

Waverley College Year 12 2 Unit Mathematics Examination Term 2 2012

TIME ALLOWED: 50 MINUTES

STUDENT NUMBER/NAME:				
Of ODEN TOWNER OF THE PERSON O	-	_	 	

General Instructions

- Write using black or blue pen.
- Board-approved calculators and templates may be used.
- A list of standard integrals is provided at the end of the examination paper.
- All necessary working should be shown in every question.
- Record your solutions to the multiple choice on the tear-off sheet provided.
- Start Questions 7 & 8 on a new piece of paper.

SECTION 1	Multiple Choice	/6
SECTION 2	Q 7	/15
	Q 8	/13
TOTAL		/34
%		

SECTION I - Multiple Choice.

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

When simplified, $lne + lne^e$ is equal to:

- (A) 2e
- (B) 1 + e
- (C)2
- (D)e

QUESTION TWO

For the function $y = \ln(x^2 + 1)$, the derivative $\frac{dy}{dx}$ is equal to:

- (A) 2x
- (B) $2x \ln(x^2 + 1)$
- $(C) \frac{2x}{x^2+1}$
- (D) $2xe^{x^2+1}$

QUESTION THREE

The indefinite integral $\int \frac{15}{1-3x}$ is equal to:

- (A) $5\log_e(1-3x)+C$
- (B) $-45 \log_e (1 3x) + C$
- (C) $-5 \log_e (1 3x) + C$
- (D) $45 \log_{e} (1-3x) + C$

QUESTION FOUR

What is the value of $\sum_{r=-1}^{3} (4r-1)$?

- (A) 16
- (B) 15
- (C) 21
- (D) 27

QUESTION FIVE

The amount of interest earned when \$10000 is invested for a period of three years at 6% p.a and compounding monthly is given by

- (A) $10000(1.06)^{36}$
- (B) $10000(1.005)^3$
- (C) $10000-10000(1.06)^{36}$
- (D) $10000(1.005)^{36} 10000$

QUESTION SIX

For what values of x does the Geometric Series $(2x-3)+(2x-3)^2+(2x-3)^3+\dots$ have a limiting sum?

- (A) -1 < x < 1
- (B) -1 < x < 2
- (C) 0 < x < 1
- (D) 1 < x < 2

SECTION 2 Total Marks - 28

Start each question on a new piece of paper.

QUESTION SEVEN

a) Evaluate log₁₅ 21 to four significant figures.

b) Differentiate $y = \frac{e^{3x}}{3x+1}$

- . 2
- c) Find the gradient of the tangent to the curve $y = e^{5x}$ at the point (2, e^{10}) and hence find the equation of the tangent to the curve $y = e^{5x}$ at the point (2, e^{10}).
- d) Find the exact area enclosed between the curve $y = e^{-x}$, the x-axis and the lines x = In 3 and x = 1.
 - 2

- e) Differentiate
 - $y = \log_e(2x 5)$

1

ii) $y = x \ln x$

2.

f) Find $\int \frac{3x^2+2}{x^3+2x+5} dx$.

- g) Evaluate $\int_{1}^{2} \frac{3}{7-2x} dx$ correct to four significant figures.

QUESTION EIGHT

a)	The first times terms of a series are $12 \cdot 3 + 12 \cdot 7 + 12 \cdot 9 + \dots$	
	(i) Find the fiftieth term.	2
	(ii) Find the sum of the first fifty terms.	2
(b)	The first three terms of a geometric series are 2+6+18+ Find the first term of the series which is greater than 100 000.	3

- (c) When Julia started working she began paying \$100 at the beginning of each month into a superannuation fund. The contributions are compounded monthly at an interest rate of 6% per annum. She intends to retire after having worked 35 years.
 - (i) Let \$P\$ be the final value of Julia's superannuation when she retires after 35 years (420 months).
 Show that \$P = \$143 183 to the nearest dollar.
 - (ii) 15 years after she started working Julia read a magazine article about retirement and realised that she would need \$800 000 in her fund when she retires. At the time of reading the magazine article she had \$29 227 in her fund. For the remaining 20 years she intends to work, she decides to pay a total of \$M into her fund at the beginning of each month. The contributions continue to attract the same interest rate of 6% per annum, compounded monthly. At the end of n months after starting the new contributions, the amount in the fund is \$A_n.
 - (a) Show that: $A_2 = 29 \ 227 \times 1.005^2 + M(1.005 + 1.005^2)$
 - (β) Find the value of M so that Julia will have \$800 000 in her fund after the remaining 20 years (240 months).

END OF EXAMINATION

Ze 32/ 2 (32+1)2 1/3/2 3×+1 -e10 = 5E'0 1= 5e sic 32+1) ω الره مها 11000 1= 5e/0 ĉ 21 = 5e'2 50000 7= 1) ſΪ 3 1.124 10921 1 + 6 X U=63x u1=3e3x 10 m V= 32+ 10 12) -4-9e loe S, IUN ò \mathcal{D} 0 :3 23+22+5 7-24 322+2 w 2 1) Je-2 y=x/nx Z 1/n x 11 þ 4 14 12/ 11 loge 22-0.7662 w 2/4 1/m 3 -とと 7-2% 2 13 (x3+2x+5) 7-2% Ja 11 ルース 12.00 1m2

```
/ 8t. +151 =
                                      (1-042 SOO.1) SOO.1
             500.0 (est 7 (500.1) LEE PL - 000 008)= M

500.0 (est 7) M + (500.1) TEE PL = 000 008
                                                                                                                             860811 =
                                                                                                                                 (E) T = 1/2
(012 000.1 + ---- + 2500.1 + 500.1) M + (500.1) FEB PE = 046A
                                                                                                        . The 11th term is greater than 100000
                     (500.1 + 500.1) M + (500.1) LEG PE =
                                                                                                                    1+ 00005601 < U
                   (coo.1)M+ (coo.1)M+ (coo.1) recpe=
                                  (soc.1) M + (soo.1) A = 24
                                                                                                                    00005 601 < 1-4
                                                                                                                  000 05 hoj < 8 hoj (1-4)
                               (500.1) M + (200.1) FERPE = A (W
                                                                                                                      000 OS 1 -uE
                                                E818+1$=
                              \[\left(\frac{\sigma_0.0}{(1-\sigma_00.1)\soo'1}\right]\col=
                                                                                                                                          E = 4
                       [027 500.1 + ... + 500.1 + 500.1] 001 = 2 + MALY :
                                            (500.1) 001 = 0744
                                                                                                                  2.0 × 6+ + 5.21×6
                                                                                                                        7 E · CC = 05 (1 (v.
                                         14 (200.1) 001 = A (3
                                       cm = 71
```