1R10 Hay aparly aboo

Question One (16 marks)

- 1 Calculate the area of a circle with radius 8 cm.
- 2 Calculate the circumference of the above circle.
- 3. Simplify $3\sqrt{2} \times 5\sqrt{2}$
- 4. If $\tan A = 1.234$ find A to the nearest minute.
- 5. Find the value of x if y = 3x 4 and y = -22
- 6. Simplify $6a^2 + a 3a^2 4a$
- 7. Simplify $(3a^2)^3$
- 8. A rhombus has diagonals x units and y units. What is its area?
- 9. Find the x intercept of the line whose equation is 2x + y = 10
- 10. Complete the following; 'If two lines are parallel then their gradients are
- 11 Calculate the surface area of a cube with side 12 cm
- 12. Write down the pattern rule for the table below.

х	0	ì	2	3
у	-2	2	6	10

- 13. Factorise $15a^2 5a$
- 14. Find the co ordinates of the vertex of the parabola $y = x^2 + 1$
- Find the simple interest rate which will allow \$5 500 to earn \$990 interest in 4
 years.
- 16. Rationalise the denominator of $\frac{2}{\sqrt{3}}$

Question Two (16 marks)

- 1. Simplify $\frac{10x+8}{4}$
- 2. Expand and simplify (y+7)(2y-1)
- Calculate the length of side AB in the triangle below correct to two decimal places.

- 4. Factorise; $x^2 2x + 1$
- 5.

Match each graph above with an equation below

$$x = 4$$

$$y = 4$$

$$y = \frac{4}{x}$$

$$x + y = 4$$

$$x - y = 4$$

- 6. Solve; $\frac{3x}{2} \frac{2x}{5} = 12$
- Fei borrowed \$16 000 at 12%pa simple interest for 5 years so that she could buy a second hand car. At the end of the 5 years both interest and loan had been repaid.
 -) How much interest was charged?
 - b) How much was paid back altogether?
 - If the loan was repaid in equal monthly payments over the five years, calculate the amount of each repayment
- 8. The population of a small country town is decreasing by 15% of its population every year. What would the population be in ten years time if it is now 2700?

Question Three (16 marks)

- 1. Simplify; $\sqrt{75}$
- 2. Find the gradient of the line whose equation is 2x-3y+4=0
- Banks often advertise interest rates as daily rates. Find an equivalent interest rate per annum for 0.06027% per day.
- 4. Given the equation of a circle is $x^2 + y^2 = 9$ find;
 - a) The co ordinates of its centre
 - b) The radius
- 5. Given the points P(-2, 8), Q(4, 6) find;
 - a) The gradient of PO
 - b) The co ordinates of the midpoint of PQ
 - c) The length of PQ
- 6 Given the parabola $y = 6x x^2$
 - a) Find the x intercepts
 - b) What is the equation of the axis of symmetry?
 - c) What are the co ordinates of the vertex?
 - d) Draw a neat sketch of the parabola
- Jessica invested \$15 000 for 4 years at a rate of 8.5% pa compound Interest (compounded yearly);
 - a) To what amount did the investment grow in this time.
 - b) How much interest was earned altogether.

Question Four (16 marks)

- 1. Find the simple interest earned on \$2500 at 8%pa invested for ten months.
- 2 If $y=-x^2+c$ find c when x = 2, y = 6
- 3. Solve the following pair of simultaneous equations;

$$\begin{cases} 8x - 2y = 6 \\ 4x + 6y = 22 \end{cases}$$

- 4. Factorise; $3a^2 + 7a 6$
- 5. Draw a neat sketch of each of the following showing relevant features;

a)
$$y = 2^{x}$$

b)
$$xy = -2$$

c)
$$y = -2x^2$$

6. Find the equation of the circle below.

Question Five (16 marks)

1 On the same set of axes draw a neat sketch of $y = x^2$ and $y = 2x^2$

2 Solve $6-3x \le -9$

3. Mei invested some money for one year. One half was invested at 12% pa, one third at 10% pa and the rest at 9% pa. What was the overall interest rate?

4. My grandmother invested \$100 fifty years ago at a fixed rate compounded annually. The investment has now grown to \$2 330.67. What rate of interest per annum is being paid?

5. After having depreciated at a rate of 9% pa, a motor vehicle is now worth \$15 000. What was its value six years ago?

6. Change the subject of the formulae to y in 3y = ay + 4

7. Find the equations of the following;

8. Factorise $a^3 - a - a^2 + 1$

αβχδεφφητικλμνοπωθθροςτυωξψζ

Answers

- ひ (= 入下) = 16 Tcm = 50-3 (to ld.p)
- 3) 30
- 4) Kinning 50° 59'
- s) 22 = 32-4 -18 = 31 λ*=*-6
- 6) 6a1 + a 3c2 4a = 302 - 30
- 7) (3~2) = よ7~6
- 8) A= 1 xy
- 9) on x axis y=0 えん= 10 **化二** 5
- 10) egual
- 11) 6 x 144 cm = 864 cmc
- 12) y = 4x 2
- 13) Sa(3u-1)
- 14) (C, 1)

1 /1 10 1 TALY 2000

$$\frac{2}{1}\frac{2(5x+4)}{4} = \frac{5x+4}{2}$$

- (2) (y+7) (Ly-1) = 2y2-y+14y-7 = 2y + 13y -7
- 3) Ars = sin 330 A13 = 15 sin 33" = 8.17 (correct to 20/10)
- 4) x 2x+1= (x-1)-
- (5) A; 244 = 4 $B, \lambda = 4$ C: x-y = 4 D: 9= 4
- (5) $\frac{3n}{2} \frac{2n}{5} = 12$

multiply throughout by 10 15x - 4x = 120 => 11x=120 z = 10 10

- 6) SI. = 12% x \$16000 x 57-3 a) = \$9600
 - b) \$16 000+ \$9600 = \$25 600
 - <u>8426.67</u>

7) P = 2700 (1-0.15) 10 = 531 pauple

- 2) 22-34+4=0 3y = 2xx 4 y= ラル+ 生
- 3) 0.06027 × 365 = 22%
- 4) centra (0,0) radius 3
- 3) am = 8/1/2-4
 - b) $-\frac{2+4}{2}$ 8+c (1, 7)
 - c) $d = \sqrt{(2-4)^2 + (8-6)^4}$ = 140 = 2510
- 4) 4 = 611-12 a) on the 12 axis y=0 (0x3 2 412 - cy = 18 0 - 6x -xL 0= 76 (6-76) n=0 , x=6

() when x = 3 y = 6(3) - 31 10 (3, 9)

- s.a) A= 15000 (1.085) 4 = \$ 20 787.88
- b) \$20787.88-\$15000 = \$5787.88

Q 4 1)5.1:8% × 2500 × /2 = \$166.67

- 2) リニーハリナム 6=-(2)2+C 6 = -4+6 C = 10
- 3) 87-29=6 4h + 6q = 22
- 282 = 40 (E) + 3 九二十5
- 8(=) 1.7= 6

- 1) $6 3k \le -9$ $-3k \le -15$ $2 \ge 5$
- 5) \$ 4 12%, \$ 44 10%, \$ a+ 9% = 10 = %

4) $A = P(1 + \frac{7}{150})^n$ $2330.67 = 100(1 + \frac{7}{150})^5$ $2330.67 = (1 + \frac{7}{150})^5$ $\sqrt{2330.67} = 1 + \frac{7}{150}$

- \$26114.53

6.
$$3y = ay + 4$$

 $3y - ay = 4$
 $y(3-a) = 4$
 $y = \frac{4}{3-a}$

- 7. a) $y = mx^{2}, m = \frac{2}{3}$ $y = \frac{2}{3}x$
- b) $y = a(x 3)^2$ when x = 0, y = 18 x = 2 $y = x(x 3)^2$
- c) $y = \alpha(n-2)(x-6)$ $-4 = \alpha(4-2)(4-6)$ $-4 = -4\alpha$ $\alpha = 1$ y = (n-1)(n-6)
- $\begin{array}{lll}
 4) & \alpha^{3} \alpha \alpha^{4} + 1 \\
 & = \alpha^{3} \alpha^{4} \alpha + 1 \\
 & = \alpha^{4} (\alpha 1) 1(\alpha 1) \\
 & = (\alpha + 1)(\alpha 1)(\alpha 1) \\
 & = (\alpha + 1)(\alpha 1)(\alpha 1)
 \end{array}$

$$= (a+1)(a-1)^2$$

4. (3a-2)(a+3)

