

Waverley College
Year 12
2 Unit Examination
Mid Semester
2007

TIME ALLOWED: 5 MINUTES READING 2 HOURS WRITING

INSTRUCTIONS:

Attempt all questions.

Begin each question in a new booklet as directed.

Approved calculators may be used.

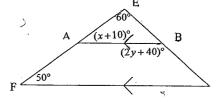
Write in blue or black pen only.

Show all necessary working.

Marks may be deducted for careless or poorly arranged work.

Outcomes:

- P1- Demonstrates confidence in using mathematics to obtain realistic solutions to problems
- P2 Provides reasoning to support conclusions which are appropriate to the context
- P3-Performs routine arithmetic and algebraic manipulation involving surds, simple rational expressions P4 Chooses and applies appropriate arithmetic, algebraic, graphical, trigonometric and geometric
- P5- Understands the concept of a function and the relationship between a function and its graph
- P6-relates the derivative of a function to the slope of its graph
- P7-determines the derivative of a function through routine application of the rules of differentiation
- P8-understands and uses the language and notation of calculus
- H1 seeks to apply mathematical techniques to problems in a wide range of practical contexts
- H2 constructs arguments to prove and justify results
- H4 expresses practical problems in mathematical terms based on simple given models
- H5 applies appropriate techniques from the study of calculus, geometry, probability, trigonometry and series to solve problems
- H6-uses the derivative to determine the features of the graph of a function
- H7-uses the features of a graph to deduce information about the derivative
- H8- uses techniques of integration to calculate areas and volumes
- H9 communicates using mathematical language, notation, diagrams and graphs


Question 1 Begin a new booklet

a) Evaluate: |-6|-|-7|1

b) Solve: 5a-7=4(2a+3)2

c) Factorise: x^4-16 2

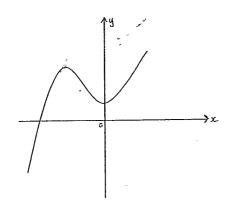
d) Find the value of all pronumerals, giving clear reasons for your answers.

e) Find the coordinates of the point on the curve $y = 3x^2 - 2x + 1$ where the tangent is parallel to the straight line y = 4x - 1.

3

Question 2	(12 marks)
a) If α and β are the roots of the equation $x^2 - 2x - 7 = 0$, find the	ne values of:
(i) $\alpha + \beta$	1
(ii) αβ	_ 1
(iii) $\alpha^2 + \beta^2$	2
b) For what values of k will the equation $x^2 + (k-1)x - (2k+1) =$	0 have
(i) real roots?	3
(ii) one root equal to 4?	2
c) Solve the following equation for all real values of x. $x^4 - 3x^2 - 4 = 0$	3
Question 3 Begin a new booklet	(12 marks)
a) For the parabola $y = x^2 - 6x + 10$	
(i) Find the coordinates of the vertex.	2
(ii) Find the coordinates of the focus.	2
(iii) Find the equation of the directrix.	1
b) Let A and B be the fixed points $(-2,0)$ and $(1,0)$ and let the point P be the variable point (x,y) .	
(i) Find expressions for the distance PA and PB.	2
(ii) The point P moves so that PA = 2.PB (i.e. PA = 2 times PB)	2
Prove that the locus of P is $x^2 - 4x + y^2 = 0$.	2
(iii) Find the centre and radius of this circle.	3

Question 4	(8 marks)						
a) A set of 30 cards is labelled from 1 to 30. A card is drawn at random. Find the probability that the card will be							
(i) an odd number.	1						
(ii) a multiple of 3.	1 -						
(iii) a number greater than 10 and a multiple of 5,	1						
b) The probability that a set of traffic lights will show green is $\frac{3}{8}$							
(i) What is the probability that the light will not be green?	1						
(ii) A motorist has to drive through two sets of lights. Draw a tree diagram showing the possible outcomes and probabilities on each branch.	the 1						
(iii) Find the probability that the lights will both be green.	1						
(iv) Find the probability that the lights will be green at least one time.	2						


Question 5 Begin a new booklet

(12 marks)

a) For the function $f(x) = 6 - 3x - x^2$, find the values of x for which the function is monotonic increasing.

3

b) The diagram shows the graph of a function.

(i) Copy this graph.

(ii) On a new set of axes, draw a sketch of the derivative of the function. i.e. y'.

2

c) The equation for the expense per year (in tens of thousands of dollars) of running a certain business is given by

$$E = x^2 - 8x + 17$$

where x is the number (in hundreds) of items manufactured.

(i) Find the expense of running the business if no items are manufactured.

1

(ii) Find the number of items needed to minimise the expense of the business.

3

2

(iii) Find the minimum expense of the business (consider units).

Question 6.

(12 marks)

a) Evaluate $\int_{1}^{2} \frac{dx}{x^2}$

2

b) Find the area bounded by the x-axis, the curve $y = x^3$ and the lines x = -1 and x = 3.

4

c) A surveyor wrote down the following measurements for an irregular block of land, All measurements are in metres.

· · · · · · · · · · · · · · · · · · ·							
	0	4	8	12	16	20	24
	0	7.12	8.92	10.85	.9.76	6.80	0

Calculate the area of the block of land using Simpson's Rule, correct to two decimal places.

d) The region which lies between the x-axis and the line y = x+1 from x=0 to x=3 is rotated about the x-axis to form a solid. Find the volume of the solid in terms of π .

(12 marks)

2

Question 7 Begin a new booklet

a) The first 3 terms of an arithmetic series are 40 + 34 + 28 + ...

(i) Find an expression in simplest form for the nth term.

(ii) Find the 50th term of the series.

*(iii) Calculate the sum to 50 terms of the series.

b) The first 4 terms of a geometric series are 3+9+27+81+...

(i) Find the 7th term .

(ii) Find the sum of the first 10 terms

(iii) How many terms of the series will give a sum of 21 523 359?

c) Evaluate the limiting sum of the geometric series $32 + 16 + 8 + \dots$ 2

Busstion 1

(1)
$$|-6|-|-7|=6-7$$

$$3a = -19$$
 (1)

$$\alpha = -\frac{19}{3} \qquad (1)$$

c)
$$x^4 - 16 = (x^2 + 4)(x^2 - 4)$$
 (1)
= $(x^2 + 4)(x + 2)(x - 2)$ (1)

of
$$x + 10 = 50$$
 (corresponding surgles on 11 lines) (1) $x = 40$ (1):

$$2y + 40 = 60 + 50$$
 (exterior angle sum Δ) (1)
 $2y = 70$
 $y = 35$ (1)

$$\frac{dy}{dx} = 6x - 2 \quad (1)$$

$$x = 1 \quad (1)$$

· Question 2

a)
$$x^2 - 2x - 7 = 0$$

$$(ii) \ll 3 = -7 \qquad (i)$$

$$(in) <^{2} + \beta^{2} = (< + \beta)^{2} - 2 < \beta$$

$$= (2)^{2} - 2(-7) (1)$$

$$= 18 (1)$$

b) (i)
$$\Delta = (k-1)^2 - 4 \times (2k+1)$$

 $\Delta = K^2 - 2k+1 + 8k+4$
 $\Delta = K^2 + 6k + 5$ (1)

$$K^{2}+6k+5 \ge 0$$
 (1)
 $(k+1)(k+5) \ge 0$

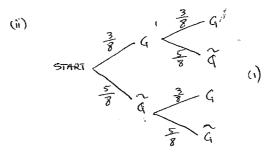
$$(4)^{2} + (k-1)\cdot 4 - (2k+1) = 0$$
 (1)
$$16 + 4k - 4 - 2k - 1 = 0$$

$$k = -\frac{11}{2} \quad (1)$$

c)
$$x^4 - 3x^2 - 4 = 0$$

 $(x^2 + 1)(x^2 - 4) = 0$ (1)

$$\chi^2 = -1 \qquad \chi^2 = 4$$

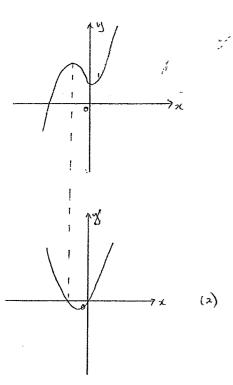

no real
$$x = \pm 2$$
 (1)

· Question 3

- a) (1) $y = x^2 6x + 10$ $x^2 - 6x + 9 = y - 10 + 9$ $(x - 3)^2 = y - 1$ $(x - 3)^2 = 4x \frac{1}{4} \times (y - 1)$ (1) 2. Vertex is (3, 1) (1)
 - (ii) $a = \frac{1}{4}$ (i) : Focus is $(3, 1\frac{1}{4})$ (i) i
- (iii) olirectrix, is $y = \frac{3}{4}$ (1)
- b) (i) $RA = \sqrt{(x+2)^2 + y^2}$ (1) $RB = \sqrt{(x-1)^2 + y^2}$ (1)
 - (ii) PA = 2.PB $\sqrt{(x+2)^2 + y^2} = 2\sqrt{(x-1)^2 + y^2}$ $(x+2)^2 + y^2 = 4\left[(x-1)^2 + y^2\right] (1)$ $x^2 + 4x + 4x + y^2 = 4\left[x^2 2x + 1 + y^2\right]$ $x^2 + 4x + 4x + y^2 = 4x^2 8x + 4x + 4y^2$ $3x^2 12x + 3y^2 = 0$ $x^2 4x + y^2 = 0$ (1)
 - (ii) $x^2 4x + 4 + y^2 = C + 4$ $(x - 2)^2 + y^2 = 4$ (1) \therefore Centre at (2,0) (1) and radius = 2 units (1)

· Question 4

- a) (i) $P(odd) = \frac{1}{2}$ (i)
 - (ii) P(multiple of 3) = 1/3 (1)
 - $(\tilde{n}) \mathcal{P}(\epsilon) = \frac{2}{15}$ (1)
- 5) (i) P(not green) = 5 (1)


- (iii) $P(GG) = \frac{3}{8} \times \frac{3}{8}$ = $\frac{9}{64}$ (1)
- (iv) $P(E) = 1 P(\widetilde{GG})$ (or other suitable method) $= 1 - \frac{1}{8} \times \frac{1}{8} = 1$ $= \frac{39}{64} = 1$

Questian 5

a)
$$f'(x) = -3 - 2x$$
 (1)

$$-2x > 3$$

b) (i)

c) (i)
$$E = \chi^2 - 8\chi + 17$$

 $E = (6)^2 - 8(6) + 17$

$$(ii) \frac{dE}{dx} = 2x - 8 \quad (1)$$

$$\frac{d^2E}{dx^2} = 2$$

which is >0

... min st. pt. at x=4

:. min number of items is 400 (1)

$$(\tilde{y})$$
 $E = (4)^2 - 8(4) + 17$.(1)

1. Min expense is \$10000 (1)

Duestian 6

a)
$$\int_{1}^{2} (x^{-2}) dh = \left[-x^{-1} \right]_{1}^{2}$$

$$= -\left[\frac{1}{x} \right]_{1}^{2}$$

$$= -\left[\frac{1}{2} - 1 \right]$$

$$= \frac{1}{2}$$
 (1)

b)
$$A = \left| \int_{1}^{0} x^{3} dx \right| + \int_{0}^{3} x^{3} dx$$
 (1)
$$A = \left| \left[\int_{1}^{4} x^{4} \right]_{0}^{0} \right| + \left[\int_{1}^{4} x^{4} \right]_{0}^{3}$$
 (1)

$$A = \left| 0 - \frac{1}{4}(-1)^4 \right| + \frac{1}{4} \left(3^4 - 0^4 \right)$$
 (1)

$$A = \frac{1}{4} + \frac{81}{4}$$

$$A = \frac{82}{4}$$

$$A = \frac{41}{2}$$
 units or $20\frac{1}{2}$ units (1)

c)
$$A = \frac{4}{3} \left[0 + 0 + 4 \left(7.12 + 10.85 + 6.8 \right) + 2 \left(8.92 + 9.76 \right) \right]$$
 (1) $A = 181.92 \, \text{m}^2$ (1)

(id)
$$V = \pi \int_{0}^{3} (x+1)^{2} ohc$$
 (i)

$$V = \pi \int_{0}^{3} (x^{2} + 2x + 1) dh$$

$$V = \pi \left[\frac{1}{3} x^{3} + x^{2} + x \right]_{0}^{3} (1)$$

$$V = \pi \left[\left[\frac{1}{3} (3)^{3} + (3)^{2} + 3 \right] - 0 \right] (1)$$

$$V = \pi \left[9 + 9 + 3 \right]$$

$$V = 2 |\pi | \text{ Units}_{3}^{3} (1)$$

Questian 7

a) (i)
$$T_n = 40 + (n-1)x-6$$
 (i)

$$T_n = 46 - 6n$$
 (1)

(i)
$$T_{50} = 46 - 6 \times 50$$

= -254

(iii)
$$S_{50} = \frac{50}{2} \left[40 - 254 \right]$$

$$= -5350$$
 (1)

$$(i) T_7 = 3x3^4$$
 (1)

(ii)
$$S_{10} = \frac{3(3^{10}-1)}{3-1}$$
 (i) = 88 572 (i)

$$\frac{\text{(ii)}}{3(3^{n}-1)} = 21523359 \quad \text{(1)}$$

$$n = 15 \qquad (1)$$

$$S_{\infty} = \frac{32}{1 - \frac{1}{2}}$$
 (1)