

SYDNEY GRAMMAR SCHOOL

2017 Trial Examination

FORM VI

MATHEMATICS EXTENSION 1

Friday 4th August 2017

General Instructions

- Reading time 5 minutes
- Writing time 2 hours
- Write using black pen.
- Board-approved calculators and templates may be used.

Total - 70 Marks

• All questions may be attempted.

Section I - 10 Marks

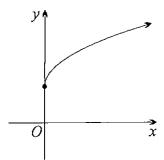
- Questions 1-10 are of equal value.
- Record your answers to the multiple choice on the sheet provided.

Section II - 60 Marks

- Questions 11-14 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

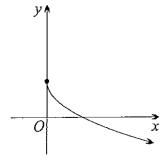
Collection

- Write your candidate number on each answer booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Write your candidate number on this question paper and hand it in with your answers.
- Place everything inside the answer booklet for Question Eleven.

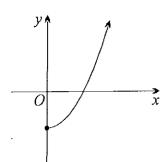

Checklist

- SGS booklets 4 per boy
- Multiple choice answer sheet
- Reference sheet
- Candidature 125 boys

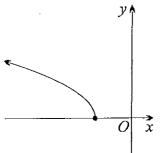
Examiner

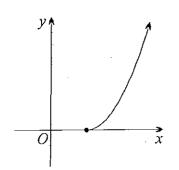

FMW

QUESTION THREE



The diagram shows the graph of y = f(x). Which diagram shows the graph of $y = f^{-1}(x)$?


(A)


(B)

(C)

(D)

QUESTION SIX

What is the domain of the function $y = 4\sin^{-1}\frac{x}{3}$?

$$(A) -3 \le x \le 3$$

(A)
$$-3 \le x \le 3$$

(B) $-\frac{1}{3} \le x \le \frac{1}{3}$
(C) $-2\pi \le x \le 2\pi$
Sym $\frac{7}{7} = \frac{2}{3}$
 $x = \frac{7}{3}$

(C)
$$-2\pi \le x \le 2\pi$$

(D)
$$-\frac{\pi}{8} \le x \le \frac{\pi}{8}$$

QUESTION SEVEN

What is the maximum value of $P = 6\cos\theta + 4\sin\theta$?

(C)
$$2\sqrt{13}$$

(D)
$$2\sqrt{5}$$

$$\frac{6}{52} + \frac{4}{52} = \frac{652}{2} + \frac{452}{2}$$

QUESTION EIGHT

A particle moves on a line so that its distance from the origin at time t seconds is $x \, \mathrm{cm}$ and its acceleration is given by $\frac{d^2x}{dt^2} = 10 - 2x^3$. If v represents the velocity of the particle, and the particle changes direction 1 cm on the negative side of the origin, which of the following equations is correct?

(A)
$$v^2 = 20x - x^4$$

(B)
$$v^2 = 20x - x^4 + 2$$

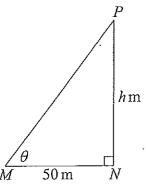
(C)
$$v = 10x - \frac{1}{2}x^4$$

(D)
$$v = 10x - \frac{1}{2}x^4 + 11$$

(A)
$$v^{2} = 20x - x^{4}$$

(B) $v^{2} = 20x - x^{4} + 21$
(C) $v = 10x - \frac{1}{2}x^{4}$
(D) $v = 10x - \frac{1}{2}x^{4} + 11\frac{1}{2}$

$$\sqrt{2} + 2x + 2 = 2x + 2$$


SGS Trial 2017 Form VI Mathematics Extension 1	Page 7
SECTION II - Written Response	
Answers for this section should be recorded in the booklets provided. Show all necessary working. Start a new booklet for each question.	
QUESTION ELEVEN (15 marks) Use a separate writing booklet.	Mark
Find the exact value of $\sin \frac{\pi}{8} \cos \frac{\pi}{8}$.	2
Evaluate $\sin^{-1}(\sin\frac{4\pi}{3})$.	1
Show that $\lim_{x\to 0} \frac{\tan\frac{x}{2}}{x} = \frac{1}{2}$.	1
(d) Find the following integrals:	
$\text{(i)} \int \frac{4x}{16+x^2} dx$	1
(ii) $\int \frac{3}{9+x^2} dx$	1
(iii) $\int \frac{-1}{\sqrt{25+x}} dx$	1
(e) Write down a general solution of the equation $\sin x = -\frac{1}{2}$.	1
(A) If a, b and c are the roots of the equation $3x^3 + 4x^2 - 5x - 8 = 0$, find the value of $\frac{1}{a} + \frac{1}{b} + \frac{1}{c}$.	2
(g) By expanding, find the greatest coefficient in the expansion of $(4x+3)^4$.	2
(h)	3
B 455-24	

Tangents touching a circle at A and B respectively, intersect at T. Point C is on the circle and $AT \parallel CB$. Prove that AB=AC.

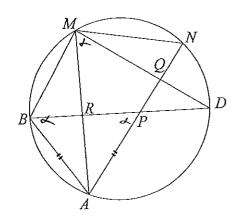
Page	e 7
	Marks
	2
	1
	1
	<u></u>
	1
	1
	1
	1
	2
	<u></u>
	3
	•
is on th	ne
erleaf	

- (c) (i) Use the substitution u = 3x + 1 to show that $\int_0^1 \frac{x}{(3x+1)^2} dx = \frac{2}{9} \ln 2 \frac{1}{12}$.
- 2
- (ii) Hence find the volume of the solid formed when the region bounded by the curve $y = \frac{6\sqrt{x}}{3x+1}$, the x-axis and the line x = 1 is rotated about the x-axis. Give your answer in exact form.

(d)

Bowie jumps out of a helicopter and by the time he reaches the position P, h metres above the ground, he is falling at a constant rate of 150 kilometres per hour. Point N is on the ground directly below P and M lies 50 metres from N. The angle of elevation of P from M is θ radians.

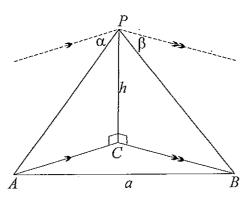
(i) Show that $\frac{dh}{d\theta} = \frac{50}{\cos^2 \theta}$.


- 1
- (ii) Find the rate of decrease of the angle of elevation when Bowie reaches a height of 1200 metres. Give your answer in radians per second.

QUESTION FOURTEEN (15 marks) Use a separate writing booklet.

Marks

3


(a)

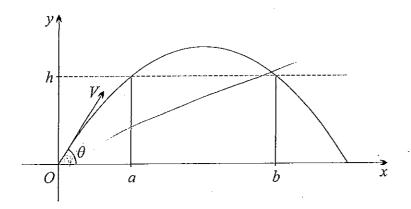
The diagram above shows a cyclic quadrilateral ABMN. Point P lies on AN such that AB = AP and BP produced meets the circle again at D and AM at R. The chord MD intersects AN at Q.

Copy the diagram and show that QPRM is a cyclic quadrilateral.

(b)

The diagram above shows two points A and B on level ground. B is a metres due east of A. A tower, of height h metres, is also on the same level ground and its bearing is $N\theta E$ and $N\phi W$ from A and B respectively. From the top of the tower P, the angle of depression of A is α and of B is β .

(i) Prove that
$$h\sin(\theta + \phi) = a\cos\phi\tan\alpha$$
.


2

(ii) Prove that
$$h^2(\cot^2\alpha - \cot^2\beta) - 2ha\cot\alpha\sin\theta + a^2 = 0$$
.

2

(c) If $f^{(n)}(x)$ denotes the *n*th derivative of $f(x) = \frac{1}{x}$, prove by mathematical induction 3 that $f^{(n)}(x) = \frac{(-1)^n n!}{x^{n+1}}$ for all positive integers n.

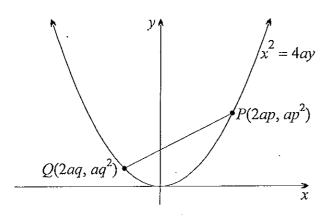
(d)

A particle is fired from O with initial velocity V m/s at an angle θ to the horizontal. The particle just clears two thin vertical towers of height h metres at horizontal distances of a metres and b metres from O.

The equations of motion of the particle are $x = Vt\cos\theta$ and $y = Vt\sin\theta - \frac{1}{2}gt^2$. (Do NOT prove these equations.)

(i) Show that
$$V^2 = \frac{a^2 g (1 + \tan^2 \theta)}{2(a \tan \theta - h)}$$
.

(ii) Hence show that
$$\tan \theta = \frac{h(a+b)}{ab}$$
.


(iii) Hence show that $\tan \theta = \tan \alpha + \tan \beta$, where α and β are the angles of elevation from O to the tops of the towers.

End of Section II

END OF EXAMINATION

SGS Trial 2017 Form VI Mathematics Extension 1 Page 10 QUESTION THIRTEEN (15 marks) Use a separate writing booklet.

(a)

The points $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ lie on the parabola with equation $x^2 = 4ay$.

(i) Find the coordinates of M, the midpoint of PQ.

 $\begin{bmatrix} 1 \end{bmatrix}$

Marks

(ii) Show that the equation of the chord PQ is $y = \frac{1}{2}(p+q)x - apq$.

1

(iii) If the chord always passes through the point (0, 2a), find the equation of the locus

of M.

(b) A particle moves along a straight line and its displacement, x centimetres, from a fixed point O at a given time t seconds is given by $x = 2 + \cos^2 t$.

(i) Show that its acceleration is given by $\ddot{x} = 10 - 4x$.

(ii) Explain why the motion is simple harmonic.

(iii) Find the centre, amplitude and period of the motion.

[2]

(c) The polynomial P(x) is given by $P(x) = x^3 - mx^2 + mx - 1$, where m is a constant.

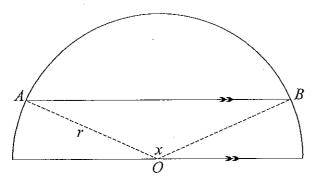
(i) Show that (x-1) is a factor of P(x).

1

(ii) Hence find a quadratic factor of P(x).

2

(iii) Hence find the set of values of m for which all the roots of the equation P(x) = 0


(iv) If m=3, the graph of y=P(x) is a transformation of the graph of $y=x^3$. Describe this transformation.

QUESTION TWELVE (15 marks) Use a separate writing booklet.

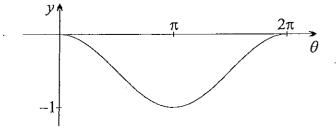
Marks

- An object is put in a freezer to cool. After t minutes, its temperature is T° C. The freezer is at a constant temperature of -8° C. The object's temperature T decreases according to the differential equation $\frac{dT}{dt} = -k(T+8)$, where k is a positive constant.
 - (i) Show that $T = Ae^{-kt} 8$, where A is a constant, is a solution of the differential equation.
 - (ii) If the object cools from an initial temperature of 40° C to 30° C in half an hour, find the values of A and k.
 - (iii) When will the temperature of the object be 0°C? Give your answer correct to the nearest hour.
 - (iv) Explain what will happen to T eventually.

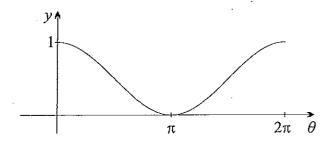
(b)

The diagram above shows a semi-circle of radius r with centre O. Chord AB is drawn parallel to the base such that it divides the semi-circle into two parts of equal area. Chord AB subtends an angle of x radians at the centre O.

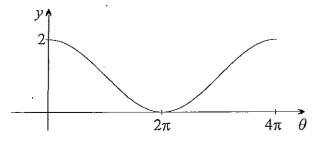
(i) Show that $\sin x = x - \frac{\pi}{2}$.

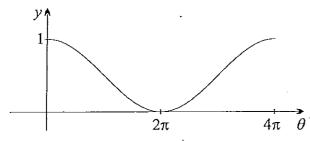

1

(ii) The equation has a root near x = 2. Use one application of Newton's method to find a better approximation for this root, writing your answer correct to three significant figures.


QUESTION NINE

Which of the diagrams below best represents the graph of $y = \cos^2 \frac{1}{2}\theta$?




(B)

(C)

(D)

QUESTION TEN

What is the coefficient of z^3 in the expansion of $(1+z+z^2)^5$?

- (A) 10
- (B) 20
- (C) 30
- (D) 40

End of Section I

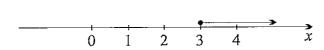
Examination continues next page \dots

	Page 6
θ ?	
-	
•	
	-
• .	
•	
ues next pa	ge
uos mont pa	b~ ···

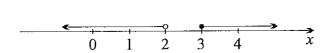
QUESTION FOUR

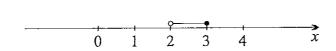
What is the derivative of $\sin^{-1} 3x$?

- (A) $\frac{1}{3\sqrt{1-9x^2}}$
- (B) $\frac{-1}{3\sqrt{1-3x^2}}$
- (C) $\frac{3}{\sqrt{1-9x^2}}$
- (D) $\frac{3}{\sqrt{1-3x^2}}$

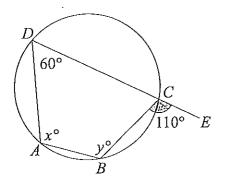

QUESTION FIVE

Which number line graph shows the correct solution to $\frac{x}{x-2} \ge 3$?


(A)


(B)

(C)


(D)

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

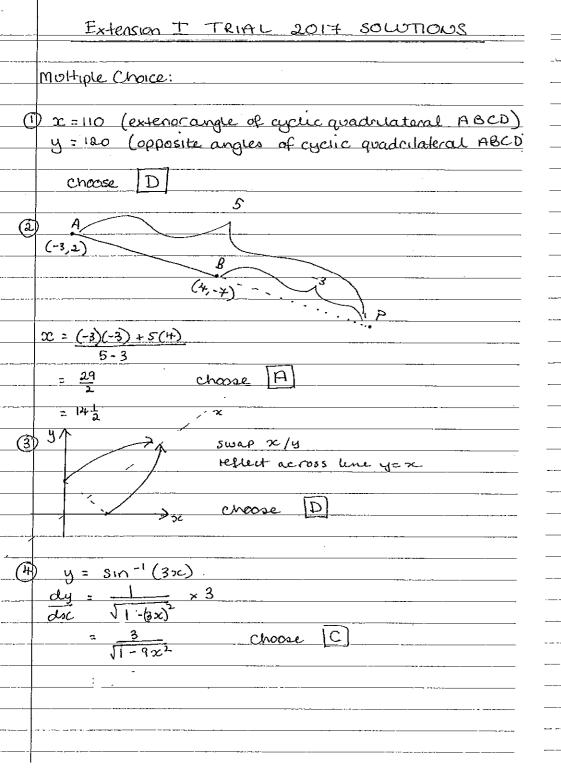
Suppose ABCD is a cyclic quadrilateral with DC produced to E. What are the values of x and y?

(A)
$$x = 120, y = 110$$

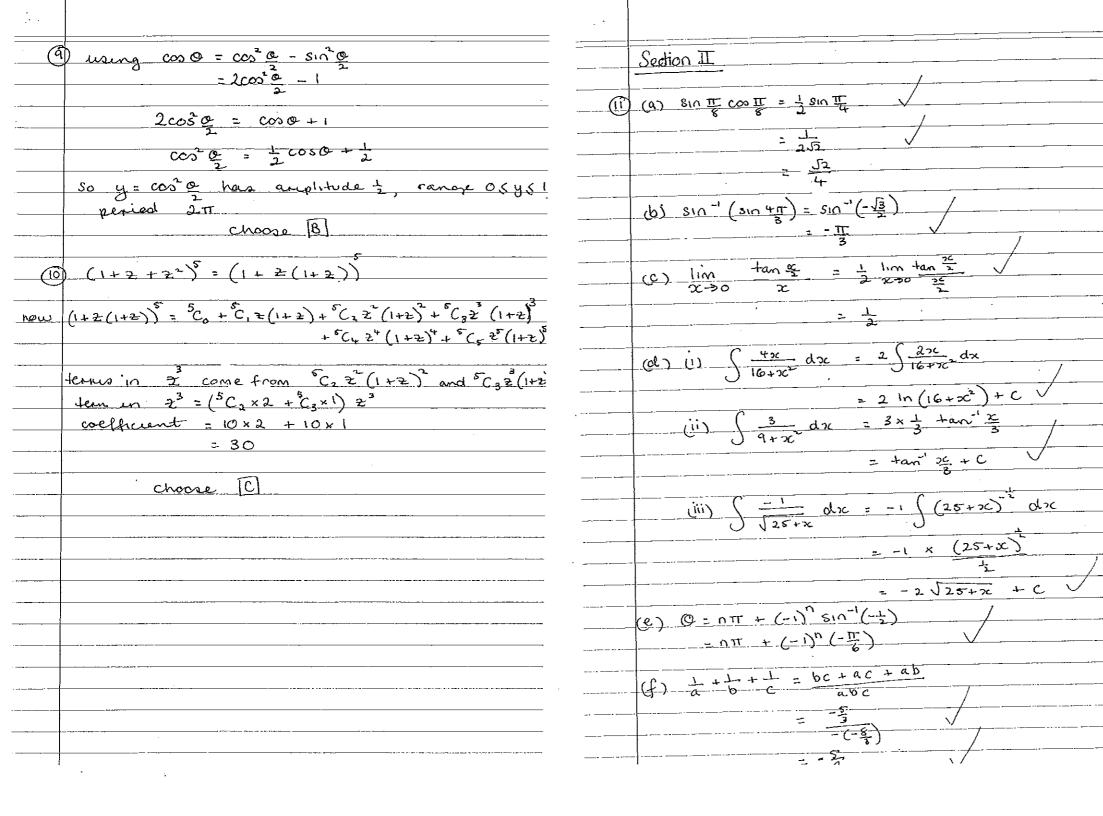
(B)
$$x = 110, y = 110$$

(C)
$$x = 120, y = 120$$

$$(D)$$
 $x = 110, y = 120$

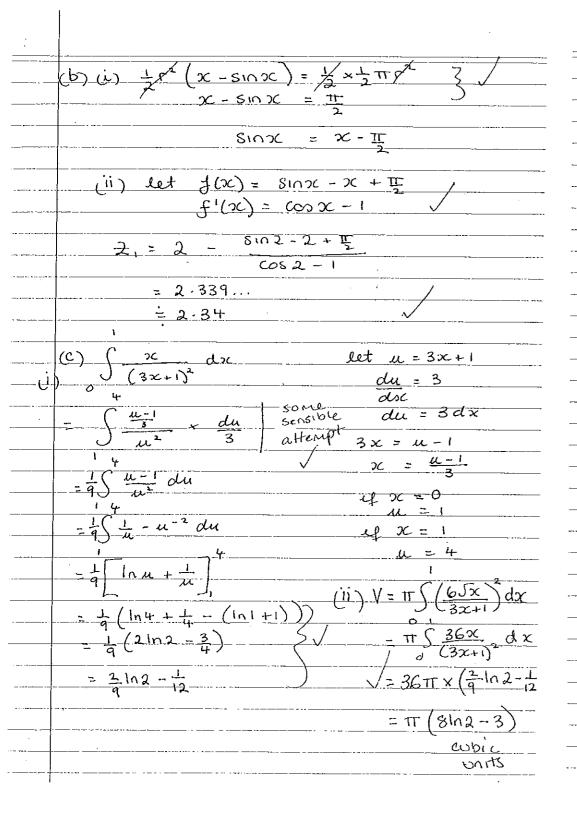

QUESTION TWO

Let A = (-3, 2) and B = (4, -7). The interval AB is divided externally in the ratio 5:3 by the point P(x, y). What is the value of x?

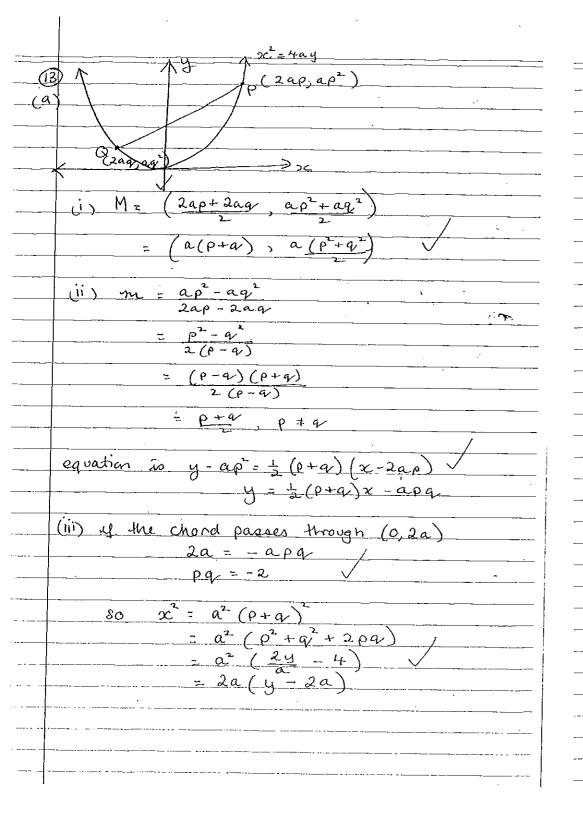

- (A) $14\frac{1}{2}$
- (B) 13
- (C) $1\frac{3}{8}$
- (D) $-13\frac{1}{2}$

$$\left(-\frac{5x-5+\frac{3}{3}x4}{-2}\right)$$

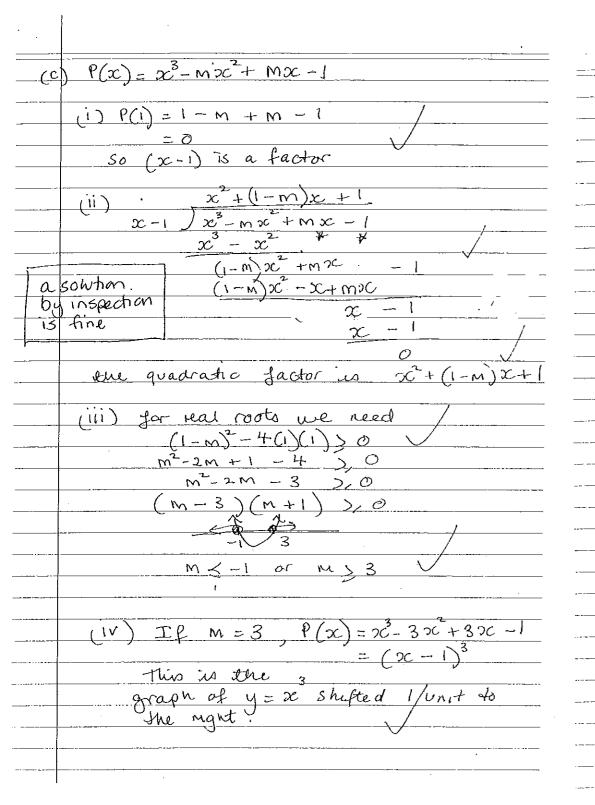
$$\left(\begin{array}{c} 15 + 12 \\ -2 \end{array}\right)$$

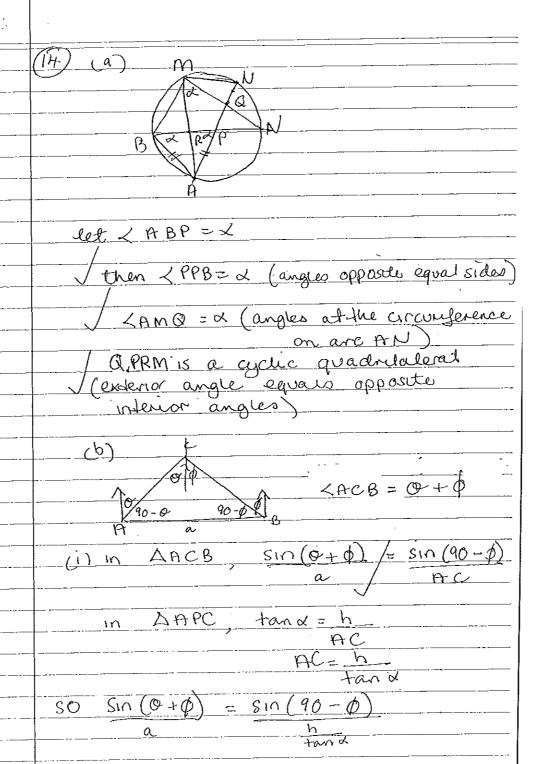


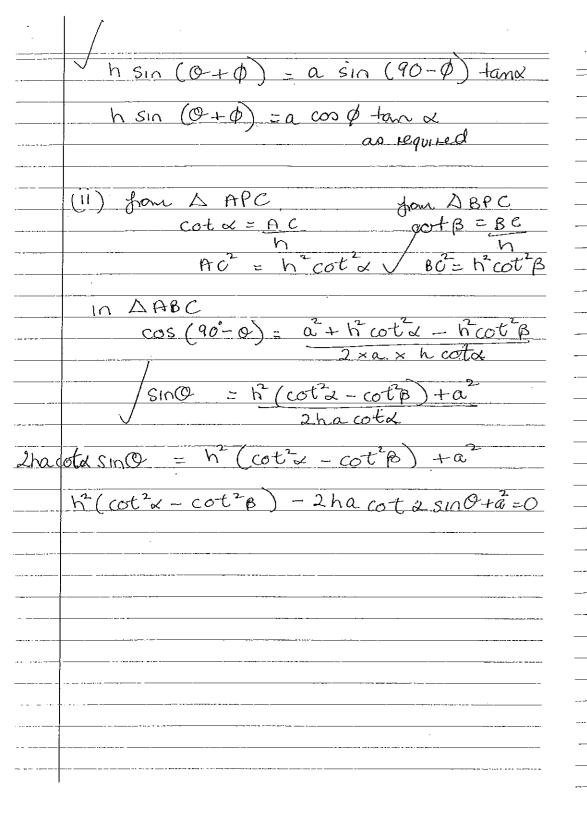
-	· · · · · · · · · · · · · · · · · · ·
(x	$(x-2)^2 \times \underline{x} \rightarrow 3(x-2)^2$ x-2
	$2 \times (x-2) > 3(x-2)^{3}$
	3(x-2)-x(x-2) < 0
	$(x-2)(3(x-2)-x) \leq 0$
	(2c-2)(2x-6) < 0 chance D
	2(x-2)(x-3)
6 y:	= 4 sin-1 x
i	<pre> <pre> <pre> <pre> <pre> <pre> </pre> </pre> </pre> <pre> <pre> </pre> </pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> <pre> <pre> </pre> <pre> </pre> <pre> <pre> <pre> <pre> <pre> </pre> <pre> </pre> <pre> <pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> </pre> <pre> </pre> <pre> <pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> </pre> <pre> <pr< td=""></pr<></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>
(1) R:	$= \sqrt{G^2 + 4^2}$
	= J52 choose [C]
- :	= 2 513
(8) d	$\frac{2\pi}{x^2} = 10 - 2x^3$
d	$\frac{1}{t^2}$
d (dx.)	$\frac{1}{2}v^2 = 10 - 2x^3$
- 000	$\frac{1}{2} \cdot \sigma^2 = 10 \times -\frac{1}{2} \times \frac{1}{2}$
	$v^2 : 20\chi - x^4 + C$
at	
	$0 = 20(-1) - (-1)^{4} + C$
	$C = 21$ $v^2 = 20 \times - 20^4 + 21$
	2) - 2() 1(- 10 T = 1
	choose B
	·
	·

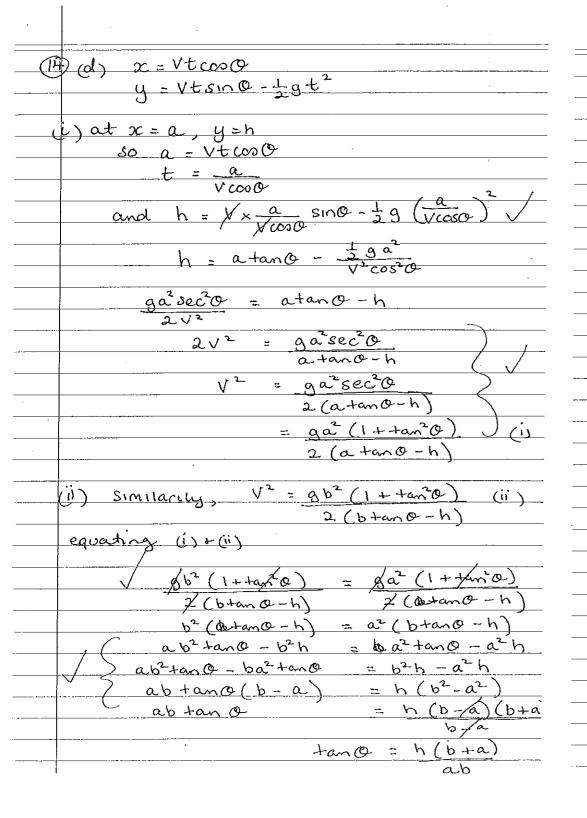


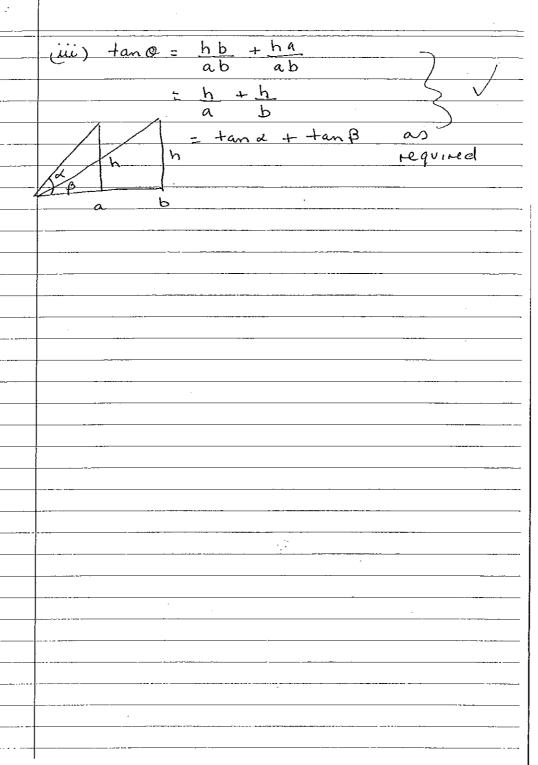
 $(9) (4x+3)^{4} = (4x)^{4} + (4x)^{3} + (4x$ = 256x + 768x3 + 864x2 + 432x + 81 the greatest coefficient is 864 (h) LTAB = KACB (angle in the atternate segment <TAB = {ABC (alternate angles, AT / CB) AC = AB (sides opposite equal angles)


$ \begin{array}{c} (2) (a) (i) T = Ae^{-Rt} - 8 \\ \underline{dT} = -kAe^{-kt} \end{array} $
= -K(T+8)
(ii) at $t=0$, $T=40$ 40 = A-8
$A = 48$ at $t = 30$, $T = 30$ $30 = 48e^{-30k} - 8$
38 = e 30K
$-30k = log_{e}\left(\frac{19}{24}\right)$ $k = -\frac{1}{30}log_{e}\left(\frac{19}{24}\right)$
= 1. loge (24)
(ii) if $T=0$ (iv) as $t\to\infty$ $0=48e^{-kt}-8$ $T\to -8$
$\frac{8}{48} = e^{-kt}$ $-kt = \log_e(\frac{1}{6})$
$t = -\frac{1}{4} \log_e(\frac{1}{6})$ $= 230.091 \text{ minutes}$
= 3.83 h




~	id is tand = h
	(d) (i) tan 0 = h
	h = 50+an0
	dh = 50 sec20)
	do = 50
	cos O
	$\frac{\text{(ii)}}{\text{dt}} = \frac{\text{d0} + \text{dh}}{\text{dh}} \qquad \frac{150 \text{km/h}}{\text{l}}$
	$\frac{\text{(ii)}}{\text{dt}} \frac{\text{d0} = \text{d0} + \text{dh}}{\text{dt}} \frac{\text{150km} \text{h}}{\text{150} \times 1000}$
	$\frac{\cos^2 \alpha \times 125}{50} = \frac{\cos^2 \alpha \times 125}{3} = 125 \text{ m/s}$
	= COSO × 123
	$\frac{50}{3} = 125 \text{ m/s}$
	$= 577 \times 125$ 4 h = 1200
j	50^{3} $+an0 = 1200$
	- 5 radians s 1 50
	3462 = 24
	577 24
	<u>/o h</u>
	<u>-/h</u>
Ì	


$(b)(i) x = 2 + cos^{2} t$
$\dot{z} = 2\cos t x - \sin t$
= - 2 sint cost
= - sinat
$\tilde{x} = -2\cos 2t$
$= -2(2\cos^2 t - 1)$
$= -4\cos^2 t + 2$
= -4(x-2)+2
= 10-400 as required
$\frac{OR}{=} \frac{x = 2 + \cos t}{2 + \frac{1}{2}(\cos 2t + 1)}$
$\frac{2^{\frac{1}{2}} + \frac{1}{2} \cos 2t}{\cos 2t}$
$\dot{x} = -\sin 2t$
2 - 20052+
$= -2(x-2\frac{1}{2}) \times 2$ = 10 - 42c as required
10 - 42c as required
$(ii) \hat{x} : 10 - 4x$
$=-4(x-2\frac{1}{2})$
/ which is of the fame $\tilde{x} = -n^2(x-x_0)$
(acceleration is proportional to displacement
but in the opposite derection)
OR x = 2½ + ½ cos 2t
which is just a transformation of 2c= cost
So is simple harmonic
(iii) centre: x = 21 period = 211
2
amplitude = 1 Vone correct
J. Three coffeet
V. TIME CONCE



_	(C) Step1: let n=1
	$f(x) = \frac{1}{x^2}$
•	
_	$f(x) = -\frac{1}{x^2}$
_	$row f^{(1)}(x) = \frac{(-1)^{1}}{x^{1+1}}$
	now f''(x) = (-1)!
_	= -1 as required
_	3C2
	the result is true for n=1
	The folder it and
	stepa: suppose is a positive integer
	for which the result is true
	that is $f^{(k)}(x) = (-1)^k k!$ $= (-1)^k k! x^{-(k+1)}$ $= (-1)^k k! x^{-(k+1)}$
	x 1 1 2 − (K+1)
-	= (-1) K, K
-	we now prove the result is true for
	n= K+1, that is we prove that
	$f(\kappa+1)(x) = (-1)^{\kappa+1}(\kappa+1).$
	2€K+2
	$1000 f^{(k+1)}(x) = -(k+1)(-1)^{k} k! x^{-(k+1)-1} by$ $= (-1)^{k+1} (k+1)! 2c^{-(k+2)}$
_	$ \omega f (x) = -(k+1)(-1) k \cdot x $
_	(K+1 (
	1 1 (x+1) - 00 1
	- (-1) Kri (K+1)! as 2CK+2 required
	so by the principle of mathematical
_	all positive integer n
	all positive integes n

