Western Region Trial Higher School Certificate Examination 1994

MATHEMATICS 2/3 UNIT

Time Allowed - THREE Hours
(Plus 5 minutes reading time)

DIRECTIONS TO CANDIDATES:

- All questions may be attempted.
- All questions are of equal value.
- All necessary working should be shown in every question.
 Marks may not be awarded for careless or badly arranged work.
- Standard integrals are printed on the last page which may be removed for your convenience.
- Board approved calculators may be used.

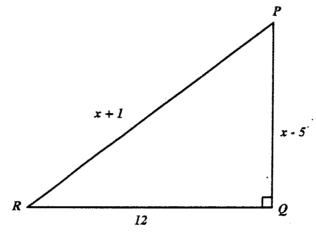
a. Find the value of $\frac{256}{\sqrt{a+b}}$ if a = 4.2 and b = 19.54.

Give your answer correct to 2 decimal places.

b. Solve for x:

$$|3-2x| < 5$$

c. In the diagram, angle PQR is a right angle and the lengths of the sides are 12cm, (x + 1)cm and (x - 5)cm as shown.



- i. Use Pythagora's Theorem to find the value of x.
- ii. Find the area of the triangle.
- d. A manufacturer increases the price of a car by 15% to a new selling price of \$23 000. What was the selling price of the car before the increase?
- e. i. Factorise $x^3 + 1$
 - ii. Hence evaluate $x \xrightarrow{\lim} -1 \frac{x^3 + 1}{x + 1}$

- a. The vertices of the triangle ABC are the points A(0.5), B(3.6) and C(4.0).
 - i. Draw a sketch diagram of the triangle to show this information.
 - ii. Find the gradient (slope) of the side AB.
 - iii. Find the equation of the line AB giving your answer in the form ax + by + c = 0.
 - iv. A line through C, parallel to AB cuts the y axis at M. Find the co-ordinates of M.
 - v. Is triangle ABC right angled at B? Justify your answer.
- b. i. A gambler has two custom made dice.

One die has only the odd numbers (1, 1, 3, 3, 5 and 5) on its six faces while the other die has only the even numbers (2, 2, 4, 4, 6 and 6) on its six faces. By drawing a tree diagram, or otherwise, determine the probability of getting a total of seven when the two dice are rolled together.

ii. In a certain town, the probability of an adult catching a cold during 1994 is 0.4. Two adults in the town are chosen at random.

What is the probability that at least one of them will catch a cold in 1994?

a. Differentiate. with respect to x:

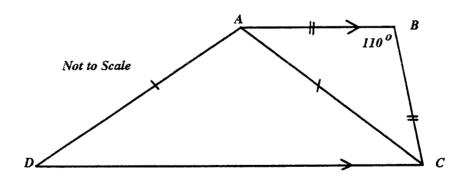
i.
$$(2x+1)^2$$

ii.
$$\frac{\ln 2x}{x}$$

iii.
$$e^{2x+1}$$

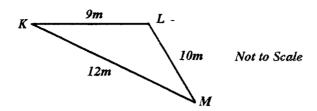
b. Find
$$\int \frac{2x}{x^2 + 1} dx$$

- c. Evaluate $\int_{0}^{\frac{\pi}{3}} \sin 2x \, dx$
- d. In the diagram, $AB \parallel DC$, AB = BC, AD = AC, and $\angle ABC = 110^{\circ}$ as shown.



- i. Copy the diagram onto your answer sheet.
- ii. Find, giving reasons, the size of $\angle DAC$.

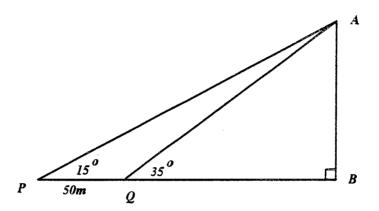
a.



KLM is a triangle with KL = 9m, LM = 10m and MK = 12m as in the above figure.

- i. Use the cosine rule to find the size of angle MKL to the nearest degree.
- ii. Calculate the area of the triangle KLM to the nearest square metre.
- b. It is assumed that the number N(t) of fleas on a carnel at time $t \ge 0$ is given by $N(t) = \frac{A}{1 + e^{-t}}$, where A is a constant and t is measured in weeks.
 - i. At time t = 0, N(t) is estimated at 2000 fleas. What is the value of A?
 - ii. What is the value of N(t) after 2 weeks?
 - iii. How many fleas would you expect to find on the camel when time t is large?
 - iv. After how many days does the number of fleas first exceed 2500?
 - v. Find an expression for the rate at which the number of fleas increases at any time t.

- a. Find all solutions to the equation $2^{2n} 5 \cdot 2^n + 4 = 0$
- b. The angles of elevation of the top of a vertical tower, AB, from two points, P and Q, on the same horizontal plane as the base of the tower are 15° and 35° respectively.



- i. Find the size of angle PAQ.
- ii. If P and Q are 50 metres apart, use the Sine Rule to find the length of AQ correct to one decimal place.
- iii. Hence, find the height of the tower to the nearest metre.
- c. If α and β are the roots of the equation $2x^2 + 6x + 3 = 0$, find the value of:
 - i. $\alpha + \beta$
 - ii. αβ
 - iii. $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$

a. Express $\frac{1}{3-\sqrt{7}}$ in the form $a+b\sqrt{7}$,

where a and b are rational numbers.

- b. Show that the volume, obtained by rotating about the x axis, the area bounded by the curve $y = e^x$, the co-ordinate axes, and the line x = 2, has magnitude $\frac{\pi}{2}(e^4 1)$.
- c. The numbers m and n are such that m, n and 12 form a geometric progression, while (m+1), (n+2) and 12 form an arithmetic progression.
 - i. Show that

$$12m = n^2$$

and
$$2n-m=9$$

- ii. Solve these equations to find all possible values of m and n.
- iii. One of these geometric progressions so defined has a limiting sum. Find this sum.

- a. Given that $5x^2 2x + 3 = A(x-1)(x-2) + B(x-1) + C$ for all values of x, find the value of A, B and C.
- b. Consider the curve given by $y = x^3 3x 1$ for $-3 \le x \le 2$.
 - i. Find all the stationary points and determine their nature.
 - ii. Find the point of inflexion.
 - iii. Sketch the curve for $-3 \le x \le 2$ showing all its essential features.

- a. Find the values of m for which the equation $4x^2 mx + 9 = 0$ has
 - i. exactly one real root.
 - ii. real roots.
- b. On a number plane a region is defined by the two conditions:

$$y \ge (x-3)^2$$

and

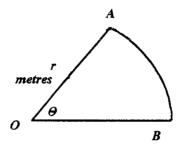
- i. Show by shading on a sketch, the region given by these two conditions.
- ii. Calculate the area of this shaded region.

a. A parabola P has equation $x^2 = 16(y-1)$.

Draw a neat sketch of P and clearly indicate on it:

- i. the co-ordinates of the vertex.
- ii. the co-ordinates of the focus.
- iii. the equation of the directrix.

b.



In the figure AO and BO are radii of length r metres, of a circle centre O. The arc AB of the circle subtends and angle θ radians at O.

- i. Write down the formulae for
 - α . the length of the arc AB.
 - β . the area if the sector AOB.
- ii. The perimeter of the above figure AOB is 6 metres. Show that the area, A square metres, of the sector AOB is given by

$$A = \frac{18\theta}{(\theta + 2)^2}$$

iii. Show that the maximum area of the sector occurs when θ is 2 radians.

- a. A point P moves such that it is always 3 units from a fixed point Q(0,3).
 - i. Draw a sketch of the locus of P.
 - ii. Show that the equation of this locus is given by $x^2 + y^2 6y = 0$.
- b. Copy and complete the table of values for $y = \ln\left(\frac{1+x}{1-x}\right)$ on your answer sheet.

х	0	0.2	0.4	0.6	0.8
y	0		0.847		2.197

i. By using Simpson's rule with 5 function values, estimate the integral:

$$\int_{0}^{0.8} \ln\left(\frac{1+x}{1-x}\right) dx.$$

Give your answer to two significant figures.

- ii. Prove that the derivative of $y = \ln\left(\frac{1+x}{1-x}\right)$ is $\frac{2}{1-x^2}$.
- iii. Show that $y = \ln \left(\frac{1+x}{1-x} \right)$ has no stationary points.
- iv. State the domain and range of $y = \ln\left(\frac{1+x}{1-x}\right)$.

(1)(a) 52.54

(b) -1 < x < 4

(c) (i) x = 4 (ii) 54 cm^2

(d) \$20 000

(e) (i) $(x+1)(x^2-x+1)$

(ii) 3

(2) (a) (i) Sketch

(ii) $\frac{1}{3}$ (iii) x - 3y + 15 = 0

(iv) $M(0.-\frac{4}{3})$

(v) Yes, because $AB \perp BC$

(b) (i) $\frac{1}{3}$ (ii) 0.64

(3) (a) (i) 4(2x-1)

 $(ii) \frac{1 - \ln 2x}{x^2}$

(iii) $2e^{2x+1}$

(b) $\ln(x^2+1)+c$

(c) $\frac{3}{4}$

(d) (i) Diagram (ii) 110⁰

(4) (a) (i) $\angle MKL = 55^{\circ}$

(ii) 44 m²

(b) (i) 4000 (ii) 3523

(iii) As $t \to \infty, N \to 4000$

(iv) $3\frac{1}{2}$ days

 $\text{(v)} \frac{4000e^{-t}}{\left(1 + e^{-t}\right)^2}$

(5) (a) n = 0 and 2

(b) (i) $\angle PAQ = 20^{\circ}$

(ii) AQ = 37.8m

(iii) AB = 22 m (nearest m)

(c) (i) -3 (ii) $\frac{3}{2}$ (iii) 4

(6) (a) $\frac{3}{2} + \frac{1}{2}\sqrt{7}$

(b) $\frac{\pi}{2}(e^4-1)$

(c) (i) Proof

(ii) m = 3,27 and n = 6,18

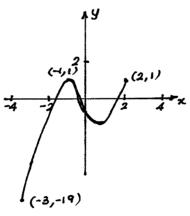
(iii) 81

(7) (a) A = 5, B = 13, C = 6

(b) (i) (1,-3) rel. min

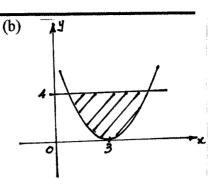
(-1, 1) rel. max.

(ii) Inflexion at (0,-1)



(8) (a) (i) $m = \pm 12$

(ii) $m \le -12, m \ge 12$



(ii) $10\frac{2}{3}$ units²

(9)(a)

y (0,1)

Directrix

y=-3

(b) (i) (α) $l = r\theta$

(β) Area = $\frac{1}{2}r^2\theta$

(ii) and (iii) Proofs

(10) (a) (i)

(10) (a) (i)

(10) (a) (i)

(ii) Proof

(b) (i) 0.74 (2 s.f)

(ii) Proof

(iii) Proof

(iv) D: -1 < x < 1

R: All real y