

2005 TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics

General Instructions

- o Reading Time 5 minutes.
- o Working Time 3 hours.
- o Write using a blue or black pen.
- o Approved calculators may be used.
- o A table of standard integrals is provided at the back of this paper.
- o All necessary working should be shown for every question.
- Begin each question on a fresh sheet of paper.

Total marks (120)

- o Attempt Questions 1-10.
- o All questions are of equal value.

Que	stion 1	(12 Marks)	Use a Separate Sheet of paper	Marks
(a)	Facto i) ii)	rise $16x^2 - 9$ $5a^2 + 10a$		1
(b)	Expre	$\cos 3\sqrt{5} + \sqrt{20}$ in th	e form \sqrt{a} .	2
(c)	Simp	$\text{lify } 2x^2y - yx^2 + x$	$v^2 + 2y^2x$	1
(d)	Evalu	ate $\lim_{x \to \infty} \frac{3x^2 - 4}{x^2}$	x+5	2
(e)	Solve	$\frac{1}{x} = x - 1 \text{ leaving y}$	our answer in exact form.	2
(f)	Expre	ss 0·42 as a ration	al number in simplest form.	2
(g)	Expre	ss log _e 5 as a decir	nal correct to 2 decimal places.	1

Mathematics

Trial HSC 2005

Trial HSC 2005

Question 3 (12 Marks)

 $\sqrt[4]{x^3}$

 $\sin x \cdot \ln x$

Marks

2

2 2

Question 2 (12 Marks)

Use a Separate Sheet of paper

The line l contains the points A (-5, 5) and B (1, 2).

C(1, 6) is another point which is not on the line l.

(a) Calculate the distance AB. 2

2

2

2

1

1

2

- Find the gradient of AB and hence, the acute angle the line AB makes with the x-axis.
- Show that the equation of the line AB is x + 2y 5 = 0. (c)
- Find the perpendicular distance of C from 1. (d)
- (e) Use your answers from a) and d) to show the area of $\triangle ABC = 12u^2$.
- Show how you can calculate the area of $\triangle ABC$ in another way. (f)
- A fourth point D forms a parallelogram with A, B and C. Write all the possible positions of D.

Marks

Differentiate the following with respect to x.

y = 4 - x is shown on the graph.

3

Calculate the volume of the solid formed when the area bounded by the function, x axis and x = 1 is rotated around the y axis.

 $g'(x) = 3x^2 - 4 + \frac{1}{x^2}$ 3 g(x) takes the value 4 when x = 1. Find g(x).

Use a Separate Sheet of paper

Question 4 (12 Marks)

Use a Separate Sheet of paper

Marks

1

3

1

2

2

- (a) Bernice contributes to a superannuation fund. She contributes \$250 at the start of every quarter. The investment pays 8%pa interest, compounding quarterly. She continues making contributions for 30 years.
 - (i) How much does she contribute altogether?
 - (ii) What is the value of her initial \$250 investment at the end of the 30 years?
 - (iii) Find the total value of her superannuation.
 - (iv) How much of her superannuation lump sum is interest?
- (b) The sector ABC has r = 5 cmand the arc length BA = 5 cm. Calculate the area of the sector.

- (c) Find the equation of the tangent to $y = 2e^x$ at the point (0, 2).
- (d) Sketch the graph of $y = \ln(x 2)$, showing the x intercept and the asymptote. 2

Question 5 (12 Marks)

Use a Separate Sheet of paper

Marks

- (a) The quadrilateral ABCD has AB | CD. It also has the feature that DA intersects BC at M.
 - (i) Prove ΔAMB || ΔDMC.

3

1

- (ii) If AB:CD = 2:5 and area \triangle AMB = $10u^2$, find the total area of the quadrilateral.
- (b) (i) Find $\int \cos(4x) dx$

1

(ii) Evaluate

$$\int_{1}^{4} \frac{x}{x^2 + 4} dx$$

2

On the Cartesian Plane, sketch the region satisfying the inequalities $x \ge 2$ $y \ge 4$ and $y \le 8 - x$

3

2

d) A hat contains 3 white marbles, 4 black marbles, 9 red marbles and 4 green marbles. 2 marbles are drawn out without replacement. What is the probability that they are both red?

Question 6 (12 Marks)

Use a Separate Sheet of paper

Marks

The graph depicts the gradient function f'(x), for the function y = f(x)

What x values provide the stationary points of f(x)? (i)

What feature of the graph of f(x) will occur at x = 1.5?

If f(0) = 3 draw y = f(x) between x = -1 and x = 4.

Explain why f(x) has only one real root?

 $y = 3 - \frac{x}{2}$ and $y = \frac{1}{2}x^2 - 2x + 1$ Consider the functions

Find the points x values where the curves intersect.

2

Find the area between the curves.

2

Michael plays a match made up of 3 sets. In each set Michael has a 0.4 chance of winning that set. Find the probability that Michael will:

Win all three sets.

1

Not win any sets.

Win at least one set, but not all three sets

Question 7 (12 Marks)

Use a Separate Sheet of paper

Marks

A population of bacteria in a medium are growing at a rate proportional to the current population. The population obeys the model $P = P_0 e^{kt}$, where P_0 is the population of bacteria at noon on 1 August and t is measured in hours. When t = 6 the population has grown from 900 000 to 1.4 million.

(i) Show that
$$\frac{dP}{dt} = kP$$

1

What is the value of k?

2

1

2

What will the population be when t = 10?

When will the population reach 3 million?

Write the functions represented by the following graphs

(i)

(ii)

Question 7 continues over the page

Trial H8C 2005

i)

ii)

iii)

Mathematics

2

1

Question 7 continued

Marks

1

(iii)

(c) ABCDE..... is a regular polygon with *n* sides inscribed within a unit circle with centre O.

- (i) Explain why $A\hat{O}B = \frac{2\pi}{n}$
- (ii) Write an expression for the area of the polygon
 ABCDE... in terms of n.
- (iii) Show $\lim_{n \to \infty} \left(\frac{n}{2} \sin \left(\frac{2\pi}{n} \right) \right) = \pi$

Quest	ion 8	(12 Marks)	Use a Separate Sheet of paper	Marks
(a)	(i)	Show that $y = mx$	$-2m^2$ is tangent to the parabola $x^2 = 8y$	2
	(ii)	Find the two values	s of m for which the tangent passes through $(2, -1)$	-4) 2
(b)	(i)	Use Simpson's rule	e with 5 function values to evaluate	3
		$\int_0^a \frac{\Lambda}{2}$	$\frac{\sqrt{144-9x^2}}{4}dx$	
	ii)	The formula $A = \frac{\pi}{2}$	$\frac{aab}{4}$ where $a=OA$ and $b=OB$, gives the exact	1
		value of the integra	above. Comment on the accuracy of your answ to the exact answer.	ver
(c)	Consi	der the parabola $2y = $	$= x^2 - Ax$	

Rewrite it in the form $4a(y-k) = (x-h)^2$

Give the coordinates of the focus.

Give the equation of the directrix.

Question 9 (12 Marks)

Use a Separate Sheet of paper

Marks

(a) Find the sum of the first 100 multiples of 5

2

2

(b) Using the information in the diagram below to calculate the value of the ratio $\frac{p}{q}$ as a decimal correct to 3 decimal places

- (c) The 18th hole at Royal Maples is a dogleg to the left. Frank hits a 200m drive then turns left 30° and hits a 105m shot to the pin.
 - (i) What is the straight line distance from the tee to the pin?
 - (ii) Henry hits his drive a distance of 205m and to the right of Frank's drive line by 13°. Show that the triangle formed by the two initial drives is approximately right angled.

Question 9 continues over the page

Question 9 continued

Marks

(d) Two circles of equal radius are drawn. One has it's centre at A and the other has it's centre at B.

(i) Prove $\triangle AEC = \triangle BEC$

2

(ii) Hence show CE bisects AB

2

Question 10 (12 Marks)

Use a Separate Sheet of paper

Marks

2

1

2

2

A farmer wishes to build a rectangular enclosure for his sheep. Fortunately he can use a sandstone escarpment as one side of his rectangle.

He has sufficient fencing material for 200m of fence.

- If we let one side of the rectangle be x, write an expression for the area of the enclosure in terms of x.
- Find the maximum area enclosure the farmer can build. 3 Be sure to justify that this area is a maximum.
- A particle is moving in a straight line with velocity $v = 3e^t + 6e^{-t}$ It begins its motion at origin. t is measured in minutes and v in ms⁻¹.
 - What is the velocity initially?
 - Find an equation for x, the displacement of the particle
 - When x = 10 show that $3e^{2t} 7e^t 6 = 0$
 - (iv) Find t when x = 10
- The number line graph represents the solution to an inequality of the type $|x-a| \le b$. Find the value of a and b.

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0 \quad \text{if} \quad n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, a \neq 0$$

$$\int \sec ax \tan ax dx = -\frac{1}{a} \sec ax, a \neq 0$$

$$\int \frac{1}{a + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, a > 0, -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln(x + \sqrt{x^2 - a^2}), x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln(x + \sqrt{x^2 + a^2})$$

Note: $\ln x = \log_a x, x > 0$

Mathematics

Western Region Trial HSC Examinations 2005 Mather These are suggested answers only. Any reasonable solution should be accepted.

Solutions	Marks/Comments
1 a) i) $(4x+3)(4x-3)$	1
ii) $5a(a+2)$	1
b) $3\sqrt{5} + \sqrt{4}\sqrt{5} = 3\sqrt{5} + 2\sqrt{5}$	1
$5\sqrt{5} = \sqrt{25}\sqrt{5} = \sqrt{125}$	1
$c) x^2y + 3xy^2$	1
d) $\lim_{x \to \infty} \left(3 - \frac{4x}{x^2} + \frac{5}{x^2} \right)$	1
= 3	1
e) $x^2 - x - 1 = 0$	1
$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{1 \pm \sqrt{1 + 4}}{2} = \frac{1 \pm \sqrt{5}}{2}$	1
f) $x = 0.\dot{4}\dot{2}$ $100x = 42.\dot{4}\dot{2}$	
$99x = 42 \qquad x = \frac{42}{99} = \frac{14}{33}$	1 1
g) 1·61	1 /12
2 a) $d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} = \sqrt{6^2 + 3^2}$	1
$= \sqrt{45}$ $= 3\sqrt{5}$	1 simplification not reqd
b) $m = \frac{-3}{6} = \frac{-1}{2}$	1
$\theta = \tan^{-1}\left(\frac{1}{2}\right) = 26^{\circ}34' = 27^{\circ}$	1 ignore rounding error
c) subbing $x = -5$, $y = 5$ or $y - 2 = -\frac{1}{2}(x - 1)$	1
$-5 + 2 \times 5 - 5 = 0$ true $x + 2y - 5 = 0$ subbing $x = 1, y = 2$	1
$1 + 2 \times 2 - 5 = 0 \text{ true}$	

d) $d = \frac{ Ax_1 + By_1 + C }{\sqrt{A^2 + B^2}}$ $x_1 = 1, y_1 = 6$	1
$d = \frac{ 1+12-5 }{\sqrt{5}} = \frac{8}{\sqrt{5}}$	1
e) $A = \frac{bh}{2} = 3\sqrt{5} \times \frac{8}{\sqrt{5}} \div 2 = 12$	
$\int_{0}^{\infty} \frac{1}{12} = \frac{1}{2} = \frac{1}{2}$	1
f) call BC =4 the base and the perpendicular distance to A = 6, the height. $4 \times 6 \div 2 = 12$	1
g) (-5, 1), (-5, 9), (7, 3)	1 for first, 1 more for all 3 /12
3. a) i) note $\sqrt[4]{x^3} = x^{\frac{3}{4}}$	1
$\frac{d}{dx}\left(x^{\frac{3}{4}}\right) = \frac{3}{4}x^{\frac{-1}{4}}$	1
ii) $vu' + uv'$ $\cos x \ln x + \frac{\sin x}{x}$	1
X	1
iii) $\frac{vu'-uv'}{v^2}$	1
$\frac{e^x \cos x - e^x \sin x}{(e^x)^2} = \frac{\cos x - \sin x}{e^x}$	1
(e ^x) ^x e ^x	
b) $V = \pi \int_0^b x^2 dy$ noting $x = 4 - y$ i.e. $x^2 = 16 - 8y + y^2$	1
a	1
$V = \pi \int_{0}^{3} 16 - 8y + y^{2} dy = \pi \left[16y - 4y^{2} + \frac{y^{3}}{3} \right]_{0}^{3}$	1
$= \pi(48 - 36 + 9)$ = 21π	1
c) $g(x) = \int g'(x).dx = x^3 - 4x - x^{-1} + c$	1
but $g(x) = 4$ when $x = 1$ i.e. $4 = 1 - 4 - 1 + c$ so $c = 8$	_
and $g(x) = x^3 - 4x - \frac{1}{x} + 8$	1 /12
4 a) i) 4 × 250 × 30 = \$30 000	1
ii) $250 \times 1.02^{120} = \$2.691.29$ iii) $250 \times (1.02^{120} + 1.02^{119} + 1.02^{118} + \dots + 1.02)$	1 1
,	

$250 \times \frac{a(r^{n} - 1)}{r - 1} = 250 \times \frac{1 \cdot 02(1 \cdot 02^{120} - 1)}{1 \cdot 02 - 1}$ $250 \times 498 \cdot 02328 = \$124 \cdot 505 \cdot 83$ iv) \\$124 \text{ 505 \cdot 82} - \\$30 \text{ 000} = \\$94 \text{ 505 \cdot 83} b) \text{ \text{\text{\$\text{0}}} = 1 \text{ and } A = \frac{1}{2}r^{2}\theta A = 0 \cdot 5 \times 5^{2} \times 1 = 12.5cm^{2} c) f'(x) = 2e^{x} f'(0) = 2 \text{ slope of tangent } y = 2x + 2	1 1 1 for the subtraction 1 1
d) $\frac{1}{2}$ asymptote $x = 2$ x intercept 3	/12
5 a) i) $B\widehat{A}M = C\widehat{D}M$ alternate angles parallel lines $C\widehat{M}D = B\widehat{M}A$ vertically opposite angles $\Delta AMB \Delta DMC$ equiangular ii) Ratio of areas = $6.25 (=2.5^2)$ total area = $10 + 62.5 = 72.5$	1 1 1 1
b) i) $I = \frac{1}{4}\sin(4x) + c$ ii) $\int_{-\infty}^{\infty} \frac{x}{x^2 + 4} dx = \frac{1}{2} \int_{-\infty}^{\infty} \frac{2x}{x^2 + 4} dx$ $\frac{1}{2} \left[\ln(x^2 + 4) \right]_{-\infty}^{\infty} = \frac{1}{2} (\ln(e^8 + 4) - \ln 5)$ $\ln \sqrt{\frac{e^8 + 4}{5}}$	1 ignore <i>c</i> 1
c) Notes as to what graph is what should appear on the graph $y \ge 4$ $x \ge 2$	1 for at least 1 area shown 1 for all 3 graphs shown 1 for correct area and annotation

200000	
iv) $\frac{3000000}{900000} = e^{i \times 0.073638792}$	
$\ln 3.3 = t \times 0.073638792 \qquad t = 16 hrs 21'$	1
b) i) $y = (x+2)(x-1)$	1
ii) $y = 3\cos x + 1$	1 for 1 element
$iii) y = 3^x$	1 for the others
	1
c) i) $360^{\circ} = 2\pi$ therefore 2π by the number of sides n	1
ii) $\frac{1}{2}ab\sin C = \frac{1}{2} \times 1 \times 1 \times \sin\left(\frac{2\pi}{n}\right)$	1
iii) As n increases the area of polygon approaches area of the	1 /12
circle i.e. $\pi \times 1 \times 1 = \pi$	
8 a) i) Solving simultaneously $8mx - 16m^2 = x^2$	
$x^2 - 8mx + 16m^2 = 0$	
$(x-4m)^2=0$	1
As this has only 1 answer the line is a tangent	1
ii) $x = 2$, $y = -4$ and $-4 = 2m - 2m^2$	1
$2m^2 - 2m - 4 = 0$ $2(m-2)(m+1) = 0$ $m = -1$ or 2	1
b) i) $A = \frac{h}{3} (f(0) + f(4) + 2 \times f(2) + 4 \times (f(1) + f(3)))$	1
$\cong \frac{1}{3} \left(3 + 0 + 2 \times \frac{\sqrt{108}}{4} + 4 \times \left(\frac{\sqrt{135}}{4} + \frac{\sqrt{63}}{4} \right) \right)$	1
= 9.2507855	1
ii) $3 \times 4 \times \pi \div 4 = 9.424778$ the estimate slightly less than the true value	1 some effort to compare
c) i) $2y = x^2 - 4x$ $2y + 4 = x^2 - 4x + 4$	1
$4 \times \frac{1}{2}(x+2) = (x-2)^2$	1
ii) Focus is (2, -1.5)	
iii) Directrix $y = -2.5$	1
9 a) $n = 100$, $a = d = 5$	1 /12
$\frac{n}{2}(2a + (n-1)d) = 50 \times (10 + 495) = 25250$	1
b) $\frac{p}{\sin 72} = \frac{q}{\sin 39}$ so $\frac{p}{q} = \frac{\sin 72}{\sin 39} = 1.511$	1 + 1

c) i) $c^2 = a^2 + b^2 - 2ab\cos C =$	1
$=200^2+105^2-2\times200\times105\times\cos 150$	
=87398	1 ignore rounding
c = 295.63	errors
ii) By Cos Rule $FH^2 = 200^2 + 205^2 - 2 \times 200 \times 205 \times \cos 13^\circ$	1
FH = 45.06847	1
$200^{2} + (45.06847) = 42031$ $205^{2} = 42025$	
	1
Square of hypotenuse ≈ sum of squares on shorter sides.	1
By Pythagoras Thm, angle is approx 90° Or use cos rule again to find angle,	
	1 both equal radii
$\cos \theta = \frac{200^2 + FH^2 - 205^2}{2 \times 200 \times FH}$	1 common side +
	conclusion
$\theta = 89^{\circ}58$, approximately a right angle.	
d) (i) AC=BC radii of equal circles	
AE=BE radii of equal circles CE common	2 marks for any
	reasonable
∴ ΔAEC≡ΔBEC (SSS) rule (ii) There are several possibilities	explanation
a.CE bisects apex of isosceles \triangle ACB (corresponding angles in	/12
congruent triangles) and hence bisects base AB	
b. ACBE is rhombus, : diagonals bisect at right angles.	
c. Prove $\triangle ACD = \triangle BCD$ (SAS), hence AD = DB	
Others possible.	
10 a) i) in this case the other side equals $200 - 2x$	1
Then $A = x(200 - 2x) = 200x - 2x^2$	1
ii) $\frac{dA}{dx} = 200 - 4x$ which = 0 when $x = 50$	
$\frac{dx}{dx}$	1
then $A = 100 \times 50 = 5000 \text{m}^2$	1
this is a maximum since if we take $w = 49$ then $l = 102$ and	
A = 4998	1
h) i) 4=0=2 + 6=0	1
b) i) $t=0$ $v=3+6=9$	i
ii) $\int v.dt = x = 3e^t - 6e^{-t} + c$	<u> </u>
but $x = 0$ when $t = 0$ so $0 = 3 - 6 + c$ whence $c = 3$	1
then $x = 3e^t - 6e^{-t} + 3$	
iii) If $a^{t} = 2$, $a^{-t} = \frac{1}{2}$ and $a_{2} = 2 + 2 = 10$	
iii) If $e^t = 3$, $e^{-t} = \frac{1}{3}$ and so $x = 3 \times 3 - 2 + 3 = 10$	1
Under these conditions $3e^{2t} - 7e^t - 6 = 0$ $3 \times 9 - 7 \times 3 - 6 = 0$	
iv) $(3e^t + 2)(e^t - 3) = 0$ $t = \ln 3 = 1$ minute 6 seconds	
(2)(0 5) 0 1 III IIII O SOURIUS	1
c) $a = 6$	1
b=3	1 /12
	1 /12