2012

HIGHER SCHOOL CERTIFICATE

TRIAL EXAMINATION

Mathematics Extension 1

General Instructions

- o Reading Time 5 minutes
- o Working Time 2 hours
- o. Write using a blue or black pen
- o Board approved calculators may be used
- o A table of standard integrals is provided at the back of this paper
- Show all necessary working in Ouestions 11 - 14
- o Begin each question on a new sheet of paper.

Total marks (70)

Section I

10 marks

- o Attempt Questions 1-10
- o Answer on the Multiple Choice answer sheet provided.
- o Allow about 15 minutes for this section

Section II

60 marks

- o Attempt questions 11-14
- Answer on the blank paper provided, unless otherwise instructed, Start a new page for each question.
- o Allow about 1 hour 45 minutes for this section

$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$

$$\int \frac{1}{x} dx \qquad = \ln x, \quad x > 0$$

2012 Trial HSC Examination

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$$

NOTE:
$$\ln x = \log_e x$$
, $x > 0$

- 1. Calculate to 3 significant figures $\sqrt[5]{\frac{18.7 + 3.65}{\sqrt{(4.25)^3}}} =$
 - (A) 1.20
- (B) 1.206
- (C) 1.21
- (D) 12.6
- 2. In the diagram, ABCDE is a regular pentagon. The value of x is:

- (A) 90°
- B) 36°
- C) 108°
- (D) 72°

- 3. Find $\lim_{x\to 0} \frac{\sin 7x}{5x}$
 - (A) $\frac{7}{5}$
 - (B) 1
 - (C) $\frac{5}{7}$
 - (D) 0

- $4. \qquad \frac{d}{dx}[\cos(\ln x)] =$
 - (A) $-\sin(\ln x)$
 - (B) $\frac{\cos(\ln x)}{x}$
 - (C) $\sin(\ln x)$
 - (D) $\frac{-\sin(\ln x)}{x}$
- 5. Which graph represents the curve $y = 3\sin 2x$

(C)

(D)

- 6. Find an approximation of the root of $y = e^x 3x^2$ by using Newton's Method once and substituting with an approximation of x = 3.8 (answer correct to 2 decimal places)
 - (A) 3.74
 - (B) 4.22
 - (C) -12.06
 - (D) 3.7
- 7. $4 + \frac{3}{x^2} \frac{2}{x^3} + \frac{7}{x^5}$ can also be written as:
 - (A) $\frac{4x+3x-2x+7}{4x}$
 - (B) $\frac{4x^5 + 3x^3 2x^2 + 7}{x^5}$
 - (C) $\frac{4x^2 + 3x^2 2x^3 7x^4}{x^2}$
 - (D) $4 + \frac{3x^5 2x^3 + 7x^2}{x^{10}}$
- 8. Two dice are rolled and the sum of the numbers is written down. Find the probability of rolling a total less than 6.
 - (A) $\frac{1}{4}$
 - (B) $\frac{5}{36}$
 - (C) $\frac{5}{12}$
 - (D) $\frac{5}{18}$

2012 Trial HSC Examination

9.

- (A) $(x-y)(x^2+xy+y^2)$
- (B) $(2x-3y)(4x^2+6xy+9y^2)$

The correct factorisation of $8x^3 - 27y^3$ is:

- (C) $(4x-9y)(x^2+xy+y^2)$
- (D) $(2x-3y)(4x^2-6xy+9y^2)$
- 10. We can express $\sin x$ and $\cos x$ in terms of $\tan \frac{x}{2}$, for all values of x except......
 - (A) $x = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}...$
 - (B) $x = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}...$
 - (C) $x = \pi, 3\pi, 5\pi$
 - (D) $x = 2\pi, 6\pi, 8\pi$

End of Section 1

Section II

Total marks (60)

Attempt Questions 11 - 14

Allow about 1 hour 45 minutes for this section.

Answer all questions, starting each question on a new sheet of paper with your name and question number at the top of the page. Do not write on the back of sheets.

Ques	tion 11	(15 Marks) Use a Separate Sheet of paper	Marks
a)	Find t	the obtuse angle between the lines (to nearest degree).	2
	2x+3	3y = 8 and $x - 2y = -5$.	
b)	Given	that $x = 5\sin\theta$ and $y = 5\cos\theta + 1$.	
	i)	Show the equation relating x and y by eliminating θ is $y^2 + x^2 - 2y - 24 = 0$	2
	ii)	Graph this equation stating major features.	2
c)	Each o	consists of 10 multiple choice questions. question has 4 possible answers. A student guesses the answers e questions.	to
	What	is the probability that the student:	
	i)	Guesses all questions correctly?	1
	ii)	Only guesses 2 right answers?	1
	iii)	Gets over 75% on the test?	2
d)	Find	$\int 3x\sqrt{4-x} \ dx \text{ using the substitution } u=4-x.$	3
e)	Solve	$\left(3+\frac{1}{x}\right)^2+4\left(3+\frac{1}{x}\right)-21=0$.	2

End of Question 11

Ques	tion 12	(15 Marks) Use a Separate Sheet of paper	Marks
a)	Prov	e by induction, that	3
	4" >	1+3n for $n>1$, where n is an integer.	
b)	up ne	obile phone company has a success rate of 65% when signing two customers who enter a particular store. If 10 new customers into the store:	
	i)	Find the probability as a percentage that 9 of these people sign up.	1
	ii)	What is the most likely number of customers to sign up?	2
c)	Evalı	$\int_{0}^{\frac{\pi}{4}} \sin x \cos^2 x \ dx.$	2
d)	ABC	DE are points on a circle radius 4 cm and $\angle DBC = \angle DAE$	
	i)	Draw a diagram to represent this information.	1
	ii)	Prove that the triangle formed by the points CDE is isosceles.	2
e)	Sketo	th the graph of $y = \cos^{-1}(x+3)$.	2
f)	Find	the 6 th term in the expansion of $\left(3x - \frac{4}{5x^2}\right)^9$.	2

End of Question 12

2

Quest	tion 13	(15 Marks) Use a Separate Sheet of paper	Marks
a)	Evalu	ate $\int_0^1 \frac{1}{\sqrt{4-2x^2}} dx$ in exact form.	2
b)	propo	is making a toffee dessert. The rate at which the toffee cools is rational to the difference between the temperature of the toffee (T) som temperature (R). ie. $\frac{dT}{dt} = -k(T-R)$	
	i)	Show that $T = R + Ce^{-kt}$, where C is a constant, is a solution of this differential equation.	1
	ii)	Storm notices that a 2L pot of toffee initially cools from 540°C to 100°C in 50 minutes in a room whose temperature is 20°C. Storm can not put the toffee into the dessert until it reaches 40°C. How much longer does Storm need to wait to be able to add the toffee and finish her dessert (to the nearest minute)?	3
	iii)	Explain or show by calculations, if it would take more or less time to create this dessert if the room temperature was 25° C. Assuming k and C remain the same.	2
c)		late the exact volume generated by the solid formed when $y = \ln x - 1$ is d about the y-axis between $y = 0$ and $y = 1$.	2
d)	P(x) =	$= x^4 - 2x^3 + 5x^2 - 16x + 12$	
	i)	Show that $(x-1)(x-2)$ is a factor of $P(x)$.	1
	ii)	Hence find the remaining factor of $P(x)$.	1
e)	i)	Show that the area of an equilateral triangle of side length (x-2) is given by:	1
		$A = \frac{\sqrt{3}(x-2)^2}{4}$	
	ii)	The sides of the equilateral triangle are increasing at the rate of 5mm/s. At what rate is the area increasing at the instant when the sides are 10cm long?	2

End of Question 13

Question 14 (15 Marks) Marks Use a Separate Sheet of paper Zanthie bought a 'Splat Blaster' that fires paint balls at a velocity of 20ms⁻¹. A target has been placed on a tree, with its centre 2.5m from the ground. The base of the tree is 25m horizontally away from Zanthie. Zanthie holds the Splat Blaster at a height of 1.5m and wants to hit the centre of the target with a paint ball. The equation of horizontal motion is given by $x = 20t \cos \theta$. 2 Derive the equation of vertical motion. To avoid overhead power lines; Zanthie must fire at an angle less than 45° 3 At what angle should she fire the paint ball to hit the target on the tree? (assume $g = -9.8 ms^{-2}$ and give your answer to the nearest degree). By expanding both sides of the identity 2 $(1+x)^{n+4} = (1+x)^n (1+x)^4$ prove that $\binom{n+4}{r} = \binom{n}{r} + 4\binom{n}{r-1} + 6\binom{n}{r-2} + 4\binom{n}{r-3} + \binom{n}{r-4}.$ The chord of contact of the tangents to the parabola $x^2 = 4ay$ from 2 an external point $A(x_1,y_1)$ passes through the point B(0,2a). Find the equation of the locus of the midpoint of AB. d) A particle moves in a straight line and its position at time (t) is given by: $x = 4 + \frac{\sin 4t}{\sqrt{3}} - \cos 4t$ Express $\frac{\sin 4t}{\sqrt{3}} - \cos 4t$ in the form $R\sin(4t - \alpha)$, 2 where α is in radians. The particle is undergoing Simple Harmonic Motion, show the equation for acceleration is:

$\ddot{x} = -16(x-4)$

iii) When does the particle first reach its maximum speed?

End of Examination

WESTERN REGION

2012 TRIAL HSC EXAMINATION

Mathematics Extension 1

SOLUTIONS

Trial HSC Examination - Mathematics Extension 1 Multiple Choice Answer Sheet

	Nam	е						
Com	Completely fill the response oval representing the most correct answer.							
1.	$A \bigcirc$	$B\bigcirc$	C 👁	DO				
2.	A 🔿	В	$c \circ$	DO				
3.	A	BO	$c \circ$	DO				
4.	A 🔿	BO	$c \bigcirc$	D 🌑				
5.	A •	BO	CO	DO				
6.	Α 🔷	BO	СО	DO -				
7.	$A \bigcirc$	В	$c \bigcirc$	DO				
8.	,A 🔿	ВО	CO	D 🌑				
9.	$A \bigcirc$	В	СО	DO				
10.	$A \bigcirc$	ВО	C 🌑	DO				

	ion 11 Trial HSC Examination - Mathematics Extens	2012	
Part	Solution	Marks	Comment
a)	$2x+3y=8 \qquad x-2y=-5$	2	1 for the
	$3y = 8 - 2x \qquad 2y = x + 5$		gradients
	$y = \frac{8}{3} - \frac{2x}{3}$ $y = \frac{x}{2} + \frac{5}{2}$		
	3 3 2 2		
	$m_1 = -\frac{2}{3}$ $m_2 = \frac{1}{2}$		
	$\tan \alpha = \left \frac{m_1 - m_2}{1 + m_1 m_2} \right $		
	$\tan \alpha = \begin{vmatrix} -\frac{2}{3} - \frac{1}{2} \\ 1 + -\frac{2}{3} \times \frac{1}{2} \end{vmatrix}$		
	$\tan \alpha = \frac{-\frac{7}{6}}{\frac{2}{3}}$		1 for correct
	$\tan \alpha = \frac{7}{4}$		angle
	$\alpha = 60^{\circ}$		
b)i)	So the obtuse angle is $180^{\circ} - 60^{\circ} = 120^{\circ}$ $x = 5 \sin \theta$ (2)	2	Alternate solution
-)-/	$x = 5 \sin \theta$ (squaring x)		by making sin θ
	$x^2 = 25\sin^2\theta$		and cos θ the
İ	$x^2 = 25(1-\cos^2\theta)$		subject and using $\sin^2 \theta + \cos^2 \theta = 1$
	$x^2 = 25 - 25\cos^2\theta$		0 1 000 0 -1
	$25\cos^2\theta = 25 - x^2 \dots (3)$		1 for doing some
	$y = 5\cos\theta + 1(squaring y)$		substitution of x
	$y^2 = 25\cos^2\theta + 10\cos\theta + 1(4)$		into y or into $\sin^2 \theta + \cos^2 \theta = 1$
	From (1) $\cos \theta = \frac{y-1}{5}$ (5)		$\sin^2\theta + \cos^2\theta = 1$
	sub(3) & (5)into(4)		
	$y^2 = 25 - x^2 + 10 \left[\frac{y - 1}{5} \right] + 1$		1 for correctly getting the
	$y^2 = 25 - x^2 + 2y - 2 + 1$		equation
	$y^2 + x^2 - 2y - 24 = 0$		

Question 11		Trial HSC Examination - Mathematics Extension 1		2012
Part	Solution		Marks	Comment
ii)	$y^2 + x^2 - 2$ $x^2 + (y - 1)$ $Circle$	•	2	1 for realising it is a circle and completing the square
	Centre(0, Radius = 5	Sumits y $y^2 + x^2 - 2y - 24 = 0$ y $y^2 - 2y - 24 = 0$ y $y^2 - 2y - 24 = 0$		1 for correct graph with centre & radius
c)i)	P(correct) P(incorrect) $^{10}_{10}C(0.25)^{11}$ = $\frac{1}{1048576}$	t = 0.75 $t = 0.75$	1	
ii)			1	
iii)		$\frac{(0.75)^2 + {}^{10}_{9}C(0.25)^9(0.75)^1 + {}^{10}_{10}C(0.25)^{10}(0.75)^0}{4}$	2	

Quest	tion 11 Trial HSC Examination - Mathematics Extension	on 1	2012
Part	Solution	Marks	Comment
d)	$\int 3x\sqrt{4-x}dx$	3	
	$u = 4 - x \qquad x = 4 - u$		
	$u = 4 - x \qquad x = 4 - u$ $du = -1dx$		1
	$\int 3x\sqrt{4-x}dx$		
	$=3\int x\sqrt{4-x}dx$		
	$=-3\int (4-u)\sqrt{u}du$		1
	$=-3\int (4-u)u^{\frac{1}{2}}du$		<u>.</u>
	$=-3\int 4u^{\frac{1}{2}}-u^{\frac{3}{2}}du$		
	$= -3\left[\frac{8}{3}u^{\frac{3}{2}} - \frac{2}{5}u^{\frac{5}{2}}\right] + C$		
	$= -8\sqrt{(4-x)^3} + \frac{6\sqrt{(4-x)^5}}{5} + C$		1
e)	$\left(3 + \frac{1}{x}\right)^2 + 4\left(3 + \frac{1}{x}\right) - 21 = 0$	2	1 for using a substitution and finding values
	Let $y = \left(3 + \frac{1}{x}\right)$		<i>g</i> ·
	$y^2 + 4y - 21 = 0$		*
	(y+7)(y-3)=0		
	y = -7 or 3		
	$\therefore 3 + \frac{1}{x} = -7$ or $3 + \frac{1}{x} = 3$		
	$\frac{1}{x} = -10$ $\frac{1}{x} = 0$		
	$x = -\frac{1}{10}$ No Solution		1 for correct
	So $x = -\frac{1}{10}$ is the only solution.		solution after resubstitution
		/15	

	ion 12 Trial HSC Examination - Mathematics Ext	2012	
Part	Solution	Marks	Comment
a)	$4^{n} > 1 + 3n$ for $n > 1$	3	1 mark for steps
	$ie 4^n - 3n - 1 > 0$		1 and 2
	Step 1		
	Show true for $n > 1$		
	ie n = 2		
	$4^2 - 3 \times 2 - 1 > 0$		
	9 > 0 : true		
	Step 2		
	Assume true for $n = k$		
	$4^k - 3k - 1 > 0$		2 marks for step
	Step 3		3, including conclusion.
	Prove true for $n = k + 1$		conclusion.
	$4^{k+1} - 3(k+1) - 1 > 0$		
	$4\times 4^k - 3k - 3 - 1 > 0$		
	$4 \times 4^k - 3k - 4 > 0$		
	$4(4^k - 3k - 1) + 9k > 0$		
	since $4^k - 3k - 1 > 0$ and $9k > 0$		
	Hence if the statement is true for $n = k$,		
	then it is also true for $n = k + 1$		
	The statement is true for $n = 2$ and so		
1	it is true for $n = 3$ and so on.		
	Hence true for all $n > 1$		
b)i)	P(success) = (0.65) P(notsuccess) = (0.35)	1	
	${}^{1}_{9}C(0.65)^{9}(0.35)^{1}$		
	= 0.072		
	= 7%		

Quest	tion 12	Trial HSC Examination - Mathematics Extension 1		2012
Part	Solution		Marks	Comment
ii)	$\frac{n-r+1}{r}$ $\frac{10-r+1}{r}$ $r \le 3.85$ $\therefore r = 3$	$\times \frac{0.35}{0.65} \ge 1$	2	1 for finding the greatest term
	¹⁰ C(0.65) ∴ 7 will people to	be the most likely number of		1 for correct number of sign ups.
c)	$\int_{0}^{\frac{\pi}{4}} \sin x \cos x$	$s^2x dx$	2	Can also be done by substitution
	$= \left[\frac{\cos^3 x}{3}\right]$			1 correct integration
	L.	$\cos\frac{\pi}{4}\bigg)^3 - (\cos 0)^3\bigg]$		
	$=-\frac{1}{3}\left[\left(-\frac{1}{3}\right)^{-1}\right]$, 7		
	$= -\frac{1}{3} \left[\frac{1}{2\sqrt{2}} \right]$ $= -\frac{1}{6\sqrt{2}}$	·		
		$\frac{3}{2\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}$		1 for answer in any form
	$=\frac{4-\sqrt{2}}{12}$			

Question 12		Trial HSC Examination - Mathematics Extension 1		2012
Part	Solution		Marks	Comment
d)i)	D	Radius = 4cm	1	Must show all information, including radius
ii)	$ArcCD =$ (converse $\therefore CD = I$ (equal ar	e of angles on the same arc)	2	1 1.

Ques	tion 12	Trial HSC Examination - Mathematics Ext	ension 1	2012
Part	Solution	•	Marks	Comment
е)	₹	$ \begin{array}{c} y \\ 2\pi \\ \hline 3\pi \\ \hline 2 \end{array} $ $ \begin{array}{c} \frac{\pi}{2} \\ -\pi \end{array} $	2	
f)	= 126(8	$\frac{4}{5x^{2}} \int_{0}^{9} dx dx dx$ $C_{5}(3x)^{9-5} \left(-\frac{4}{5x^{2}}\right)^{5}$ $(31x^{4}) - \frac{1024}{3125x^{10}}$ (450944) $(125x^{6})$	2	1
			/15	

Ques	tion 13	Trial HSC Examination - Mathematics Extension 1		2012
Part	Solution		Marks	Comment
a)	$\int_{0}^{1} \frac{1}{\sqrt{4 - 2x^2}}$ $\sqrt{4 - 2x^2}$ $= \sqrt{2(2 - x^2)}$ $= \sqrt{2}\sqrt{2 - x}$	<u>)</u> 2	2	
	$\therefore \int_{0}^{1} \frac{1}{\sqrt{4 - 2x}}$ $= \frac{1}{\sqrt{2}} \int_{0}^{1} \frac{1}{\sqrt{2 - 2x}}$ $= \frac{1}{\sqrt{2}} \left[\sin^{-1} \left(\sin^{-1} \frac{1}{\sqrt{2 - 2x}} \right) \right]$ $= \frac{1}{\sqrt{2}} \left[\sin^{-1} \frac{1}{\sqrt{2 - 2x}} \right]$			1 for getting;in correct form and using standard integrals
	$= \frac{1}{\sqrt{2}} \left[\frac{\pi}{4} - 6 \right]$ $= \frac{\pi}{4\sqrt{2}}$ $= \frac{\sqrt{2}\pi}{8}$)]		1 answer
b)i)		Ce ^{-kt}	1	

Quest	tion 13 Trial HSC Examination - Mathematics Extension 1			2012
Part	Solution		Marks	Comment
ii)	When $t = 0$	$T = 540^{\circ} R = 20^{\circ}$	3	
	540 = 20 + 6	Ce ^o		
	$520 = Ce^0$			
	C = 520			1 for <i>C</i>
	$\therefore T = 20 + 5$	$20e^{-kt}$		
	When $t = 5$	$T = 100^{\circ} R = 20^{\circ}$		
	100 = 20 + 5	$(20e^{-50k})$		
	$\frac{80}{520} = -50k$			
	$k = \frac{\ln\left[\frac{8}{52}\right]}{-50}$			1 for <i>k</i>
	k = 0.03743			
		$(20e^{-0.037436043i})$		
		$40^{\circ} R = 20^{\circ}$		
	40 = 20 + 52	20e ^{-0.037436043×t}		
	$t = \frac{\ln\left[\frac{1}{26}\right]}{0.03743}$	5		
	$t = 87 \min u$			
	Extra time 8	37 - 50 = 37		1 for correct
	So Storm m	ust wait another 37 minutes		answer
	for the Toff	ee to cool enough		must have used full
				value of k
iii)	40 = 25 + 52	0e-0.037436043×1	2	1 for the
	$t = \frac{\ln\left[\frac{3}{10}\right]}{0.03743}$	4_]		calculation or other explanation
	t = 95 minute			1 for a
]		take longer for the toffee		statement
	to cool in a			stating the result

Quest	tion 13 Trial HSC Examination - Mathematics Extension 1		2012
Part	Solution	Marks	Comment
c)	$y = \ln x - 1$	2	1 for
	$y+1=\ln x$		finding x^2
	$e^{y+1}=x$		
	$x^2 = \left(e^{y+1}\right)^2$		
	$=e^{2y+2}$		
	$= e^{2y+2}.$ $V = \pi \int_{a}^{b} x^{2} dy$ $= \pi \int_{0}^{1} e^{2y+2} dy$		
	$=\pi\int_0^1 e^{2y+2} dy$		
	$=\pi\left(\frac{e^{2y+2}}{2}\right)_0^1$		
	$=\pi\left\{\left[rac{e^4}{2} ight]-\left[rac{e^2}{2} ight] ight\}$		1 for
	$=\frac{\pi}{2}\left(e^4-e^2\right)units^3$		answer
d)i)	$P(x) = x^4 - 2x^3 + 5x^2 - 16x + 12$	1	
	$P(1) = 1^4 - 2 \times 1^3 + 5 \times 1^2 - 16 \times 1 + 12$		
	P(1) = 1 - 2 + 5 - 16 + 12		
	P(1) = 0 : $(x-1)$ is a factor		
	$P(2) = 2^4 - 2 \times 2^3 + 5 \times 2^2 - 16 \times 2 + 12$		
	P(2) = 16 - 16 + 20 - 32 + 12		
	P(2) = 0 : $(x-2)$ is a factor		
	$\therefore (x-1)(x-2)$ is a factor of $P(x) = x^4 - 2x^3 + 5x^2 - 16x + 12$		

Solution		3.07 3	
		Marks	Comment
(x-1)(x-2)	$=x^2-3x+2$	2	1
1			
	$x^3 + 3x^2 - 16x$ $x^3 - 3x^2 + 2x$		
	$6x^2 - 18x + 12$ $6x^2 - 18x + 12$		
l			1
$A = \frac{1}{2}ab\sin \theta$	C	1	-
$A = \frac{1}{2}(x-2)$ $A = \frac{\sqrt{3}(x-2)}{x^2}$	$)^2 \times \frac{\sqrt{3}}{2}$ $2)^2$		·
	$\therefore \text{ The rema}$ to linear $A = \frac{1}{2}ab \sin a$	$\frac{6x^2-18x+12}{6x^2-18x+12}$	$x^{4}-3x^{3}+2x^{2}$ $x^{3}+3x^{2}-16x$ $x^{3}-3x^{2}+2x$ $6x^{2}-18x+12$ $6x^{2}-18x+12$ 0 $\therefore \text{ The remaining factor is } (x^{2}+x+6) \text{ which cannot be reduced to linear factors.}$ $A = \frac{1}{2}ab\sin C$

Ques	Question 13 Trial HSC Examination - Mathematics Extension 1		
Part	Solution	Marks	Comment
ii)	Let $s = x - 2$ (side length) $\frac{ds}{dx} = 1 \text{ and } \frac{ds}{dt} = 5mm/s = 0.5cm/s$ $\frac{ds}{dt} = \frac{ds}{dx} \times \frac{dx}{dt}$ $0.5 = 1 \times \frac{dx}{dt}$ $\frac{dx}{dt} = 0.5$	2	1
	$A = \frac{\sqrt{3}(x-2)^2}{4}$ $\frac{dA}{dx} = \frac{\sqrt{3}(x-2)}{2}$ $\frac{dA}{dt} = \frac{dA}{dx} \times \frac{dx}{dt}$ $\frac{dA}{dt} = \frac{\sqrt{3}(x-2)}{2} \times 0.5$		
	when s=10, x=12 $\frac{dA}{dt} = \frac{\sqrt{3}(12-2)}{2} \times 0.5$ $= \frac{5\sqrt{3}}{2} cm^2 / s$ So the area of the triangle is increasing at 4.33cm ² /s		Both exact or decimal answer OK
		/15	

Quest	tion 14 Trial HSC Examination - Mathematics Extension 1		
Part	Solution	Marks	Comment
a)	1.5m 25m	2	1 for each
i)	Vertical Motion		
	$\ddot{y} = -g = -9.8ms^{-2}$		
	$\therefore x = \int -9.8 dt$		
	$=-9.8t+C_2$:
	When $t = 0$ $y = V \sin \theta$ So $C = V \sin \theta$		
	$y = V \sin \theta$		1 for using
	$20\sin\alpha = -9.8t + C_2$		correct integrations
	$C_2 = 20\sin\alpha$		
	$y = -9.8t + 20\sin\alpha$		
	$y = \int -9.8t + 20\sin\alpha dt$		
	$= -4.9t^2 + 20t\sin\alpha + C_3$		
	When $t=0$ $y=1.5$		
	$0 = 0 + C_1$		
	$\therefore C_3 = 1.5$		1 for final
	$\therefore y = -4.9t^2 + 20t\sin\alpha + 1.5$		result.

Quest	stion 14 Trial HSC Examination - Mathematics Extension 1		
Part	Solution	Marks	Comment
ii)	$x = 20t \cos \alpha$ (1) $y = -4.9t^2 + 20t \sin \alpha + 1.5$ (2)	3	
	From(1)		
	$t = \frac{x}{x}$ (3)		
	$t = \frac{x}{20\cos\alpha}(3)$		
	sub (3) into (2)		
	$y = -4.9 \left[\frac{x}{20 \cos \alpha} \right]^2 + 20 \left[\frac{x}{20 \cos \alpha} \right] \sin \alpha + 1.5$		1
	$= \frac{-4.9x^2}{400\cos^2\alpha} + \frac{x\sin\alpha}{\cos\alpha} + 1.5$		
	$= \frac{-4.9}{400} x^2 \sec^2 \alpha + x \tan \alpha + 1.5$		
	$= \frac{-4.9}{400} x^2 (1 + \tan^2 \alpha) + x \tan \alpha + 1.5$		
	For the ball to hit the target		
	x = 25 and $y = 2.5$		
	$2.5 = \frac{-4.9}{400} 25^2 (1 + \tan^2 \alpha) + 25 \tan \alpha + 1.5$		
	$2.5 = -7.65625(1 + \tan^2 \alpha) + 25 \tan \alpha + 1.5$		
	$0 = -7.65625 \tan^2 \alpha - 25 \tan \alpha + 8.65625$		
ii)	Let $x = \tan \alpha$		1
	Solve using quadratic formula		
	$-b+\sqrt{b^2-4ac}$		
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$		
	$x = \frac{25 \pm \sqrt{25^2 - (4 \times 7.65625 \times 8.65625)}}{2 \times 7.65625}$		
	$x = {2 \times 7.65625}$		
	$x = \frac{25 \pm 18.97}{15.3125}$		
	110110		
	x = 2.87 or 0.39		
	$\tan \alpha = 2.87 or \tan \alpha = 0.39$		
	$\alpha = 70^{\circ}47' \text{ or } 21^{\circ}29'$		
	However to avoid the air resistance		
	Zanthie must shoot at an angle		1
	of 21°		

Ques	tion 14 Trial HSC Examination - Mathematics Extension 1		2012
Part	Solution	Marks	Comment
b)	$(1+x)^{n+4} = (1+x)^n (1+x)^4$	2	
	$\binom{n+4}{r} = \binom{n}{r} + 4\binom{n}{r-1} + 6\binom{n}{r-2} + 4\binom{n}{r-3} + \binom{n}{r-4}$		
	LHS		
	$(1+x)^{n+4} = 1 + {n+4 \choose r}x + \dots + {n+4 \choose r}x^r + \dots$		
	coefficient of $x^r = \binom{n+4}{r}$		1
	RHS		
	$(1+x)^n (1+x)^4 = \left[1 + \binom{n}{1}x + \dots + \binom{n}{r}x^r + \dots\right] \times$		
	$\left[1 + {4 \choose 1}x + {4 \choose 2}x^2 + {4 \choose 3}x^3 + {4 \choose 4}x^4\right]$	-	
	coefficient of $x^r = \binom{n}{r} + \binom{n}{r-1} \binom{4}{1} + \binom{n}{r-2} \binom{4}{2} +$		
	$\binom{n}{r-3}\binom{4}{3}+\binom{n}{r-4}\binom{4}{4}$		
	$= \binom{n}{r} + 4 \binom{n}{r-1} + 6 \binom{n}{r-2} + 4 \binom{n}{r-3} + \binom{n}{r-4}$		
	Because coefficients of x^r in both expansions		
	are the same it follows		
	$\binom{n+4}{r} = \binom{n}{r} + 4\binom{n}{r-1} + 6\binom{n}{r-2} + 4\binom{n}{r-3} + \binom{n}{r-4}$		ſ

Ques	tion 14 Trial HSC Examination - Mathematics Extension 1		2012
Part	Solution	Marks	Comment
c)	Equation of the chord of contact	2	
	$xx_1 = 2a(y + y_1)$		
'	This passes through $B(0, 2a)$		
	$0x_1 = 2a(2a + y_1)$		
	$0=4a^2+2ay_1$		
	$\frac{2ay_1}{2a} = \frac{-4a^2}{2a}$		
			1 for
	$y_1 = -2a$		finding y ₁
	Locus of the Midpoint AB $A(x_1, -2a) & B(0, 2a)$		
	$y = \frac{-2a + 2a}{2} \qquad \qquad x = \frac{x_1}{2}$		
	y = 0		
	$\therefore y = 0$ is the equation of the		1 for the
	locus of the midoint AB		equation of
40.10			the locus
d)i)	$R\sin(4t-\alpha) = R\sin 4t\cos \alpha - R\cos 4t\sin \alpha$	2	
	If $R\sin(4t-\alpha) = \frac{1}{\sqrt{3}}\sin 4t - \cos 4t$		-
	then		
	$r\cos\alpha = \frac{1}{\sqrt{3}}$ and $r\sin\alpha = 1$		
	α		
	continued over $\frac{1}{\sqrt{3}}$		

Quest	tion 14	Trial HSC Examination - Mathematics Extension 1		2012
Part	Solution		Marks	Comment
Part	$R = \sqrt{\left(\frac{1}{\sqrt{3}}\right)^2}$ $= \sqrt{\frac{1}{3}} + 1$ $= \sqrt{\frac{4}{3}}$ $= \frac{2}{\sqrt{3}}$ $\tan \alpha = \frac{R \sin \alpha}{R \cos \alpha}$ $= \frac{1}{\sqrt{3}}$ $= \sqrt{3}$ $\therefore \tan \alpha = \sqrt{3}$ $\alpha = \frac{\pi}{3}$	Ω <u>α</u> S α	Marks	1 for deriving R
		$t = \frac{2}{\sqrt{3}}\sin(4t - \frac{\pi}{3})$		
ii)	$x = 4 + \frac{\sin x}{\sqrt{x}}$ from part($x = 4 + \frac{2}{\sqrt{3}}$ $x = \frac{8}{\sqrt{3}}\cos x$ $x = -\frac{32}{\sqrt{3}}\sin x$ $x = -16\left[\frac{2}{\sqrt{x}}\right]$ $x = -16(x - \frac{1}{x})$	$\sin(4t - \frac{\pi}{3})$ $(4t - \frac{\pi}{3})$ $\ln(4t - \frac{\pi}{3})$ $\ln(4t - \frac{\pi}{3})$ $\frac{2}{3}\sin(4t - \frac{\pi}{3})$ and from (1) $x - 4 = \frac{2}{\sqrt{3}}\sin(4t - \frac{\pi}{3})$	2	1

Ques	tion 14	Trial HSC Examination - Mathematics Extension 1		2012
Part	Solution		Marks	Comment
iii)	The maximum of motion. We have the second of the second o	$ \frac{\pi}{3} = 0 $ $ \frac{\pi}{3} = 0 $ $ \frac{\pi}{3} = 0 $	2	1
	12 3	first reaches maximum speed when $t = \frac{\pi}{12} \sec onds$		1
			/15	

.