		
4. A 9. A		
s. B 10. D		
1. 4x-1-kx-2=6	6. Amplitude 4	
-4 + 2k = 6	Period = 217 1/2	
2k = 10	1/2	
k = 5	= 477	
2. \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7. When t=0 x=8	
a = 2	8:0-0+0	
F(2,-2)	$x = \frac{1}{2}t^2 - 4t + 8$	
(2,-4)	$\dot{x} = t - 4$	
$3. V = \left(\frac{1}{2}\right)^3$ of original	At rest when t=4	
= 1/8 of original	$x = \frac{1}{2} \times 4^{2} - 4 \times 4 + 8$	
:. # of statues : 8×10=80	= 0	
. # of statues : 0 XIU = 80		
4. LDFE = 180°-112°	8. Negative gradient f'(a) 40 Concave up f"(a) >0	
= 68°	Concave up f"(a)>0	
LDEF = 68°	•	
: x+68=112	q. Test (0,0) ⇒ A	
z = 44		
	10. $d = 3 \times 2 - 1 - 4 $	
5. y=0 when z=0,1,2	132+(-1)2	
When x <0 g>0	= [6-1-4]	
: B (not A)	10	
	· /6	

Question 11	· · · · · · · · · · · · · · · · · · ·
(a) -2.5602295	(f) $125 - 8p^3$
=-2.56 (2dp)	$ \frac{(f)}{(f)} \frac{125 - 8p^3}{(5 - 2p)(25 + 10p + 4p^2)} $
(b) 4-2x < 6	(g) Primitive of 6-3x2
-6 \ 4-2x \ 6	λ
-10 ≤ -2x ≤ 2	$= \int 6x^2 - 3 dx$
5 > x > -1	
-1 ≤ x ≤ 5	$= 6x^{-1} - 3x + c$
	(
(c) $\frac{1}{2-\sqrt{3}}$ $\frac{2\sqrt{5}+3}{2\sqrt{5}+3}$	=6 - 3x + c
5-43 3/2+3	×.
$= \frac{1}{2-\sqrt{3}} \times \frac{2+\sqrt{3}}{2+\sqrt{3}} \times \frac{1}{2\sqrt{2}+3} \times \frac{2\sqrt{2}-3}{2\sqrt{2}-3}$	
2-13 2+13 212+3 212-3	
= 2+√3 ₊ 2√2 - 3 4 - 3 8 - 9	
4-3 8-9	
= 2+3 + 212-3	
T V	
= 2+13-252+3	
= 5+13-212	
$\frac{d}{dx} \frac{d(x^3 \ln x)}{dx}$	
007-	
$= 3x^2 \cdot \ln x + x \cdot \frac{1}{x}$	
~	
$= 3x^2 \ln x + x^2$	
(e) $\tan \theta = \sqrt{3}$ $0 \le \theta \le 2\pi$	
$\theta_{\text{acute}} = \frac{\pi}{3}$	
(e) $\tan \theta = \sqrt{3}$ $0 \le \theta \le 2\pi$ $\theta_{\text{acute}} = \frac{\pi}{3}$ $\theta = \frac{\pi}{3}, \pi + \frac{\pi}{3}$	
2 Tr 4TT	
3 ′ 3	

Question Q	O
BURSI107 12	Question 13 $BD = \sqrt{(0-4)^2 + (8-2)^2}$
(a) e ³⁻⁷ :. 5+9d=4(5+d)	(a)(i) Grad CA = 4-0 = 152
= 40-447304 = 20+4d	7-1 Area AABC = 2 x 152 x 152
= 40.45 (4 sig figs) Sol = 15	= 4 = 26 units
d = 3	= 2 3 (.) \(\(\(\frac{7}{3} \) \(\frac{7}{3} \) \(\(\frac{7}{3} \) \(\frac{7}{3} \) \(\(\frac{7}{3} \) \(\frac{7}{3} \) \(\frac{7}{3} \) \(\frac{7}{3} \) \(\(\frac{7}{3} \) \(\frac{7}
(L) A = \(\frac{1}{2} \cap ^2 \theta \)	$\frac{3}{(c)(i)} \frac{d(2e^{2}-3)}{dx}$
= \(\frac{1}{x} \frac{17}{3} \text{(f) \(\text{LABE} = 180^{\circ} - (85^{\circ} + 50^{\circ}) \)	
= 1287 (angle sum of a triangle)	(ii) $\tan \theta = \frac{2}{3}$ = $6(2e^{x}-3)^{5}$. $2e^{x}$
3 = 45°	$\frac{\partial}{\partial z} = \frac{34^{\circ} (\text{nearest})}{\text{degree}} = 12e^{\times} (2e^{\times} - 3)^{\circ}$
Area is $\frac{12877}{3}$ cm ² : LABE = LECD	degree-)
· = 45°	(ii) $d(\frac{x^2}{\sin x}) = 2x \sin x - x^2 \cos x$ (iii) Equation of CA dx $(\sin x)^2$
(c) f(3)+f(0)-f(-2) : AB IICD (alternate angles	(iii) Equation of CA dx (sinx)2
$= 3x3-6 + (4-0^2)-(-2+2)$ are equal)	$y - O = \frac{2}{3}(x - 1)$ $= 2x \sin x - x \cos x$
= 3 +4-0	y = 2 x - 2 Sin x
= 7 (g) d loge (cosx) = 1 -sinx	
UK LOSX	(b) LHS = 2005 D+ 1
(d) $3^{2x} - 6(3^x) - 27 = 0 = -\tan x$	(IV) Midpoint CA = $(1+7, 0+4)$ = $2(1-\sin\theta)+1$
Let $m = 3^{\infty}$	= 2-2sin 0 +1
$m^2-6m-27=0$:. $\int tan x dx = -log_e(cosx)$	$D = (4,2)$ $= 3 - 2\sin\theta$
(m-9)(m+3) = 0	- RHS.
m = 9, -3	(v) Grad BD = $8-2$
$3^{x} = 9^{x} = 3^{x} = -3$	$\frac{0-4}{6} \qquad (d) \int x e^{x} dx = \frac{1}{2} \int 2x e^{x^{2}} dx$
oc = 2 no solution	$= \frac{6}{-4}$ $= -\frac{3}{2}$ $= \frac{1}{2}e^{-\frac{1}{2}} + e^{-\frac{1}{2}}$
since 3 ^x >0	
for all x.	Grad BD x Grad CA = 2 x-3
∴ x = 2	
	=-/
(e) Let d be the common diff	:. BD LCA
$t_2 = a + d$	$(\omega) A C = (2 \lambda^2 \cdot (4 \lambda)^2)$
= 5+d	$(vi) AC = \sqrt{(7-1)^2 + (4-0)^2}$
t10 = a+9d	= 152
25+9d	

Question 15	(iii) (5) > 0 for all values of t
(a) a=0.1 r=1.2	and hence v +0, ie particle
	is never at rest.
(i) $t_{40} = ar^{39}$	
= 0-1 × 1-2 39	(c) N = 400e ^{kt}
= 122-480	(i) When t=0 N=400e°=400
= 122-5 (Idp)	When t=5 N=2x400=800
(ii) $S_{40} = a(r^{40}-1)$: 800 = 400e ^{5k} e ^{5k} = 2
• - 1	5k = loge 2
$=\frac{0\cdot l(1\cdot 2^{+0}-l)}{l*2-l}$	$k = log_{e2}$
= 734 · 3875	õ
= 734·4 (Idp)	(ii) When t = 8 N = 400e 8632 = 400 e
• • •	- 1100 a 8 by 2
(b) (i) $\chi = \frac{t-4}{t+1}$	= /2/2·57
When $t=0$ $x=\frac{-4}{1}$:. There will be 1213 insects after 8weeks
Displacement is -4m	The second of the forest
,	(iii) $\frac{dN}{dt} = 400 k e^{kt}$
(ii) $1 - \frac{5}{5+1} = \frac{5+1-5}{5+1}$	= kN
= 4-4	When t = 5 N = 800
$= \frac{\xi - 4\xi}{4 + 1}$ $\therefore \mathcal{X} = \left[-\frac{5}{\xi + 1} \right]$	dN = 10ge2 x 800
	=-110-903
OR <u>t-4</u> = <u>t+1-5</u> ++1 (t+1)	Population is increasing at a rate
= \frac{\xi + 1}{\xi + 1} \frac{\xi + 1}{\xi + 1}	of III insects (week.
= \frac{\xx+1}{\xx+1} \frac{\xx}{\xx+1} \frac{\xx}{\xx+1} \xx \qua	
	(d) (i) $\Delta = 4^2 - 4 \times 2 \times k = 16 - 8k$
$V=\dot{\chi}=\frac{d}{dt}\left(1-S(t+i)^{-1}\right)$	
= +5(t+1) 2 1	(ii) 2x2+4ic+k = 0 hasreal
= 5	roots when 170
d5(t+1)-2	16-8k > 0
L- K - dt	8k = 16
$=-10(t+1)^{-3}$.	k 4 2
$= \frac{-10}{(\xi + 1)^3}$	·
(=+1)	


```
(iii) By the same pattern
        A24 = (4000-12M) x1.01 2-Mx1.01 -Mx1.01 - M
             = (4000 - 12M) x 1.01" - M(1+1.01+1.01"+... +1.01"
             = (4000-12M)x1.01"-M.1(1.01"-1)
      If loan repaid after 24 months than Az4 = 0
         O = (4000 - 12M)_{\times} 1.01^{12} - M(1.01^{12} - 1)
        100m (1.01'2-1) = (4000-12m) x 1.01'2
       100M (1.012-1) + 12M×1.012 = 4000×1.012
          M \left( 100 \left( 1.01^{2} - 1 \right) + 12 \times 1.01^{12} \right) = 4000 \times 1.01^{12}
M = 4000 \times 1.01^{12}
                          112×1.012-100
                       = 172.00544 . . .
         Repayments are $172 per month
```