

2015

HIGHER SCHOOL CERTIFICATE TRIAL PAPER

Mathematics

· General Instructions

- Reading time 5 minutes.
- Working time 3 hours.
- Write using black or blue pen.
- Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- · Marks may NOT be awarded for messy or badly arranged work.
- · Leave your answers in the simplest exact form, unless otherwise stated.
- Start each NEW question in a separate answer booklet.

Extension 2

Total Marks - 100

Section I

Pages 1-5

10 Marks

- Attempt Questions 1-10
- Allow about 15 minutes for this section.

Section II

Pages 6-13

90 marks

- Attempt Questions 11-16
- Allow about 2 hour and 45 minutes for this section

Examiner: P. Parker

This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate.

HSC Mathematics

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1; x \neq 0, \text{if } n < 0$$

$$\int \frac{1}{x} \, dx \qquad = \ln x, \ x \ge 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \ a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \ a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \ a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \ a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \ x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$$

NOTE: $\ln x = \log_a x$, x > 0

Section I

10 marks Attempt Questions 1-10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

- 1 Which of the following represents $\frac{6}{3+\sqrt{3}i}$ in modulus-argument form?
 - (A) $\sqrt{3} \left[\cos \left(\frac{\pi}{6} \right) + i \sin \left(\frac{\pi}{6} \right) \right]$
 - (B) $\sqrt{3} \left[\cos \left(-\frac{\pi}{6} \right) + i \sin \left(-\frac{\pi}{6} \right) \right]$
 - (C) $\sqrt{3} \left[\cos \left(\frac{2\pi}{3} \right) + i \sin \left(\frac{2\pi}{3} \right) \right]$
 - (D) $\sqrt{3} \left[\cos \left(-\frac{2\pi}{3} \right) + i \sin \left(-\frac{2\pi}{3} \right) \right]$
- 2 Which of the following is a correct expression for $\int x3^{x^2} dx$?
 - (A) $\frac{3^{x^2+1}}{x^2+1}+C$
 - $(B) \qquad \frac{3^{x^2}}{\ln 9} + C$
 - (C) $\frac{3^{x^2}}{\ln 3} + C$
 - (D) $3^{x^2} \ln 3 + C$
- Let f(x) be a continuous, positive and decreasing function for x > 0. Also, let $a_n = f(n)$. Let $P = \int_1^6 f(x) dx$, $Q = \sum_{k=1}^5 a_k$ and $R = \sum_{k=2}^6 a_k$.

Which one of the following statements is true?

- (A) P < Q < R
- (B) Q < P < R
- (C) R < P < Q
- (D) R < Q < P

4 A 12-sided die is to be made by placing the integers 1 through 12 on the faces of a dodecahedron. How many different such dice are possible?

Here we consider two dice identical if one is a rotation of the other.

- (A) 12!
- (B) $\frac{12!}{5}$
- (C) $\frac{12}{12}$
- (D) $\frac{12!}{60}$
- A particle of mass m is moving horizontally in a straight line. Its motion is opposed by a force of magnitude mk(v + v²) Newtons when its speed is v m/s and k is a positive constant. At time t seconds the particle has displacement x metres from a fixed point O on the line and velocity v m/s. Which of the following is an expression for x in terms of v?
 Let g the acceleration due to gravity.
 - $(A) \qquad \frac{1}{k} \int \frac{1}{1+v^2} \, dv$
 - (B) $-\frac{1}{k}\int \frac{1}{1+v^2} dv$
 - (C) $\frac{1}{k} \int \frac{1}{\nu (1+\nu^2)} d\nu$
 - (D) $-\frac{1}{k} \int \frac{1}{\nu (1+\nu^2)} d\nu$
- Let g(x) be a function with first derivative given by $g'(x) = \int_0^x e^{-t^2} dt$.

Which of the following must be true on the interval 0 < x < 2?

- (A) g(x) is increasing and the graph of g(x) is concave up.
- (B) g(x) is increasing and the graph of g(x) is concave down.
- (C) g(x) is decreasing and the graph of g(x) is concave up.
- (D) g(x) is decreasing and the graph of g(x) is concave down.

Which of the following sketches is a graph of $x^4 - y^2 = 2y + 1$?

(C)

(D)

- If $4x + \sqrt{xy} = y + 4$, what is the value of $\frac{dy}{dx}$ at (2, 8)?
 - (A)
 - (B)
 - (C)

9 For
$$z = a + ib$$
, $|z| = \sqrt{a^2 + b^2}$.

Let
$$\lambda = \frac{1}{2} \left(-1 + i\sqrt{3} \right)$$
.

Which of the following is a correct expression for |w|, where $w = a + b\lambda$?

(A)
$$\sqrt{(a-b)^2-ab}$$

(B)
$$\sqrt{(a-b)^2-2ab}$$

(C)
$$\sqrt{(a-b)^2 + ab}$$

(D)
$$\sqrt{(a-b)^2 + 2ab}$$

- Kram was asked to evaluate $\binom{15}{0} + 3 \binom{15}{1} + 5 \binom{15}{2} + ... + (2n+1) \binom{15}{n} + ... + 31 \binom{15}{15}$.

 When told that he should use the fact that $\binom{15}{n} = \binom{15}{15-n}$, Kram was able to write down the value. What did he write down?
 - (A)

 - (D)

Section II

90 marks

Attempt Questions 11-16

Allow about 2 hour and 45 minutes for this section

Answer each question in a NEW writing booklet. Extra pages are available

In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 Marks) Start a NEW Writing Booklet

- If z = 2 i express each of the following in the form a + ib, where a and b are real.
 - 4z 3(i)

1

 $3z^2 - 2z + 1$

2

3

3

3

3

- Evaluate $x \cos \frac{1}{2} x dx$

directrix.

The complex number z moves such that |z+2| = -Re z. Show that the locus of z is a parabola and find its focus and the equation of its

Without the use of calculus, sketch the graph of $y = x - 1 - \frac{1}{(x-1)^2}$,

showing all intercepts and asymptotes.

The region bounded by $y = x - x^2$ and y = 0 is rotated about the line x = 2. Using the method of cylindrical shells, find the volume of the solid formed.

The cross sections of S perpendicular to the x-axis are squares.

What is the volume of S?

Start a NEW Writing Booklet Ouestion 12 (15 Marks)

The graph of y = f(x) is sketched below.

Draw a separate half-page graph for each of the following functions, showing all asymptotes and intercepts.

$$y = \frac{1}{f(x)}$$

2

2

3

4

(ii)
$$y = e^{f(x)}$$

2

(iii)
$$y = f(|x| + 1)$$

A curve is defined implicitly by $\tan^{-1} x^2 + \tan^{-1} y^2 = \frac{\pi}{4}$.

Using symmetry, or otherwise, sketch the curve.

The base of a solid S is the region enclosed by the graph of $y = \ln x$, the line x = e, and the x-axis.

Question 13 (15 Marks) Start a NEW Writing Booklet

(a) A car, starting from rest, moves along a straight horizontal road. The car's engine produces a constant horizontal force of magnitude 4000 newtons. At time t seconds, the speed of the car is ν m/s and a resistance force of magnitude 40ν newtons acts upon the car.

The mass of the car is 1600 kg.

(i) Show that
$$\frac{dv}{dt} = \frac{100 - v}{40}$$

3

- (ii) Find the velocity of the car at time t.
- (b) (i) Let $T = \tan \theta$ and z = 1 + iT. Show that $z^3 = 1 - 3T^2 + i(3T - T^3)$
 - (ii) Hence find an expression for $\tan 3\theta$ only in terms of powers of $\tan \theta$.
- (c) In the diagram, AB and AC are tangents from A to the circle centre O, meeting the circle at B and C.

 AE is a secant of the circle, intersecting it and D and E with G is the midpoint of DE.

 CG produced meets the circle at F. You may assume that ABOC is a cyclic quadrilateral.

Copy the diagram to your answer sheet.

- (i) Show that AOGC is a cyclic quadrilateral
- (ii) Construct BC and BF and let $\angle ABC = \theta$. Prove that BF is parallel to AE.

Question 14 (15 Marks) Start a NEW Writing Booklet

a) The curve C has parametric equations

$$x = \frac{1}{\sqrt{(1+t^2)}}$$
 and $y = \ln(t + \sqrt{1+t^2})$ for all real t .

(i) Show that
$$\frac{dy}{dx} = -\frac{(1+t^2)}{t}$$

(ii) Show that
$$\ln\left(-t + \sqrt{1+t^2}\right) = -\ln\left(t + \sqrt{1+t^2}\right)$$

(iv) Show that the domain of C is
$$0 \le x \le 1$$
.

1

2

1

3

- (b) A box contains six chocolates, two of which are identical.

 From this box three chocolates are drawn without replacement.
 - (i) How many different selections could be made 2
 - (ii) What is the probability that a selection will include the two identical chocolates?
- (c) For what values of k does the equation $3x^4 16x^3 + 18x^2 = k$ have four real solutions?
- (d) Find the polynomial equation of smallest degree that has rational coefficients and also has $-1+\sqrt{5}$ and -6i as two of its roots.

-9-

- (a) By considering the expansion of $(1+i)^{2\pi}$ show that
 - $\sum_{k=0}^{n-1} {2n \choose 2k+1} (-1)^k = 2^n \sin\left(\frac{n\pi}{2}\right)$
- (b) In an environment without resources to support a population greater than 1000, the population P at time t is governed by

$$\frac{dP}{dt} = P(1000 - P)$$

3

3

2

3

- (i) Show that $\ln\left(\frac{P}{1000-P}\right) = 1000t + C$, for some constant C.
- (ii) Hence show that $P = \frac{1000 K}{K + e^{-1000t}}$, for some constant K.
- (iii) Given that initially there is a population of 200, determine at what time t, the population would reach 900.
- (c) Consider the real numbers $x_1, x_2, ..., x_n$, where $0 \le x_i \le 1$ for i = 1, 2, ..., n.
 - (i) Given that $(1-x_1)(1-x_2) \ge 0$, show that $2(1+x_1x_2) \ge (1+x_1)(1+x_2)$.
 - (ii) Prove by mathematical induction that

$$2^{n-1}(1+x_1\times x_2\times \cdots \times x_n) \ge (1+x_1)(1+x_2)\times \cdots \times (1+x_n)$$

for all positive integers n.

Question 16 (15 Marks) Start a NEW Writing Booklet

(a) A particle Q of mass 0.2 kg is released from rest at a point 7.2 m above the surface of the liquid in a container.

The particle Q falls through the air and into the liquid.

There is no air resistance and there is no instantaneous change of speed as O enters the liquid.

When Q is at a distance of 0.8 m below the surface of the liquid, Q's speed is 6 m/s. The only force on Q due to the liquid is a constant resistance to motion of magnitude R newtons.

Take g, the acceleration due to gravity, to be 10 ms⁻².

- Show that prior to entering the liquid that $\frac{dv}{dx} = \frac{10}{v}$.
- (ii) Hence find the speed as Q enters the liquid.
- iii) Find the value of R.

1

2

The depth of the liquid in the container is 3.6 m.

Q is taken from the container and attached to one end of a light inextensible string. Q is placed at the bottom of the container and then pulled vertically upwards with constant acceleration.

The resistance to motion of R newtons continues to act.

The diagram below shows the forces acting on Q as it is being pulled out of the container.

The particle reaches the surface 4 seconds after leaving the bottom of the container.

(iv) By resolving the forces and finding an expression for $\frac{dv}{dt}$, find the tension in the string.

Question 16 continues on page 13

Question 16 (continued)

- (b) (i) Find the coordinates of the turning points of the curve $y = 27x^3 27x^2 + 4$. 2
 - (ii) By sketching the curve, deduce that $x^2(1-x) \le \frac{4}{27}$ for all $x \ge 0$.
 - (iii) Three real numbers a, b and c lie between 0 and 1, prove that at least one of the numbers bc(1-a), ca(1-b) and ab(1-c) is less than or equal to $\frac{4}{27}$.

2

End of paper

2015

HIGHER SCHOOL CERTIFICATE TRIAL PAPER

Mathematics Extension 2 Sample Solutions

Question	Teacher
Q11	JD
Q12	PB
Q13	BD
Q14	JD
Q15	AMG
Q16	AF

MC Answers

01	В
Q2	В
Q3	C
Q4	D
Q5	В
Q6	Α
Q7	В
Q8	Α
Q9	С
Q10	C

Section I 10 marks

1 Which of the following represents $\frac{6}{3+\sqrt{3}i}$ in modulus-argument form?

(A)
$$\sqrt{3} \left[\cos \left(\frac{\pi}{6} \right) + i \sin \left(\frac{\pi}{6} \right) \right]$$

(B)
$$\sqrt{3} \left[\cos \left(-\frac{\pi}{6} \right) + i \sin \left(-\frac{\pi}{6} \right) \right]$$

(C)
$$\sqrt{3} \left[\cos \left(\frac{2\pi}{3} \right) + i \sin \left(\frac{2\pi}{3} \right) \right]$$

(D)
$$\sqrt{3} \left[\cos \left(-\frac{2\pi}{3} \right) + i \sin \left(-\frac{2\pi}{3} \right) \right]$$

$$\frac{6}{3+\sqrt{3}i} = \frac{6}{2\sqrt{3}\operatorname{cis}\frac{\pi}{6}} = \frac{3}{\sqrt{3}}\operatorname{cis}\left(-\frac{\pi}{6}\right) = \sqrt{3}\operatorname{cis}\left(-\frac{\pi}{6}\right)$$

2 Which of the following is a correct expression for $\int x3^{x^2} dx$?

(A)
$$\frac{3^{x^2+1}}{x^2+1}+C$$

$$(B) \frac{3^{x^2}}{\ln 9} + C$$

(C)
$$\frac{3^{r}}{\ln 3} + C$$

(D)
$$3^{x^2} \ln 3 + C$$

$$\int x3^{x^2} dx = \frac{1}{2} \int 2x3^{x^2} dx = \frac{3^{x^2}}{2\ln 3} + C = \frac{3^{x^2}}{\ln 9} + C$$

Alternatively using the substitution $u = x^2$

$$\int x3^{x^2} dx = \frac{1}{2} \int 2x3^{x^2} dx = \frac{1}{2} \int 3^{x} du = \frac{3^{x}}{2\ln 3} + C = \frac{3^{x^2}}{\ln 9} + C$$

3 Let f(x) be a continuous, positive and decreasing function for x > 0. Also, let $a_n = f(n)$.

Let
$$P = \int_{1}^{6} f(x) dx$$
, $Q = \sum_{k=1}^{5} a_{k}$ and $R = \sum_{k=2}^{6} a_{k}$.

Which one of the following statements is true?

(A)
$$P < Q < R$$

$$(B) \qquad Q < P < R$$

(C)
$$R < P < Q$$

$$\overline{D}$$
) $R < Q < P$

P is the exact value, Q is the upper sum since the graph is decreasing and R is the lower sum.

4 A 12-sided die is to be made by placing the integers 1 through 12 on the faces of a dodecahedron. How many different such dice are possible?

Here we consider two dice identical if one is a rotation of the other.

- (A) 12!
- (B) $\frac{12!}{5}$
- (C) $\frac{12!}{12}$
- (D) $\frac{12!}{60}$

Since each face must receive a different number, start by counting 12! ways to assign the numbers.

However, there is no order to the faces on a die; it may be rolled around into many different orientations.

If the die is placed on a table, then any of the 12 faces (say, the one with the number I assigned to it) can be rotated to the top position.

Further, even after the location of this top face is chosen, there are still 5 ways in which it might be rotated about a line through the centers of the top and bottom faces (regular pentagons). That is, adjacent to the top face there are 5 faces from which to specify one as the front face.

Consequently, there are $12 \times 5 = 60$ ways to orient any numbering of the faces. So the number of oriented numberings must be divided by 60.

Alternatively

Place the die on a surface. There are eleven possible numbers for the top face. Below are two rings of 5 faces.

There are ${}^{10}C_5$ ways of selecting numbers for the top ring which can be arranged in 4! ways. Then the remaining 5 faces can be numbered in 5! ways.

$$11 \times {}^{10}C_5 \times 4! \times 5! = \frac{11!}{5} = \frac{12!}{60}$$

A particle of mass m is moving horizontally in a straight line. Its motion is opposed by a force of magnitude $mk(\nu + \nu^3)$ Newtons when its speed is ν m/s and k is a positive constant. At time t seconds the particle has displacement x metres from a fixed point O on the line and velocity ν m/s. Which of the following is an expression for x in terms of ν ? Let g the acceleration due to gravity.

$$(A) \qquad \frac{1}{k} \int \frac{1}{1+v^2} \, dv$$

$$(B) \quad -\frac{1}{k} \int \frac{1}{1+v^2} dv$$

(C)
$$\frac{1}{k} \int \frac{1}{\nu(1+\nu^2)} d\nu$$

(D)
$$-\frac{1}{k} \int \frac{1}{\nu \left(1+\nu^2\right)} d\nu$$

Being resistance it must be B or D To get x in terms of ν then the standard

approach is $v \frac{dv}{dx}$ and so a v would get

cancelled.

∴ B

Directly:

$$mv\frac{dv}{dx} = -mk\left(v + v^3\right) \Rightarrow \frac{dv}{dx} = -k\left(\frac{v + v^3}{v}\right)$$

$$\therefore \frac{d\mathbf{r}}{d\mathbf{v}} = -\frac{1}{k} \left(\frac{1}{1+\mathbf{v}^2} \right)$$

Let g(x) be a function with first derivative given by $g'(x) = \int_0^x e^{-t^2} dt$.

Which of the following must be true on the interval 0 < x < 2?

- (A) g(x) is increasing and the graph of g(x) is concave up.
- (B) g(x) is increasing and the graph of g(x) is concave down.
- (C) g(x) is decreasing and the graph of g(x) is concave up.
- (D) g(x) is decreasing and the graph of g(x) is concave down.

As
$$e^{-t^2} > 0$$
, then $g'(x) = \int_0^x e^{-t^2} dt > 0$ i.e. $g(x)$ is increasing.

$$g''(x) = \frac{d}{dx} \left(\int_0^x e^{-t^2} dt \right) = e^{-x^2} > 0 \text{ i.e. } g(x) \text{ is concave up}$$

Which of the following sketches is a graph of $x^4 - y^2 = 2y + 1$?

(A)

(B)

 $x^4 = (y+1)$

$$\therefore y+1=\pm x^2$$

$$\therefore y = \pm x^2 - 1$$

(C)

(D)

8 If $4x + \sqrt{xy} = y + 4$, what is the value of $\frac{dy}{dx}$ at (2, 8)?

 $(A) \frac{20}{3}$

$$4 + \frac{1}{2}(xy)^{-\frac{1}{2}} \times (xy' + y) = y'$$

(B) $\frac{3}{20}$

$$\therefore 4 + \frac{1}{2} (16)^{-\frac{1}{2}} \times (2y' + 8) = y'$$

(C) $-\frac{20}{3}$

$$\therefore 4 + \frac{1}{8} \times (2y' + 8) = y'$$

$$\therefore 4 + 1 = y' - \frac{1}{4}y' \Rightarrow \frac{3}{4}y' = 5$$

(D) $-\frac{3}{20}$

$$\therefore y' = \frac{20}{3}$$

9 For z = a + ib, $|z| = \sqrt{a^2 + b^2}$.

Let
$$\lambda = \frac{1}{2} \left(-1 + i\sqrt{3} \right)$$
.

Which of the following is a correct expression for |w|, where $w = a + b\lambda$?

(A)
$$\sqrt{(a-b)^2 - ab}$$

(B)
$$\sqrt{(a-b)^2-2ab}$$

(C)
$$\sqrt{(a-b)^2+ab}$$

(D)
$$\sqrt{(a-b)^2+2ab}$$

$$a + b\lambda = a + \frac{1}{2} \left(-1 + i\sqrt{3} \right) b$$
$$= \left(a - \frac{1}{2}b \right) + i \left(\frac{\sqrt{3}}{2}b \right)$$

$$|w| = \sqrt{(a - \frac{1}{2}b)^2 + (\frac{\sqrt{3}}{2}b)^2}$$

$$= \sqrt{a^2 - ab + \frac{1}{4}b^2 + \frac{1}{4}b^2}$$

$$= \sqrt{a^2 - ab + b^2}$$

$$= \sqrt{(a^2 - 2ab + b^2) + ab}$$

$$= \sqrt{(a - b)^2 + ab}$$

- 10 Kram was asked to evaluate $\binom{15}{0} + 3\binom{15}{1} + 5\binom{15}{2} + ... + (2n+1)\binom{15}{n} + ... + 31\binom{15}{15}$.

 When told that he should use the fact that $\binom{15}{n} = \binom{15}{15-n}$, Kram was able to write down the value. What did he write down?
 - (A) 2^{15}
 - (B) 2^{16}
 - (C) 2¹⁵
 - (D) 2³¹

Adding the reverse sum

$$\frac{\binom{15}{0} + 3\binom{15}{1} + 5\binom{15}{2} + \dots + (2n+1)\binom{15}{n} + \dots + 31\binom{15}{15}}{31\binom{15}{15} + 29\binom{15}{14} + 27\binom{15}{2} + \dots + (31-2n)\binom{15}{15-n} + \dots + \binom{15}{0}}{15-n}$$
Now use the fact that $\binom{15}{n} = \binom{15}{15-n}$ i.e. $\binom{15}{0} = \binom{15}{15}$; $\binom{15}{1} = \binom{15}{14}$; ...

$$\therefore 2 \times \text{Sum} = 32 \times \left[\binom{15}{0} + \binom{15}{1} + \binom{15}{2} + \dots + \binom{15}{n} + \dots + \binom{15}{15} \right]$$

$$= 32 \times 2^{15}$$

$$= 2^{20}$$

Q11.
$$3=2-i$$

Q1 $423=4(2-i)-3$
 $=5-4i$

I mark. No fnoblems

$$33^{2}-23+1=3(2-i)^{2}-2(2-i)+1$$

$$=3(4-4i+i)^{2}-4+2i+1$$

$$=3(3-4i)+2i-3$$

I marks, A small number of students and swarded for error corned shrough.

LIATE. Let u=x dv=con z da

du=dx v=2sin z

= 2a m = + 4cm =]"

= 277-4 3 marks

Wrong use of limits -1

None use of limits 2

$$\sqrt{(\alpha+1)^2+\eta^2}=-2$$

$$y^{2} = -4x - 4$$

$$= 4(-1)(2+1)$$

Parabola, vertex (-1,0)

c) Continued (3 marks)

Focal length is -1
This gaies focus
as (-2,0)
end directors the
y exis =0.

At least 20 students wrote (4+2)²=2+21+t and finished up with a²=-21-4.

Being which locate the fours et (5/2,0) and directoris at 2=-3/2 were while to stone 2 marks

Marks awarded were Identifying paraleta !
Focus !
Operation !

Internefle !
Any oftwees!
Grofh!

Generally well done. Quite a few students went into two much detach when only a sketch was required.

 $\Delta \sqrt{\approx} 2\pi r y \Delta x$ $\sqrt{=\int_{0}^{2} 2\pi (2-z) (z-x^{2}) dx}$ $= 2\pi \int_{0}^{2} (2z-3x^{2}+z^{3}) dx$ $= 2\pi \left[x^{2}-x^{2}+\frac{1}{4}x^{4}\right]_{0}^{1}$

NOTES Many students used encorrect value of t (11/2 marks)

2 marks for misting IT

2 marks for unple mestake consided through

Correct using the wrong limits 2 marks

Small errors -1/4 each.

Question specifically asked for shell nethod.

No marks for volume by slicing.

COMMENT

COM

(b) (1)
$$\tan^{-1} x^{2} + \tan^{-1} y^{2} = \frac{1}{4}$$

$$\frac{2n}{1+x^{4}} + \frac{2y}{1+y^{4}} \cdot \frac{dy}{dx} = 0.$$

$$\frac{dy}{dx} = -\frac{2x}{y} \cdot \frac{(1+y^{4})}{(1+x^{4})}$$

COMMENT. mare were able to do this put

(17. Now ton (ton'x + ton'y 2) = ton
$$\frac{\pi}{4}$$

$$\frac{x^2 + y^2}{1 - x^2y^2} = 1. \qquad (A)$$

$$\frac{y^2 = 1 - x^2}{1 + x^2} \text{ on } x^2 = \frac{1 - y^2}{1 + y^2} \text{ (B)}$$

```
CAMBE 17/51
```

Also at x=0, y'=0 :. (0,1) & (0,-1)

Are stationy

d at y=0 y's undefined

:. at (1,0) & (-1,0) are vertical

tangents:

also since the equation is symmetrated in y = ± x.

A herenes $2 \tan^4 x^2 = I_{\frac{\pi}{4}}$ $1 \cot^4 x^2 = I_{\frac{\pi}{4}}$ $x^2 = \tan \frac{\pi}{4}$ $x = \pm \sqrt{\tan \frac{\pi}{4}}$ $x = \pm \sqrt{\tan \frac{\pi}{4}}$ $x = \pm 0.64.$ OR. (A) herenes

 $2^{2} = 1 - 2^{4}$ $2^{2} = 1 - 2^{4}$ $2^{4} + 2^{2} + 1 = 0$

 $x^{2} = -\frac{2 \pm \sqrt{8}}{2}$ $= \sqrt{3} - 1. \Rightarrow x = \sqrt{\sqrt{2} - 1}.$ $= \sqrt{3} + 0.64$

(-0.64, -0.64) J=-22.

COMMENT. Most were able to sketch a similar shape. Very few used the symmetry to fin the intersection with yetx.

PEND yelin

fr= go fr. V= hin 57 ya fn. = 5 ya dn. = (anx) dr. (A) = [xlenx)] - ford lax x 1 da. = e - 2 f lax da. = e - a [2hr], - S-2. 2dr] = e-a Te - (i-1) T = e-2/17 = (e-2) m3.

in this hout. The integral in (A) was usually should escently.

X2 THSC 2015

(4)

Question 13

Average mark: 9.5/15

Done well.

0	0.5	1	1.5	2	Mean
2	3	3	0	107	1.9

Done well

0	0.5	1	1,5	2	2.5	3	Mean
4	0	5	1	28	14	63	2.49

(b) (i)
$$3 = 1 + iT$$

$$3^{3} = (1 + iT)^{3}$$

$$= 1 + 3iT + 3iTT^{3} + (iT)^{3}$$

$$= 1 + 3iT - 3T^{2} - iT^{3}$$

$$= (1 - 3T^{2}) + i(3T - T^{3})$$

Done well

0	0.5	1	Mean
1	1	113	0.99

(ii)
$$3^3 = (1 + \frac{1}{2000})^3$$

$$= \frac{1}{2000} (2000 + \frac{1}{2000})^3$$

$$= \frac{1}{2000} (2000 + \frac{1}{2000})^3$$

$$tan 30 = \frac{(sin 30)}{(as 20)}$$

$$= \frac{3T - T^3}{(as 20)}$$

$$= 3tan 0 - tan 0$$

$$= 3tan 20$$

1	A number of students did
	not follow the "Herce"
١	instruction,
	Some students tovented a
	new DeMolvier Theorem
-	suggesting that
	(1+1tant) = 1+1tanson

0	0.5	1	1.5	2	Mean
35	7	31	8	34	1.00

(c

(1) As G 15 medpoint of DE,

OA L DE

(line joining medpoint of chards
to centre of circle 15
perpendicular to chard)

CACO = 90° (reduce L tengent
at point of context)

As KARO = KAKO, ABBC 15 a sylling quadrilateral; cargles in same sagment agrical)

Restrict that DA LOG isvally led to a good attempt

0	0.5	1	1.5	2	2.5	3	Mean
38	4	25	0	8	3	37	1.40

(ii) KABC = KABC = B (aigler in same signed ctrob ABOC)

<ABC = 4.44C=0(ariging in same regiment,
circle 404c)</pre>

< ABC = KBRC = D (Atternal segment Majorens)

1 < BFC = < AGC = P

(corresponding to aqual)

There are minutes of ways of proving the result. There who wised the eyelic quadriblished had the greatest success.

0	0.5	1	1.5	2	2.5	3	3.5	4	Mn
39	1	18	10	11	4	11	4	27	1.79

STREMMES SMOTOLDS 2015 = (1+t2) This question was extremely da =- 4(1+6) 1.2+ poorly set out by the majority of students. In many were the = -x-(1+12)3/2 standard of presentation was for below reasonable expertations y = be (++(++2))) Some work was havely legible. This needs to be worked on dy = 1 + 2(1+x2) .2x Many stradents presented the given answer without the order note lead up . Consequently they did not severe the marks . - 1+ + ("+t")" t + (1+62) hi is RH(=-bn(++V+++) MULTIPLY TEP/ BOTTON by (1+ 2) 1/2 = ln (+++++++) 4 To VINTE " ho (+-11++=) = di (-t + VI+ (+) Then dy = dy x dt = (1+6+) 11 × (1+6+) = hd-++++++)+ h (+++++) = - H.C. = ln(tt+ J+4-)(-4+ 1+6-)) I wish for by and the consist. Generally with stone

This question was not enswered very well at all by the respecting Many stindents have the comment " Not Theren" or their papers.

Consider the simple pointholo

y = 4 an with peremetric Symptoci about the season

$$y = f(t)$$

$$f(-t) = -2at$$

 $-f(t) = -2at$

This is the statuent that reads to be shown in this question Here sympetric obsort so and

Many structures used the fact that since d = \frac{1}{11+42}

Then or has the same realize

for each to it.

Thus only refers to the 2, A east

Not the 'x, y exces

Henre they around zero marks when stery presented no further esification.

SOLUTION (Imarks) y = ln (+ + Jit+) y = f(t) f(-6) = (-4+VI+++) -f(t)=-h(++1++=) from entwer is

26 \$0, 250 Mine 11462 >0 An + -> to, x -> 0, When += 0, x=1.

Hence bed 51 Import of no marks. Many attribute went into for too rush detail (unrecessary) for the 1 mark.

of
$$\frac{dx}{dy} = \frac{-xt}{1+t^2}$$
, $\frac{dx}{dy} = 0$ when $t = 0$

When $t = 0$, $x = 1$, $y = 0$

$$\frac{d^2x}{dy^2} = \frac{(1+t^2)(-1)}{(1+t^2)^2} + \frac{(-t^2)(2+1)}{(1+t^2)^2}$$

Then did = -1 when t=0

No attachent did this operation

If is very small portively y= ho(=+==) 9=6 [VION + 1] on eliminating to believe ne you want large E is a very wordt studger. This in formation product!

Synastry provides the shatch in quadrat 4

Despite being told agrimetry exists. Many students drew the graph only in quadrant 1.

```
Q146 CHOCOLATES.
```

Generally very foodly enswered Consider 6 different chocololes

A,B,C,D,E,F Number of ways of choosing 3 from 6

as 6C3 = 20

14 2 of the chocolates are the name

Then chaosing A and oratting B is the same choice as choosing B and omitting A.

That is, now only 2 thousands need to be shown

favore the remaining 4 C, D, E, F. = 462 = 6

That is there ere 6 pairs of antienations from

Then where are 20-6 = 14 the flowerst relections. a 6C3-4C2=14 (2marks)

If book A and B are chosen elen where is

now only I relection to be made from 4

Henre P(chowing 2 intersticol) = 14

NOTE 663-462 Students who had fact i incorrect but atil hat the (4 dries identical) still word

I mark SER OVER.

CHOCOLATES :

Consider the 6 chocolates es different A, B, E, D, E, F thoosing 3 from 6 gives 6G=20 unbinations To be ABGOLUTELY CLEAR it is not too difficult to list the 20

L) ABA 31 ABE 4 ABF 751 AZO 6) A6E 7) A:CF

14 2 ikinolotes are the name Suy A and B

8) ADE & 9) 1118

10) ARF

131) BCD

L, 12) BCE

13) BCF 14) BARE

IN 130 P 4

16) BEF

17) CAE

18) CUF

19) CEP

20) 1 E F

Then the 12 combinations

annowed offer in fairs

re 6 di fferent continations

That is a total of 14 dufférent relactions

is P(2 whiteot) = 4

Selection 1]
1) contouri
3) with A & B

Consider y= 3x = 16x + 18x - h having 4 distinct real roots then the graph must be well turning fourts These occur when y =0 122-482 +362 =0 12x(x=-4x+3) =0 122 (2-1) (2-3) =0 que when x=91, 3 Substituting these values for y x=0 , y=-k 1 7 = 5-12 2=3 1 y=-27-R Here the above graph now My Q(35-4) 及(3,-27-1人) -R <0 5-1270 4 -27-1-10 & R >-27 The only whition common to the alcour 0<25

2 nortes

Part nortes

Part nortes

Part nortes

Por turning fourth or y natures (not hock)

I for none pagares

No heralty for 0=1=1.

Selection almost complete but without explanation

2 marks -

Many stirolents looked at the graph

y= 3x+-16x^3 + 18x^2.

anwer och 25 but 010 HOT anwer OXACANATION

There students would 2 nachs out of the

. All recersory working should be shown in went question of full mosters are to be awarded:

OURSTION 14d (3 marks)

If -6.i is a most of the physical so is 61 $(61-61)(21+62) = 2^2+36$ The quadratic that has a most - 1+V5

we has -2+1/5 as a most -2+1

Here July normal of modern't degree with national as efficient is (x2+36)(x2+2x-4)

24 203 +32 de +72 d = 144 = 0

OR

Vice $\alpha = -1 + \sqrt{5}$ Vice $\alpha = -1 + \sqrt{5}$ (x+1)=\(\sigma\)

(x+1)=\(\sigma\)

(x+1)=\(\sigma\)

(x+1)=\(\sigma\)

(x+1)=\(\sigma\)

(x+1)=\(\sigma\)

(x-1)=\(\sigma\)

some students used the nosts as 6i, -6i, -1+15, -1-15 in the south a then used the sum- products receills for the posts of polynomials & find the weappearts. This is much more difficulties and prove to prove a property.

SBHS THSC Maths Ext2 2015

Question 15

(a)
$$(1+i)^{2n} = (\sqrt{2}\operatorname{cis}(\frac{\pi}{4}))^{2n}$$
LHS
$$= {}^{2n}C_0 + {}^{2n}C_1i + {}^{2n}C_2i^2 + {}^{2n}C_3i^3 + {}^{2n}C_4i^4 + {}^{2n}C_5i^5 + \dots + {}^{2n}C_{2n-1}i^{2n-1} + {}^{2n}C_{2n}i^{2n}$$

$$= {}^{2n}C_0 + {}^{2n}C_1i - {}^{2n}C_2 - {}^{2n}C_3i + {}^{2n}C_4 + {}^{2n}C_5i - \dots + {}^{2n}C_{2n-1}i^{2n-1} + {}^{2n}C_{2n}i^{2n}$$

Now Im[LHS] =
$${}^{2n}C_1 - {}^{2n}C_3 + {}^{2n}C_5 - {}^{2n}C_7 + ... - {}^{2n}C_{2s-1}$$

= $\sum_{k=0}^{s-1} {}^{2n}C_{2k+1} (-1)^k$

RHS =
$$\left(\sqrt{2}\right)^{2n} \left(\cos\left(\frac{2\pi x}{4}\right) + i\sin\left(\frac{2\pi x}{4}\right)\right)$$
 (de Moivre's Theorem)
= $2^{n} \left(\cos\left(\frac{n\pi}{2}\right) + i\sin\left(\frac{n\pi}{2}\right)\right)$

Thus
$$Im[RHS] = 2^n sin(\frac{n\pi}{2})$$

= $Im[LHS]$

Hence
$$\sum_{k=0}^{n-1} {}^{2n}C_{2k+1}(-1)^k = 2^n \sin(\frac{n\pi}{2})$$
 as required.

Comments: Well answered generally. Those who lost marks failed to see the connection between the imaginary parts.

(b)
$$\frac{dP}{dt} = P(1000 - P)$$

(i)
$$\frac{dt}{dP} = \frac{1}{P(1000 - P)}$$
Integrating w.r.t. P:
$$t = \int \frac{1}{P} \cdot \frac{1}{1000 - P} dP + C$$

Partial Fractions:

$$\frac{1}{P(1000 - P)} = \frac{A}{P} + \frac{B}{1000 - P}$$
$$1 = A(1000 - B) + BP$$

Hence
$$A = B = \frac{1}{1000}$$

$$\therefore t = \frac{1}{1000} \left(\int \frac{dP}{P} + \int \frac{dP}{1000 - P} \right) + C$$

$$= \frac{1}{1000} \left(\ln P - \ln(1000 - P) \right) + C$$

$$\therefore \ln\left(\frac{P}{1000 - P}\right) = 1000t + C \qquad \text{as required.}$$

Alternatively:

$$1000t + C = \ln\left(\frac{P}{1000 - P}\right)$$
Differentiating w.r.t. P :
$$1000 \frac{dt}{dP} = \frac{1}{\left(\frac{P}{1000 - P}\right)} \frac{dP}{dP} \left(\frac{P}{1000 - P}\right)$$

$$= \frac{1000 - P}{P} \left[\frac{(1000 - P) \cdot 1 - P \cdot (-1)}{(1000 - P)^2}\right]$$

$$= \frac{1}{P} \left[\frac{1000}{1000 - P}\right]$$

$$\therefore \frac{dt}{dP} = \frac{1}{P(1000 - P)}$$
Thus
$$\frac{dP}{dt} = P(1000 - P), \text{ and } 1000t + C = \ln\left(\frac{P}{1000 - P}\right)$$
is a solution.

Comments: Again very well answered, with most candidates using partial fractions, some by observation rather than formally.

(ii) From above, taking exponentials:

$$\frac{P}{1000 - P} = e^{1000t + G}$$

$$= Ke^{1000t}$$
Thus $P = 1000 Ke^{1000t} - PKe^{1000t}$

$$P(1 + Ke^{1000t}) = 1000 Ke^{1000t}$$

$$P = \frac{1000 Ke^{1000t}}{1 + Ke^{1000t}}$$

$$\therefore P = \frac{1000 K}{K + e^{-1000t}} \text{ on division by } e^{1000t}.$$

Comments: Again very well answered, with most candidates getting the full 3 marks.

(iii) When
$$t = 0$$
, $P = 200$
So $200 = \frac{1000K}{K+1}$
Hence $K = \frac{1}{4}$.

When the population is 900
$$900 = \frac{1000 \times 0.25}{0.25 + e^{-1000t}}$$

$$\therefore e^{-1000t} = \frac{250}{900} - \frac{1}{4}$$
Taking natural logarithms:
$$-1000t = \ln(\frac{1}{36})$$

$$t = \frac{\ln(36)}{1000}$$

$$t \approx 0.0036 \qquad \text{(Assumedly the units are years)}$$

Comments: Almost every candidate obtained this rather alarming result.

(c)
$$0 \le x_i \le 1, i=1, 2, ..., n$$

(i) Given
$$(1-x_1)(1-x_2) \ge 0$$
, RTP $2(1+x_1x_2) \ge (1+x_1)(1+x_2)$
 $(1-x_1)(1-x_2) \ge 0$
 $1-x_2-x_1+x_1x_2 \ge 0$
 $1-(x_1+x_2)+x_1x_2 \ge 0$
 $1+x_1x_2 \ge x_1+x_2$ ----(1)
Consider $2(1+x_1x_2)-(1+x_1)(1+x_2)$
 $=2(1+x_1x_2)-(1+(x_1+x_2)+x_1x_2)$
 $=2(1+x_1x_2)-(1+x_1x_2)-(x_1+x_2)$
 $=(1+x_1x_2)-(x_1+x_2)$
 ≥ 0 From (1)
Thus $2(1+x_1x_2) \ge (1+x_1)(1+x_2)$

Comments: This was generally well done, although some assumed the result, and proceeded to beg the question.

(ii)
$$P(n): 2^{n-1}(1+x_1x_2...x_n) \ge (1+x_1)(1+x_2)...(1+x_n)$$

 $P(1): 2^{0}(1+x_1) \ge 1+x_1$
 $LHS = 1+x_1; RHS = 1+x_1$
 $\therefore P(1)$ is true (equality)

P(k): Assume the proposition is true for some positive integer k. Thus $2^{k-1}(1+x_1x_2...x_k) \ge (1+x_1)(1+x_2)...(1+x_k)$

$$P(k+1)$$
: RTP that $P(k)$ implies $P(k+1)$
that is $2^{k}(1+x_{1}x_{2}...x_{k+1}) \ge (1+x_{1})(1+x_{2})...(1+x_{k+1})$

$$RHS = (1 + x_1)(1 + x_2)...(1 + x_k)(1 + x_{k+1})$$

$$\leq 2^{k-1}(1 + x_1x_2...x_k)(1 + x_{k+1}) \text{ by the assumption}$$

$$\leq 2^k(1 + x_1x_2...x_kx_{k+1}) \text{ by part (i)}$$

$$= LHS$$

$$\therefore LHS \geq RHS$$

Hence by the principle of mathematical induction, the proposition is true for all $n \ge 1$.

Comments: Almost no candidates took the short route to proof shown above, but most who attempted it found a way.

16)a)i) Q,		
- (*)*** /	ha = 24.0	
V mg	ma = mg	
- This	-a = 10	
	ax =10	
	$\frac{dv}{dx} = \frac{10}{V}$	
	dx V	
ii) dx v	-	
11) dx v 10.		
5 Y . A	·	
$x = \frac{y^2}{20} + C$		
when t=0 n:	= 0, v = 0	
$x = \sqrt{2}$		
$\frac{\chi = V^2}{20}$		
when x=7.2 7.2 = Y ² 20		
7.2 = Y2		
20		
V2= 144		
V = +12		
V= 12 ms	1	
iii) o		
<u>(ii)</u> Q	h n P	Note : R is a constant
mg JR	ma = mg - R	More I K I & a Constant
	0.2a = 0.2×10 - R	
	a = 10 - 5R	······································
	21-31	-
	d(=v2) = 10-5R	
	dx	
	$\frac{1}{2}v^2 = (10 - 5R)x + C$	·
	2	_
	when $x=0, V=12$	
	1(12)= C	
	c=72	
	U = 1 4	
<u> </u>		

COMMENT: · Students should approach these questions by resolving forces. Many started with acceleration · Students should not use preutat v= u2 + 2as s=ut+ fat2 · Definite integrals can be used. However, mistakes were made in (ix). dv = /(57-87.5)dt this was a common mistake. It should have been (dr = (5T-87.5) dt V = (5T-87.5)E (5T-87.5) t dt 3.6 = (5T-875)(4)1 51-87.5 = 0.45 5T = 87.95 T = 17.59 N

111) Shre a 70
a(1-a) < 4 from (ii)
Also 0 (a2(1-a)
$0 < \alpha^{2}(1-\alpha) \le \frac{4}{27}$ (1)
Smilanly, 0 < b2 (1-b) < 4 (2)
$0 \le c^2(1-c) \le \frac{4}{27}$ 3
① x② x3
$0 < a^{2}(1-a), b^{2}(1-b), c^{2}(1-c) < (\frac{1}{27})^{3}$
$0 < bc(1-a), ca(1-b), ab(1-c) < (\frac{4}{27})^3$ (4)
Proof by contradiction: Assume that bc(I-a) ca(I-b) and ab(I-c)
are all greater than 4
$\frac{1}{10}$ $\frac{bc(1-a)}{27} > \frac{4}{27}$ (5)
Ca(1-b) > 4/27 6
$ab(1-c) > \frac{4}{27}$ (7)
5x6x7
$bc(1-a)$, $ca(1-b)$, $ab(1-c) > \left(\frac{4}{27}\right)^3$
This contradicts (4)
Assumption is false.
: At least one of be (1-a), ca (1-b) and ab (1-c) is less than or equal to 4.

.

<u>comment</u>
Part (i) & (ii) were done well by students
A . II m I . I . I . I . I
A small number of students assumed the
result is (ii) which is not a ralled form of
\sim 7
Not many students made any progress with (iii)
Not many students made any progress with (111)
the stay of the stay program (III)
· · · · · · · · · · · · · · · · · · ·
<u> </u>
•
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·
, , , , , , , , , , , , , , , , , , , ,
<u> </u>