Year 11 Mathematics 2012

Trigonometry

Name

Result

%

DIRECTIONS

- Full working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Use black or blue pen only.
- 1. Find the value of x correct to 2 decimal places.

2. Find the largest angle in a triangle with side lengths 10 cm, 15 cm and 18 cm. Give your answer correct to the nearest minute.

3. Find the value of y if $\sin(5y) = \cos(y-10)$.

4. Find the value of θ correct to the nearest minute.

5. Find the area of the triangle in question 4 (above), giving your answer correct to 2 decimal places.

- 6. Find the exact value of tan 330°.
- 7. If $\tan \theta = -\frac{1}{3}$ and $\sin \theta > 0$, find the exact value of $\sec \theta$.

8. From the top of a 50 m high tree, an eagle can observe its nest in another tree. The shortest distance between the trees is 12 m and the eagle is 19 m from the nest. Calculate the angle of depression from the eagle to its nest. Give your answer correct to the nearest minute.

9. Solve
$$\cos x = \frac{1}{3}$$
 for x where $0^{\circ} \le x^{\circ} \le 360^{\circ}$.

10. Find the exact length of AB in the diagram below.

11. Julia and Tony depart from the same position. Julia travels along a straight road due east at 30 km/h. Tony departs 15 minutes after Julia, and travels along another straight road on a bearing of S 30° E at 40 km/h.		
		·
		• .
	, comment	
		·
	en e	
)	What is the bearing of Tony from Julia?	
	· · · · · · · · · · · · · · · · · · ·	į.
	•	
	• •	Ÿ

12. Sketch the graph of $y = \sec x$ for $0^{\circ} \le x^{\circ} \le 360^{\circ}$.

13. Solve $2 + \sin x = 2\cos^2 x$ for x where $-180^{\circ} \le x^{\circ} \le 180^{\circ}$.

14. Simplify $\frac{\sin^2 x + \cos^2 x + \cot^2 x}{2 \csc^2 x}$.

- 15. The angle of elevation of a tower AB of height h metres from a point P, due east of it, is 10° . From another point Q, the bearing of the tower is $050^{\circ}T$ and the angle of elevation is 9° . The points P and Q are 800 metres apart and on the same level as the base A of the tower.
- (a) Find the size of $\angle PAQ$.

(b) Consider $\triangle PBA$ and show that $PA = h \cot 10$.

- (c) Find a similar expression for QA.
- (d) Calculate h correct to 2 decimal places.

16. Prove that $\frac{\cos\theta\left(\sin\theta+\cos\theta\right)}{\left(1+\sin\theta\right)\left(1-\sin\theta\right)}=1+\tan\theta.$

17. Solve $\cot 2\theta = -\frac{1}{\sqrt{3}}$ for θ where $0^{\circ} \le \theta^{\circ} \le 360^{\circ}$.

3. Find the value of y if $\sin(5y) = \cos(y-10)$. nearest minute. 2. Find the largest angle in a triangle with side lengths 10 cm, 15 cm and 18 cm. Give your answer correct to the 1. Find the value of x correct to 2 decimal places. DIRECTIONS Name Year 11 Mathematics 2012 SOLUTIONS Sin (90-0) = cos O Full working should be shown in every question. Marks may be deducted for Use black or blue pen only. careless or badly arranged work. ut to be the a largest angle \$774(20-54) = (05/14-10) cos 0 = COS 0 = 152+102-182 SIM550351 SIM90. 30 o + 36 ° 12 ' + 8 = 180 ° 120 ° 1 2 x 15 x 1 0 x = 11.18 cm (2dp) V 56365415 Result U 1 50 be known as O: .. y=16.67 %

5. Find the area of the triangle in question 4 (above), giving your answer correct to 2 decimal places

$$\frac{1}{2}absinC = \frac{1}{2} \times 15 \times 10 \times sin710$$
 $A = 70.71$
 $A = 70.7 cm^{2} (10.0)$
 $A = 70.7 cm^{2} (10.0)$

6. Find the exact value of tan 330°. +QN (360°-330°)

7. If $\tan \theta = -\frac{1}{3}$ and $\sin \theta > 0$, find the exact value of $\sec \theta$.

011/= x (+P)=x

Give your answer correct to the nearest minute. the trees is 12 m and the eagle is 19 m from the nest. Calculate the angle of depression from the eagle to its nest 8. From the top of a 50 m high tree, an eagle can observe its nest in another tree. The shortest distance between

9. Solve $\cos x = \frac{1}{3}$ for x where $0^{\circ} \le x^{\circ} \le 360^{\circ}$.

acute 1 2 = 70°31'43.61"

x= 32 70"31143.61", (360°-70°31,43.611) x = 71°32',289°28' (rearest minute)

10. Find the exact length of AB in the diagram below.

$$Sin60^{\circ} = AB$$
 $\sqrt{3} = AB$
 $\sqrt{3} = AB$
 $\sqrt{3} = AB$
 $\sqrt{6\sqrt{2}} = 2AB$
 $AB = 3\sqrt{6}m$
 $\sqrt{3}$
 $AB = 3\sqrt{6}m$
 $\sqrt{3}$

- departs 15 minutes after Julia, and travels along another straight road on a bearing of $S30^{\circ}E$ at 40 km/h. 11. Julia and Tony depart from the same position. Julia travels along a straight road due east at 30 km/h. Tony
- (a) How far apart are they 15 minutes after Tony departs? Express your answer in simplest exact form. $^{\wedge}$

: h= 94.24 (to 2dp.)

= 8880.294367

= h w+10 + h co+290 - h 2 co+10 co+9 co 140

