

2005 TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 1

General Instructions

- o Reading Time- 5 minutes
- o Working Time 2 hours
- Write using a black or blue pen
- o Approved calculators may be used
- A table of standard integrals is provided at the back of this paper.
- All necessary working should be shown for every question.
- Begin each question on a fresh sheet of paper.

Total marks (84)

- o Attempt Questions 1-7
- o All questions are of equal value

2005 Trial HSC Examination Mathematics Extension i

Total Marks – 84 Attempt Questions 1-7 All Questions are of equal value

Begin each question on a NEW SHEET of paper, writing your name and question number at the top of the page. Extra paper is available.

QUESTI	on 1	(12 marks)	Begin a NEW sheet of writing paper.	Marks
a)	Calcula	te the acute angle $2x + y = 0$ and $x - 3y = 0$		2
b)	Use the	table of standard	integrals to show that $\int_6^{15} \frac{dx}{\sqrt{x^2 + 64}} = \ln(2)$	2
c)	Solve	$\frac{2x-3}{x-1} \le 4$		3
d)	Evaluate	$e^{\sum_{n=2}^{8}\left(n^2-n\right)}$		1
e)	Show th	nat $2x-1$ is a fact	or of $2x^3 + 5x^2 + x - 2$	2
f)	Find	$\int \sin x \cos x dx $ us	sing the substitution $u = \sin x$	2

3

3

1

1

1

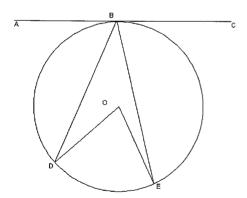
3

QUESTION 2 (12 MARKS) Begin a NEW sheet of writing paper. Marks

a) Find the Cartesian equation of the curve represented by the parametric equations below:

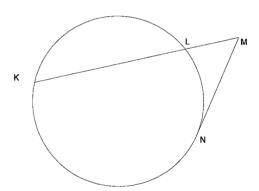
$$x = 2t - 1$$
$$y = t^2 + 2t$$

- b) Find the volume of the solid of revolution formed when the section of the curve $y = \cos x$ between $x = \frac{\pi}{2}$ and $x = \frac{3\pi}{2}$ is rotated about the x axis.
- c) Considering the letters which form the word DESCARTES.
 - (i) How many distinct arrangements of the letters are possible?
 - (ii) How many distinct arrangements are possible if the two letter S's must be placed so that one is at the beginning and one at the end?
 - (iii) How many distinct arrangements are possible if the two letter S's must be placed together?
- d) In the diagram below, O is the centre of the circle, AC is a tangent at B and D and E are points on the circumference. If \angle ABD = 80° and \angle DBE = 40°, find the size of \angle BEO, giving reasons.



Question 3	(12 marks)	Begin a NEW sheet of writing paper.	Marks
Newton's 1		zero close to $x = 1$. Use one application of econd approximation for this zero, giving your figures.	3
b) (i) Show t	hat $\sin x - \cos 2x$	$=2\sin^2 x + \sin x - 1$	2
(ii) Hence	or otherwise solve	$e \sin x - \cos 2x = 0 \text{for} 0 \le x \le 2\pi$	3
The tange	nt MN is then drav	ord KL is produced to M so that LM = $\frac{1}{3}$ KL wn.	4
Show that	$t MN = \frac{2}{3}KL$		

Mathematics



(ii) $\frac{1}{\alpha^2 \beta^2} + \frac{1}{\beta^2 \gamma^2} + \frac{1}{\alpha^2 \gamma^2}$

2

3

Marks

3

2

Question 4	(12 marks)	Begin a NEW sheet of writing paper.	Marks
a) Find the coo	efficient of x^2 in	the expansion of $(2x+4)^5 + (x^2-3)^6$	3
	ic equation $2x^3$ – the value of:	$3x^2 + 5x - 2 = 0$ with roots, $x = \alpha$, $x = \beta$ and	
(i) $\alpha^2 + \beta^2$	$+\gamma^2$		2

- c) When Lleyton and Bec play tennis, Bec has a 0.1 chance of winning any particular game. On the weekend they intend to play 6 games. Calculate the probability (to 2 significant figures) that:
 - (i) Bec wins no games.
 - (ii) Bec wins at least one game.
 - (iii) Bec wins 4 or more games.

QUESTION 5	(12 marks)	Begin a NEW sheet of writing paper.
a) For the fund	$f(x) = x^2 -$	6x :

- (i) Give the domain of f(x) for which there exists an inverse function, $f^{-1}(x)$.
- (ii) Find the equation of the inverse function $f^{-1}(x)$ and give it's domain.

Mathematics

b) Considering the expansion of $(a+b)^n$:

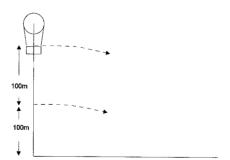
(i) By letting
$$a = b = 1$$
, show that $\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} = 2^n$

(ii) By letting a = 1, and b = -1, show that

$$\binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \binom{n}{3} + \dots + (-1)^n \binom{n}{n} = 0$$

(iii) Hence show that
$$\binom{n}{0} + \binom{n}{2} + \binom{n}{4} + \dots = 2^{n-1}$$

c) A balloon rises vertically from level ground. Two projectiles are fired horizontally in the same direction from the balloon at a velocity of 80ms^{-1} . The first is fired at a point 100 m from the ground and the second when it has risen a further 100 m from the ground. How far apart will the projectiles hit the ground? (Use $g = 10 \text{ms}^{-2}$)



2

3

Marks

3

QUESTION 6 (12 MARKS) Begin a NEW sheet of writing paper. Marks

- a) The chord joining P $(2ap, ap^2)$ and Q $(2aq, aq^2)$ on the parabola $x^2 = 4ay$ subtends a right angle at the vertex of the parabola.
 - (i) Show that pq = -4
 - (ii) Show that the locus of the point M, the midpoint of PQ, is also a parabola and give its vertex.
 - b) (i) By considering the cases where a positive integer k is even (k=2x) and odd (k=2x+1), show that k^2+k is always even. i.e. $k^2+k=2m$, where m is also an integer.
 - (ii) Prove, by Mathematical induction, that for all positive integral values of n, $n^3 + 5n$ is divisible by 6.
- c) (i) Given the series expansion for $e^h = 1 + \frac{h}{1!} + \frac{h^2}{2!} + \frac{h^3}{3!} + \dots$ show that $\frac{e^h 1}{h} = 1 + \frac{h}{2!} + \frac{h^2}{3!} + \dots$
 - (ii) Hence, use the definition $f'(x) = \lim_{h \to 0} \frac{f(x+h) f(x)}{h}$ to find the derivative of $f(x) = e^x$.

QUESTION 7 (12 MARKS) Begin a NEW sheet of writing paper.

a) Using the fact that the inverse trigonometric function

 $y = sin^{-1} x \quad \{-1 \le x \le 1\}$ is equivalent to the function

$$x = \sin y \left\{ -\frac{\pi}{2} \le y \le \frac{\pi}{2} \right\}$$

2005 Trial HSC Examination

(i) Show that $\frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}$

(ii) Hence find the value of the derivative of $sin^{-1}(\sqrt{x})$ when $x = \frac{1}{2}$.

QUESTION 7 CONTINUES ON PAGE 9

QUESTION 7 CONTINUED

Marks

1

3

3

b) A thin, 20 m high, triangular screen which has a 30m long base running north to south, stands on level ground. At noon it casts no shadow, and as the afternoon progresses its shadow increases in length as the angle of elevation of the sun (θ) decreases.

Elevation View Perspective View

Screen

Shadow

- (i) Show that the area of the shadow is given by $A = \frac{300}{\tan \theta}$
- (ii) Given that the angle of elevation of the sun decreases at a rate of $\frac{\pi}{12}^{c}$ /hour. (i.e. $\frac{d\theta}{dt} = -\frac{\pi}{12}$) find the rate (in m²/hour) at which the area of the shadow is increasing at 3 p.m.
- (iii) Sketch $A = \frac{300}{\tan \theta}$ for $0 \le \theta \le \frac{\pi}{2}$. Use this graph to help describe what happens to the area of the shadow as the afternoon progresses, and also to the rate of change in the area. In particular look at what happens just after noon and as the time approaches 6 p.m.

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0 \quad \text{if} \quad n < 0$$

Mathematics

$$\int_{-\infty}^{\infty} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, a \neq 0$$

$$\int \sec ax \tan ax dx = -\frac{1}{a} \sec ax, a \neq 0$$

$$\int \frac{1}{a + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, a > 0, -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln(x + \sqrt{x^2 - a^2}), x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx$$

$$= \ln(x + \sqrt{x^2 + a^2})$$

Note: $\ln x = \log_e x, x > 0$

Western Region

2005
TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 1

Solutions

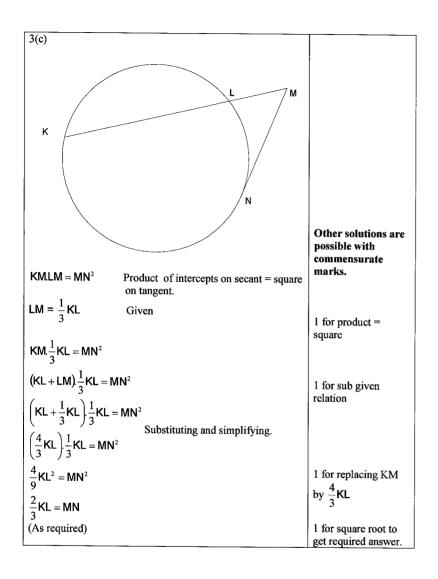
Solutions Question 1 2005		Marks/Comments
1. a) For $2x + y = 4$ $m_1 = -2$ aso:	and for $x - 3y = 6$ $m_2 = \frac{1}{3}$	2 marks for correct formula, substitution and evaluation.
$\tan \theta = \frac{\left \frac{m_1 - m_2}{1 + m_1 m_2} \right }{\left \frac{1 + 2 \cdot \frac{1}{3}}{1 + 2 \cdot \frac{1}{3}} \right }$ $= \frac{\left \frac{-2 \cdot \frac{1}{3}}{1 + 2 \cdot \frac{1}{3}} \right }{\left \frac{1}{3} \right }$ $\tan \theta = \left -7 \right $ $\theta = 81^{\circ} 52^{\circ}$		1 mark if a single error is made in one step.
1 b) From Standard Integrals $\int_{6}^{5} \frac{dx}{\sqrt{x^2 + 64}} = \left[\ln(x + \sqrt{x^2 + 64})\right]$)] ¹⁵ ₆	2 marks for correct substitution, and simplification.
$= \left(\ln\left(15 + \sqrt{15^2 + 64}\right)\right)$ $= \left(\ln\left(15 + \sqrt{289}\right)\right) - \left(\ln\left(16\right)\right)$ $= \left(\ln(32)\right) - \left(\ln(16)\right)$ $= \ln(2)$	$ \left(\ln \left(6 + \sqrt{6^2 + 64} \right) \right) $ $ \ln \left(6 + \sqrt{100} \right) \right) $	1 mark if a single error is made in the substitution or the simplification.
try $x = 0$ $3 \le 4$ try $x = 0.75$ $6 \le 4 \times$ try $x = 2$ $1 \le 4$ $x \le \frac{1}{2}, x > 1$	$\frac{2x-3}{x-1} \le 4$ $(x-1)^2 \frac{2x-3}{x-1} \le 4(x-1)^2$ $(x-1)(2x-3) \le 4(x-1)^2$ $2x^2 - 5x + 3 \le 4x^2 - 8x + 4$ $0 \le 2x^2 - 3x + 1$ $(2x-1)(x-1) \ge 0$ $x \le \frac{1}{2} (x > 1)$	1 for values . 1 for test 1 for statement. No 3^{rd} mark if $x \ge 1$ Similar break up of marks for alternative methods.

1. d) $\sum_{n=2}^{8} (n^2 - n) = (4 - 2) + (9 - 3) + (16 - 4) + (25 - 5)$ $+ (36 - 6) + (49 - 7) + (64 - 8)$ $= 2 + 6 + 12 + 20 + 30 + 42 + 56$ $= 168$ 1. e) $2x - 1$ is a factor of $P(x) = 2x^3 + 5x^2 + x - 2$ if $P(\frac{1}{2}) = 0$ by factor theorem. $P(\frac{1}{2}) = 2(\frac{1}{2})^3 + 5(\frac{1}{2})^2 + (\frac{1}{2}) - 2$ $= \frac{1}{4} + \frac{5}{4} + \frac{1}{2} - 2$ $= 0 \therefore 2x - 1 \text{is a factor}$	2 marks for substitution and explanation, or other valid method such as dividing. 1 mark if error in substitution, but right reasoning to substitute $x = \frac{1}{2}$
1. f) If $u = \sin x$, then $\frac{du}{dx} = \cos x$ and $du = \cos x dx$ $\int \sin x \cos x dx = \int u du$ $= \frac{u^2}{2} + c$ $= \frac{\sin^2 x}{2} + c$	2 marks for correct substitution and integration. 1 mark if error made in substitution or integration.

Solutions Question 2 2005	Marks/Comments
2 a)	1 mark for making t the
$x=2t-1 \Rightarrow t=\frac{x+1}{2}$	subject of either
<u> </u>	equation.
$y = t^2 + 2t$	1 for substitution into
$y = \left(\frac{x+1}{2}\right)^2 + 2\left(\frac{x+1}{2}\right)$ OR	the other equation
$\begin{cases} 2 & \text{OR} \\ 4y = x^2 + 2x + 1 + 4x + 4 \end{cases}$	1 for simplifying to
$4y = x^2 + 6x + 5$	either form.
$4v+4=x^2+6x+9$	
$y = \frac{x^2 + 6x + 5}{4}$ $4(y+1) = (x+3)^2$	
(2 b) $y = \cos x$	1
$V = \pi \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} y^2 dx$	- - - - - - - - - -
$\frac{2}{3\pi}$	
$=\pi\int_{\frac{\pi}{2}}^{\frac{3\pi}{2}}(\cos x)^2dx$	
	1 for substituting into
$=\pi \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \frac{(1+\cos 2x)}{2} dx$	Volume formula.
$\frac{\mathcal{L}}{2}$ 2	1 for finding integral of
$=\frac{\pi}{2}\left[x+\frac{1}{2}\sin 2x\right]_{\frac{\pi}{2}}^{\frac{3\pi}{2}}$	1 for finding integral of $\cos^2 x$
$ = \frac{1}{2} \left[x + \frac{1}{2} \sin 2x \right]_{\pi} $	003 4
	1 for evaluating
$ = \frac{\pi}{2} \left[\left(\frac{3\pi}{2} + \frac{1}{2} \sin 2 \left(\frac{3\pi}{2} \right) \right) - \left(\frac{\pi}{2} + \frac{1}{2} \sin 2 \left(\frac{\pi}{2} \right) \right) \right] $	resulting definite integral.
$=\frac{\pi}{2}\left[\left(\frac{3\pi}{2}+\frac{1}{2}\sin 3\pi\right)-\left(\frac{\pi}{2}+\frac{1}{2}\sin \pi\right)\right]$	
$=\frac{\pi}{2}\left[\left(\frac{3\pi}{2}\right)-\left(\frac{\pi}{2}\right)\right]$	
2[(2) (2)]	
$=\frac{\pi}{2}[\pi]$	
$\frac{1}{\pi^2}$	
$=\frac{\pi^2}{2}unts^2$	

2 c) i) There are $\frac{9!}{2!2!} = 90720$	1 mark.
arrangements with the S's and E's repeated.	
ii) When the two S's are placed there are $\frac{7!}{2!} = 2520$	1 mark
arrangements of the remaining 7 letters with E's repeated.	
iii) Consider the two S's as a single unit, so eight to	1 mark
arrange in $\frac{8!}{2!} = 20160$	
ways with E's repeated.	
2 d)	
A 80° 40° C 80° 50° E	1 mark for ∠BED with reasons. 1 mark for ∠DOE with reasons. 1 mark for ∠BEO with reasons.
∠BED = ∠ABD = 80° Angle between tangent and chord is equal to the angle in alternate segment. ∠DOE = 2×∠DBE = 80° Angle at the centre is twice angle at circumference on same arc.	
DO = OE Equal radii $\angle OED = \angle ODE = 50^{\circ} \text{ Equal angles in isosceles } \triangle ODE$ $\angle BEO = \angle BED - \angle OED = 80^{\circ} - 50^{\circ} = 30^{\circ}$	

Solutions Question 3 2005	Montes/Communits
	Marks/Comments
3(a) By Newtons Method $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$	
Here $x_1 = 1$, $f(x) = \sin(e^x)$	
$f'(x) = \frac{d}{dx} \left[\sin(e^x) \right]$	1 for derivative
$=e^{x}\cos(e^{x})$	1 for sub in formula
$x_2 = 1 - \frac{\sin(e^1)}{e^1 \cos(e^1)}$	1 for correct
So $= 1 - (-0.1657)$	evaluation.
= $1.1657 = 1.17$ (3 Significant figures)	
3(b) (i)	1 mark for expression
$\sin x - \cos 2x = \sin x - \left(1 - 2\sin^2\right)$	for $\cos 2x$
$=\sin x - 1 + 2\sin^2 x$	1 for simplifying
$=2\sin^2 x + \sin x - 1$	1 to simplifying
3(b) (ii)	
$\sin x - \cos 2x = 0$	1 for factorising
$2\sin^2 x + \sin x - 1 = 0$	quadratic equation
$2\sin^2 x + 2\sin x - \sin x - 1 = 0$	1 for values of sinx
$2\sin x(\sin x + 1) - (\sin x + 1) = 0$	1 101 (010 0 1 010)
$(2\sin x - 1)(\sin x + 1) = 0$	
So $\sin x = \frac{1}{2}$ or $\sin x = -1$	1 for the solutions for
2	x
$x = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{3\pi}{2}$	

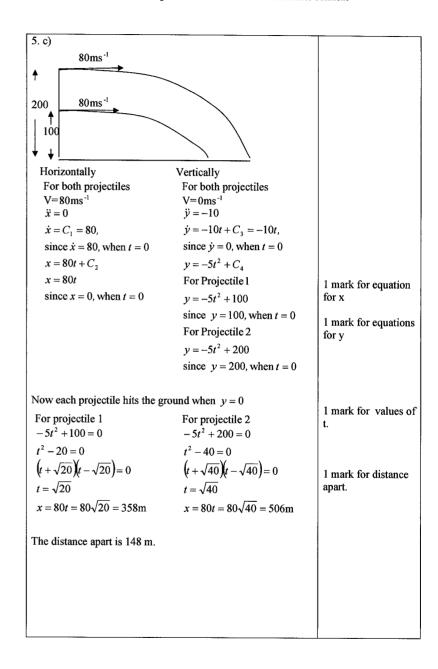


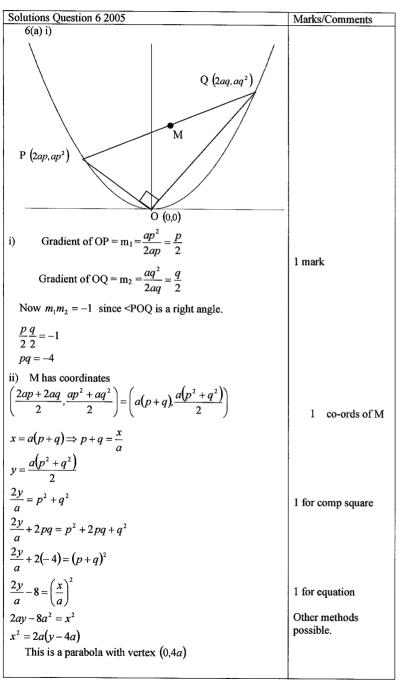
0.1	
Solutions Question 4 2005	Marks/Comments
4(a) In $(2x+4)^5$ the term in x^2 comes from $\binom{5}{3}(2x)^2 4^3$ In $(x^2-3)^6$ the term in x^2 comes from $\binom{6}{5}(x^2)^4(-3)^5$	1 mark for the term in x ² in each expansion (2 marks)
In $(2x+4)^5 + (x^2-3)^6$ the term in x^2 comes from	1 mark for adding the terms in x ²
$ \left {5 \choose 3} (2x)^2 4^3 + {6 \choose 5} (x^2)^1 (-3)^5 = 10.(4x^2) 64 + 6.(x^2) (-243) \right $	
$= 2560 x^2 - 1458 x^2$ $= 1102 x^2$	
Coefficient of x^2 is 1102	
4(b) $2x^3 - 3x^2 + 5x - 2 = 0$ $\alpha + \beta + \gamma = \frac{-b}{a} = \frac{3}{2}$ $\alpha\beta + \beta\gamma + \alpha\gamma = \frac{c}{a} = \frac{5}{2}$ $\alpha\beta\gamma = \frac{-d}{a} = \frac{2}{2} = 1$	1 mark for correctly re arranging the required expression in terms of sums and products.
(i) $\alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \alpha\gamma)$ $= \left(\frac{3}{2}\right)^2 - 2\left(\frac{5}{2}\right)$ $= -\frac{11}{4} = -2\frac{3}{4}$	1 mark for correctly substituting and simplifying.
$\frac{1}{\alpha^{2}\beta^{2}} + \frac{1}{\beta^{2}\gamma^{2}} + \frac{1}{\alpha^{2}\gamma^{2}} = \frac{\alpha^{2} + \beta^{2} + \gamma^{2}}{\alpha^{2}\beta^{2}\gamma^{2}}$ $= \frac{\alpha^{2} + \beta^{2} + \gamma^{2}}{(\alpha\beta\gamma)^{2}}$ $= \frac{-11}{4} / (1)^{2}$ $= \frac{-11}{4} = -2\frac{3}{4}$	1 mark for correctly re arranging the required expression in terms of sums and products. 1 mark for correctly substituting and simplifying.

4 (c) Let N denote the number of games Bec wins.	
For a given game $P(\text{Bec wins}) = b = 0.1$. and	
P(Lleyton wins) = l = 0.9	
(i) Bec wins no games.	
$P(N=0) = \binom{6}{0} (0.1)^{0} \cdot (0.9)^{6}$	1 mark
=(1)(1)(0.531441)	
= 0.53 (2 sig figs)	
(ii) Bec wins at least one game. P(N > 0) = 1 - P(N = 0)	
$=1-\binom{6}{0}(0.1)^0.(0.9)^6$	1 mark
=1-(0.531441)	
= 0.47 (2 sig figs)	
(iii)Bec wins 4 or more games. $P(N \ge 4) = P(N = 4) + P(N = 5) + P(N = 6)$	
$= \binom{6}{4}(0.1)^4 \cdot (0.9)^2 + \binom{6}{5}(0.1)^5 \cdot (0.9)^1 + \binom{6}{6}(0.1)^6 \cdot (0.9)^0$	1 mark for recognising required
= (15)(0.0001)(0.81) + (6)(0.00001)(0.9) + (1)(0.000001)(1) $= 0.001215 + 0.000054 + 0.000001$	terms to add.
= 0.001215 + 0.000054 + 0.000001	1 mark for binomial
= 0.00127 = 0.0013 (2 sig figs)	terms.
- 0.0013 (2 sig rigs)	1 mark for
	calculation.

Solutions Question 5 2005	Marks/Comments
5(a) i)	iviarks/ comments
Since the sketch of $f(x) = x^2 - 6x$ is symmetrical at $x = 3$, it	
will not have an inverse function unless the domain is	
restricted to $\{x: x \ge 3\}$ or $\{x: x \le 3\}$	
	1 mark for either of the domains given.
(a) ii) If function is $y = x^2 - 6x \{x : x \ge 3\}$, then inverse is	
$x = y^2 - 6y$	Answers refer to
$x + 9 = y^2 - 6y + 9$	domain $\{x: x \ge 3\}$,
$x+9=(y-3)^2$	but would be similar
$y-3=\sqrt{x+9}$	$\int \text{for } \{x: x \le 3\}$
$y = \sqrt{x+9} + 3$	
*	1 marks for
$f^{-1}(x) = \sqrt{x+9} + 3$	interchanging x and
The domain is $\{x: x \ge -9\}$	y and attempting to
y 10 +	find inverse.
10+	
5-10 -5 5 10 x	1 mark for successfully completing this to get $f^{-1}(x)$
-6	1 mark for domain. Graph not required.
- 10 	

5. (b) i) $(a+b)^n = \binom{n}{0}a^nb^0 + \binom{n}{1}a^{n-1}b^1 + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{n}a^0b^n$	1 mark
When $a = 1$ and $b = 1$, this becomes	
$ (1+1)^n = \binom{n}{0} 1^n 1^0 + \binom{n}{1} 1^{n-1} 1^1 + \binom{n}{2} 1^{n-2} 1^2 + \dots + \binom{n}{n} 1^0 1^n $	
$2^{n} = {n \choose 0} + {n \choose 1} + {n \choose 2} + \dots + {n \choose n}$ b) ii)	
b) ii)	1 mark
$(a+b)^n = \binom{n}{0}a^nb^0 + \binom{n}{1}a^{n-1}b^1 + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{n}a^0b^n$	
When $a = 1$ and $b = -1$, this becomes	
$ (1+(-1))^n = \binom{n}{0} 1^n (-1)^0 + \binom{n}{1} 1^{n-1} (-1)^1 + \binom{n}{2} 1^{n-2} (-1)^2 + \dots + \binom{n}{n} 1^0 (-1)^n $	
$(0)^n = \binom{n}{0} 1 + \binom{n}{1} (-1) + \binom{n}{2} 1 + \dots + \binom{n}{n} (-1)^n$	
$0 = \binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \binom{n}{3} \dots + (-1)^n \binom{n}{n}$	
c) iii) From ii) above	1 mark for
$\binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \binom{n}{3} + \dots + (-1)^n \binom{n}{n} = 0$	rearranging answer to ii)
	1 mark for
Now since $\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} = 2^n$	simplifying to get required
	result.
$\binom{n}{0} + \binom{n}{2} + \dots = \binom{n}{1} + \binom{n}{3} + \dots = \frac{1}{2} (2^n)$	
$\binom{n}{0} + \binom{n}{2} + \dots = \binom{n}{1} + \binom{n}{3} + \dots = 2^{n-1}$	





6(b) i) If k is even, i.e k = 2x, then $k^2 + k = (2x)^2 + 2x$ $= 4x^2 + 2x$ $= 2(2x^2 + x)$ = 2m	If k is odd, i.e $k = 2x + 1$, then $k^{2} + k = (2x + 1)^{2} + 2x + 1$ $= 4x^{2} + 4x + 1 + 2x + 1$ $= 4x^{2} + 6x + 2$ $= 2(2x^{2} + 3x + 1)$ $= 2m$	1 mark for each case.
$\therefore k^2 + k$ is divisible by 2, no ma	tter whether k is odd or even	
ii) When $n = 1$, $n^3 + 5n = 1^3 + 5n$ $\therefore n^3 + 5n$ is divisible by 6 when	n = 1	
Assume that $n^3 + 5n$ is divisible i.e $k^3 + 5k = 6p$ where p is an i Now when $n = k + 1$ $(k+1)^3 + 5(k+1) = k^3 + 3k^2 + 3k$ $= k^3 + 5k + 3k$ $= 6p + 3k^2 + 3$ $= 6p + 6 + 3(k^3 + 3k^2 + 3k^$	nteger. $(k+1+5k+5)^2 + 3k+6$ $(k+6)^2 + (k+6)^2 + (k$	3 marks for full proof including all steps. Delete one mark if case n=1 or conclusion not correct or omitted. Delete one mark for simple error in case
\therefore if true for $n = k$, then also true		for k+1
for $n = 1$, by induction is true fo	r all integral values, $n \ge 1$	

6 (c) (i) $e^h = 1 + \frac{h}{1!} + \frac{h^2}{2!} + \frac{h^3}{3!} + \dots$	
$e^{h} - 1 = \frac{h}{1!} + \frac{h^{2}}{2!} + \frac{h^{3}}{3!} + \dots$	1 mark
$\frac{e^h - 1}{h} = \frac{1}{1!} + \frac{h}{2!} + \frac{h^2}{3!} + \dots$	
$\frac{e^h - 1}{h} = 1 + \frac{h}{2!} + \frac{h^2}{3!} + \dots$	
(ii) $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	
· · · · · · · · · · · · · · · · · · ·	1 mark for
$=\lim_{h\to 0}\frac{e^{x+h}-e^x}{h}$	substitution and
$=\lim_{h\to 0}\frac{e^x(e^h-1)}{h}$	taking e^x out of limit.
$=e^{x}\lim_{h\to 0}\frac{\left(e^{h}-1\right)}{h}$	
$= e^{x} \lim_{h \to 0} \left(1 + \frac{h}{2!} + \frac{h^{2}}{3!} + \dots \right)$	1 for evaluating limit.
$=e^{x}\left(1+\frac{0}{2!}+\frac{0^{2}}{3!}+\right)$	
$=e^{x}(1)$	
$=e^x$	

Solutions Question 7 2005	Mortes/Comments
7(a) i)	Marks/Comments
Given that $y = sin^{-1} x$ $\{-1 \le x \le 1\}$ is equivalent to the function $x = sin y$ $\{-\frac{\pi}{2} \le y \le \frac{\pi}{2}\}$ we can derive x	Alternate methods possible.
$\frac{dx}{dy} = \cos y, \text{ and using } \sin^2 y + \cos^2 y = 1 \text{ we get}$ $\cos^2 y = 1 - \sin^2 y$ $\cos y = \sqrt{1 - \sin^2 y}$ $\therefore \frac{dx}{dy} = \sqrt{1 - \sin^2 y}$	1 for finding $\frac{dx}{dy}$ 1 for $\frac{dx}{dy}$ in terms of $\frac{dx}{dy}$
$\frac{dx}{dy} = \sqrt{1 - x^2} \text{since } x = \sin y$ $\therefore \frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}}$ ii)	1 for $\frac{dy}{dx}$ in terms of x
$\frac{d}{dx}\left(\sin^{-1}\left(\sqrt{x}\right)\right) = \frac{1}{\sqrt{1-\left(\sqrt{x}\right)^2}} \cdot \frac{d}{dx}\left(\sqrt{x}\right)$ $= \frac{1}{\sqrt{1-x}} \cdot \frac{d}{dx}\left(x^{\frac{1}{2}}\right)$ $= \frac{1}{\sqrt{1-x}} \cdot \frac{1}{2}x^{\frac{1}{2}}$	1 for derivative in terms of x
$= \frac{1}{\sqrt{1-x}} \cdot \frac{1}{2\sqrt{x}}$ $= \frac{1}{\sqrt{1-\frac{1}{2}}} \cdot \frac{1}{2\sqrt{\frac{1}{2}}}$ $= \frac{1}{\sqrt{\frac{1}{2}}} \cdot \frac{1}{2\sqrt{\frac{1}{2}}}$ $= \frac{1}{2\sqrt{\frac{1}{4}}}$	1 for substitution.
$=\frac{1}{2 \cdot \frac{1}{2}}$ $=1$	

