Basic Algebra

Marks:

/60

Time: 1 hour 30 minutes

Date: .....

## **INSTRUCTIONS TO CANDIDATES**

Section A (30 marks)

Time: 45 minutes

- 1. Answer all the questions in this section.
- Calculators may not be used in this section.
- All working must be clearly shown. Omission of essential working will result in loss of marks.
- The marks for each question is shown in brackets [ ] at the end of each question.

Given that a = -2, b = -3 and  $c = 2\frac{14}{25}$ , evaluate  $b^2 - 2a^3 + \sqrt{c}$ .

Answer.....[2]

Simplify

(a) 
$$12x - 15y - 3(6x - 9y)$$
,  
(b)  $6xy \div 2y \times 3x$ ,

(b) 
$$6xy \div 2y \times 3x$$
,

(c) 
$$\frac{1}{3} \left[ 7x + \frac{1}{5} (10x - 15) \right]$$
.

Answer (a) ......[1]

(b) ......[1]

(c) ......[1]

3 Write true (T) or false (F) beside each of the following statements.

Answer

(a) 
$$3(p-q) = 3p - 3q$$

[1]

(b) 
$$4 \times (-2p)^3 = -8p^3$$

[1]

(c) 
$$(-3p)^2 < (-5p) \times (6p)$$

[1]

- At a book warehouse sale, Simon bought 5 novels at x each, x novels at a each and 6 novels at x each. Find as simply as possible, an expression in terms of x and/or x for
  - (a) the total number of novels,
  - (b) the total cost of the novels purchased by Simon.

| Answer | (a)    | • | novels | [1] |
|--------|--------|---|--------|-----|
|        | (b) \$ |   |        | r11 |

- Simplify each of the following.

  - (a)  $\frac{5}{2x} \frac{4}{3x}$ (b)  $\frac{7x 5}{6} \frac{3(x 2)}{4}$

Answer (a) ......[1]

*(b)* ......[3]

Linda bought x pencils at y cents per dozen. She sold them for z cents each. Find an expression for the profit in cents that she made.

- 7 (a) Simplify  $18a^2b^3 \div 12ab^2 \div \frac{3}{a^2b}$ .
  - (b) Use your answer from (a) to evaluate  $18a^2b^3 \div 12ab^2 \div \frac{3}{a^2b}$  when  $a = -\frac{1}{2}$  and b = -4.

- 8 PQRS is a rectangle and T is a point on PS. Given that PQ = (2x + 3) cm, ST = (5 x) cm and the perimeter of the rectangle is (14x 10) cm. Find, in terms of x, an expression for
  - (a) QR,(b) PT

]

giving each answer in its simplest form.



Answer (a) 
$$QR = .....$$
 cm [2]

(b) 
$$PT = ..... cm [1]$$

9 The average mass of m apples and n pears is p grams. If the average mass of the apples is q grams, find an expression for the average mass of the pears.

Answer (a) ..... grams [3]

- 10 A shopkeeper bought 24 pens at x cents each and 40 pencils at y cents each. He then repacked the pens and pencils into packets which contained 3 pens and 5 pencils. He sold each packet for (7x + 8y) cents each.
  - (a) Write down, in terms of x and y, an expression for
    - (i) the amount of money he spent on the stationery,
    - (ii) the total amount of money received for selling all the packets of stationery.
  - (b) Find his profit, giving your answer as simply as possible.

Answer (a) (i) ......cents [1]

(ii) ......cents [1]

(b) .....cents [2]

## INSTRUCTIONS TO CANDIDATES

### Section B (30 marks)

Time: 45 minutes

- 1. Answer all the questions in this section.
- 2. Calculators may be used in this section.
- 3. All working must be clearly shown. Omission of essential working will result in loss of marks.
- 4. The marks for each question is shown in brackets [ ] at the end of each question.

#### 11 Simplify

(a) 
$$6a^2 + 5a - 3a(a-2) - 7(a-3)$$
,

(b) 
$$15b - \{9b - [8c - 2(b - 3c)]\},\$$

(c) 
$$3d-2\{d-4(d-2e)-[(d-3e)-(2d-e)]\}.$$

3]

ed or

[1]

[1]

[2]

2bra

Test 7: Basic Algebra

12 Simplify

(a) 
$$2x + \frac{3x - 2y}{3} - \frac{2x - 5y}{5}$$
,

(b) 
$$\sqrt{p^3 q \div \sqrt{16q^2} \times \frac{q^2}{p}}$$
.

Answer (a) ......[3]

(b) ......[3]

- 13 (a) Given that  $p=\frac{1}{2}$ ,  $q=-\frac{1}{3}$ , r=6 and s=-4, find the value of  $\frac{9}{r-ps}+\frac{1}{\frac{1}{p}-\frac{1}{q}}.$ 
  - (b) Add  $(3x^2 5x + 10)$  to  $(9x^2 4x 3)$  and then subtract the result from  $(15x^2 13x 8)$ . Give your answer in descending powers of x.

[3]

[3]

·bra

(b) ......[3]

Test 7: Basic Algebra

- 14 (a) Five men bought some electric cables at a shop. Andy bought p pieces of cables each of length 50 m, Ben bought q pieces of cables each of length 65 m, Carl bought q pieces of cables each of length 80 m, Denise and Edward each bought p pieces of cables each of length 125 m. Write down an expression in terms of p and q for
  - (i) the total number of cables bought by the men,
  - (ii) the total length of all the cables.
  - (b) Jenna is *n* years old. Terence, her brother is 8 years older than Jenna. Their father is 3 times as old as Jenna. Find the father's age when Terrence was born.

| [1] | cables | ********** | (a) (i) | nswer | Aı |
|-----|--------|------------|---------|-------|----|
| [2] | metres | ••••••     | (ii)    |       |    |
| [2] | years  |            | (b)     |       |    |

(b) A tailor sewed n cushion covers using different types of materials. p of them were made from cotton, 2p of them were made from silk and the rest of them were made from linen.

(i) Express in terms of n and p, the number of cushion covers which were made from linen.

(ii) If she sold each cotton cushion cover for \$9, each silk cushion cover for \$24 and each linen cushion cover for \$18, calculate the total amount she would receive for selling all the cushion covers, giving your answer in terms of n and p.

| Answer | (a) | \$      | [2] |
|--------|-----|---------|-----|
|        | (b) | (i)     | [1] |
|        |     | (ii) \$ | [3] |

Test 7: Basic Algebra

[]

ρf

)f

;S

| Shenton Privat | e school        | No of students    |
|----------------|-----------------|-------------------|
| Levels         | No. of students | (Nearest hundred) |
| Secondary 1    | 1095            | 1100              |
| Secondary 2    | 1253            | 1300              |
| Secondary 3    | 1570            | 1600              |
| Secondary 4    | 2946            | 2900              |

- (b) Estimated enrolment
  - = 1100 + 1300 + 1600 + 2900

  - ≈ 7000 (correct to the nearest thousand)
- (c) (i) Estimated cost of tickets

$$=\frac{7000}{2_1}\times$30^{15}$$

(ii) Total no. of students who attended the concert

$$= \frac{3}{4} \times (1095 + 1253 + 1570 + 2946)$$
$$= 5148$$

Total no. of students and guests

- $=4\times5148$
- = 20592

Actual cost of tickets

- $= 20592 \times $30$
- **\$617 760**
- ≈ \$617 800 (correct to 4 sig. fig.)
- 14. (a) (i)  $89.58\dot{7} = 89.5877...$

$$106.49\dot{2} = 106.49292...$$

$$-2.713 = -2.713713...$$

$$16.\dot{8}\dot{1} = 16.8181...$$

Sum of 5 no.s

- = 89.5877... + 106.4929... + (-2.7137...)
- + 16.8181... + 55.5555...
- ≈ 265.741 (correct to 3 d.p.)
- (ii) Difference
  - = 106.4929... (-2.7137...)
  - = 109.2 (correct to 4 sig. fig.)
- (b) (i) Estimated amount
  - $\approx 6 \times \$2 + 9 \times \$3.50 + 5 \times \$6$
  - = \$73.50
  - ≈ \$74 (correct to the nearest dollar)

(ii) Actual amount

$$= 6 \times \$1.99 + 9 \times \$3.48 + 5 \times \$6.04$$

Difference

- = \$0.54
- 15. (a) Estimated area of rectangular floor

 $= 40 \text{ m}^2$ 

Estimated amount

- $\approx 40 \times $12$
- = \$480
- ≈ \$500 (correct to the nearest hundred dollars)
- (b) Volume of cuboid = Length × Breadth × Height

$$Height = \frac{Volume}{Length \times Breadth}$$

Height = 
$$\frac{56 \ 489}{24.68 \times 19.76}$$

Estimated height 
$$\approx \frac{56000}{25 \times 20}$$

= 112

 $\approx 100~cm$  (correct to 1 sig. fig.)

# Test 7: Basic Algebra

# Section A

1. 
$$a = -2$$
,  $b = -3$ ,  $c = 2\frac{14}{25}$ 

$$b^2 - 2a^3 + \sqrt{c}$$

$$= (-3)^2 - 2(-2)^3 + \sqrt{2\frac{14}{25}}$$

$$=9-2(-8)+\sqrt{\frac{64}{25}}$$

$$=9+16+\frac{8}{5}$$

$$=25+1\frac{3}{5}$$

$$=26\frac{3}{5}$$

### Teacher's Tip

2. (a) 
$$12x - 15y - 3(6x - 9y)$$

$$= 12x - 15y - 18x + 27y$$

$$= 12x - 18x - 15y + 27$$

$$= 12x - 18x - 15y + 27y$$

$$= -6x + 12y$$

term inside the

(c) 
$$\frac{1}{3} \left[ 7x + \frac{1}{5} (10x - 15) \right]$$
  
=  $\frac{1}{3} [7x + 2x - 3]$   
=  $\frac{1}{3} [9x - 3]$   
=  $3x - 1$ 

3. (a) 
$$3(p-q) = 3p - 3q$$
 T

(b) 
$$4 \times (-2p)^3 = 4 \times (-8p^3)$$
  $= -32p^3$   $= -32p^3$   $= -8p^3$   $= -8p^3$   $= -8p^3$   $= -8p^3$   $= -8p^3$   $= -8p^3$   $= -8p^3$ 

(c) 
$$(-3p)^2 = 9p^2$$
  
 $(-5p) \times 6p = -30p^2$   
 $\therefore 9p^2 > -30p^2$   
 $\therefore (-3p)^2 < (-5p) \times (6p)$ 

4. (a) Total no. of novels  
= 
$$5 + n + 6$$
  
=  $11 + n$ 

(b) Total cost of novels  
= 
$$$[5x + 8n + 6(2x)]$$$
  
=  $$[5x + 8n + 12x]$$   
=  $$[8n + 17x]$ 

5. (a) 
$$\frac{5}{2x} - \frac{4}{3x}$$

$$= \frac{15 - 8}{6x}$$

$$= \frac{7}{6x}$$

(b) 
$$\frac{7x - 5}{6} - \frac{3(x - 2)}{4}$$

$$= \frac{2(7x - 5) - 9(x - 2)}{12}$$
The LCM of 6 and 4 is 12
$$= \frac{14x - 10 - 9x + 18}{12}$$

$$= \frac{5x + 8}{12}$$

6. Cost of 12 pencils = y cents

Cost of 1 pencil = 
$$\frac{y}{12}$$
 cents

Cost of x pencils =  $x \times \left(\frac{y}{12}\right)$ 

=  $\frac{xy}{12}$  cents

Sale of x pencils =  $xz$  cents

Profit made =  $\left(xz - \frac{xy}{12}\right)$  cents

7. (a) 
$$18a^2b^3 \div 12ab^2 \div \frac{3}{a^2b}$$
  
=  $18a^2b^3 \times \frac{1}{12ab^2} \times \frac{a^2b}{3}$   
=  $\frac{a^3b^2}{a^2}$ 

# Change '+' to '> and invertifie divisor.

(b) 
$$18a^2b^3 \div 12ab^2 \div \frac{3}{a^2b}$$
  

$$= \frac{a^3b^2}{2} \leftarrow \text{From part (a)}$$

$$= \frac{(-\frac{1}{2})^3 (-4)^2}{2}$$

$$= \frac{-\frac{1}{8} \times 16}{2}$$

$$= \frac{-2}{2}$$

$$= -1$$

8. (a) 
$$QR = [(14x - 10) - (2x + 3) - (2x + 3)] \div 2$$
  
=  $[14x - 10 - 2x - 3 - 2x - 3] \div 2$   
=  $[10x - 16] \div 2$   
=  $(5x - 8)$  cm

(b) 
$$PT = PS - TS$$
  $PS = OR \sin c PORS is a rectangle$   
=  $(5x - 8) - (5 - x)$   
=  $5x - 8 - 5 + x$   
=  $(6x - 13)$  cm

Total mass of apples and pears
 = [(m + n)p] grams
 Total mass of apples
 = mq grams

Total mass of pears = [(m + n)p - mq] grams

Average mass of pears

$$= \left[ \frac{(m+n)p - mq}{n} \right] \text{ grams}$$
$$= \left[ \frac{mp + np - mq}{n} \right] \text{ grams}$$

10. (a) (i) Amount spent 
$$= (24x + 40y)$$
 cents



Total amount received = 8(7x + 8y)= (56x + 64y) cents

- (b) Profit = Amount received Amount spent = (56x + 64y) - (24x + 40y)= 56x + 64y - 24x - 40y= (32x + 24y) cents
- Teacher's Tip

  To simplify an algebraic expression containing
  brackets

  Simplify the expressions within the brackets
  first starting with the innermost brackets

  If the expression inside the brackets is
  multiplied by a number or a variable, multiply
  each term inside the brackets by the number or
  the variable s
  - (a)  $6a^2 + 5a 3a(a-2) 7(a-3)$ =  $6a^2 + 5a - 3a^2 + 6a - 7a + 21$ =  $3a^2 + 4a + 21$
  - (b)  $15b \{9b [8c 2(b 3c)]\}$ =  $15b - \{9b - [8c - 2b + 6c]\}$ =  $15b - \{9b - [14c - 2b]\}$ =  $15b - \{9b - 14c + 2b\}$ =  $15b - \{11b - 14c\}$ = 15b - 11b + 14c= 4b + 14c
  - (c)  $3d 2\{d 4(d 2e) [(d 3e) (2d e)]\}$ =  $3d - 2\{d - 4d + 8e - [d - 3e - 2d + e]\}$ =  $3d - 2\{-3d + 8e - [-d - 2e]\}$ =  $3d - 2\{-3d + 8e + d + 2e\}$ =  $3d - 2\{-2d + 10e\}$ = 3d + 4d - 20e= 7d - 20e
- 12. (a)  $2x + \frac{3x 2y}{3} \frac{2x 5y}{5}$  The ECM (6F3)  $= \frac{30x + 5(3x 2y) 3(2x 5y)}{15}$   $= \frac{30x + 15x 10y 6x + 15y}{15}$   $= \frac{39x + 5y}{15}$

(b) 
$$\sqrt{p^3 q \div \sqrt{16q^2} \times \frac{q^2}{p}}$$

$$= \sqrt{p^3 q \div 4q \times \frac{q^2}{p}}$$

$$= \sqrt{p^3 q \times \frac{1}{4q} \times \frac{q^2}{p}}$$

$$= \sqrt{\frac{p^2 q^2}{4}}$$

$$= \sqrt{\left(\frac{pq}{2}\right)^2}$$

$$= \frac{pq}{4}$$

13. (a) 
$$p = \frac{1}{2}, q = -\frac{1}{3}, r = 6, s = -4$$

$$\frac{9}{r - ps} + \frac{1}{\frac{1}{p} - \frac{1}{q}}$$

$$= \frac{9}{6 - (\frac{1}{2})(-4)} + \frac{1}{(\frac{1}{2})} - \frac{1}{(\frac{-1}{3})}$$

$$= \frac{9}{6 + 2} + \frac{1}{2 + 3}$$

$$= \frac{9}{8} + \frac{1}{5}$$

$$= 1\frac{13}{40}$$

- (b)  $(3x^2 5x + 10) + (9x^2 4x 3)$ =  $12x^2 - 9x + 7$  $15x^2 - 13x - 8 - (12x^2 - 9x + 7)$ =  $15x^2 - 13x - 8 - 12x^2 + 9x - 7$ =  $3x^2 - 4x - 15$
- 14. (a) (i) Total no. of cables = p + q + q + 2p = 3p + 2q
  - (ii) Total length of cables = 50p + 65q + 80q + 2(125p)= 50p + 65q + 80q + 250p= (300p + 145q) metres
  - (b) Terence's age = (n + 8) years Father's age = 3n years Father's age when Terence was born = 3n - (n + 8)= 3n - n - 8= (2n - 8) years
- 15. (a) Cost price of paintings = \$(3y)(n)= \$(3ny)Selling price of paintings = \$(n-y)(n)-  $\$(n^2-ny)$ Loss = Cost price - Selling

Loss = Cost price - Selling price  
= 
$$\$3ny - \$(n^2 - ny)$$
  
=  $\$[3ny - n^2 + ny]$   
=  $\$(4ny - n^2]$ 

- (b) (i) No. of cushion covers made of linen = n - p - 2p = n - 3p(ii) Total amount
  - (ii) Total amount = [9p + 2p(24) + (n - 3p)(18)]= [9p + 48p + 18n - 54p]= [3p + 18n]