WESTERN REGION

2007 TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2

General Instructions

- o Reading Time 5 minutes
- Working Time 3 hours
- o Write using a black or blue pen
- Approved calculators may be used
- A table of standard integrals is provided at the back of this paper.
- All necessary working should be shown for every question.
- Begin each question on a fresh sheet of paper.

Total marks (120)

- o Attempt Questions 1-8
- o All questions are of equal value

Trial HSC Examination 2007

Mathematics Extension 2

Total Marks – 120 Attempt Questions 1-8 All Questions are of equal value

Begin each question on a NEW SHEET of paper, writing your name and question number at the top of the page. Extra paper is available.

Question 1(15 marks)Use a SEPARATE sheet of paper.Marksa)Use the technique of integration by parts to find2 $\int x^2 e^x dx$

b) i) Use partial fractions to evaluate $\int_{0}^{1} \frac{5 dt}{(2t+1)(2-t)}$

ii) Hence, and by using the substitution $t = \tan \frac{\theta}{2}$, evaluate $\int_{-3\sin \theta + 4\cos \theta}^{\frac{\pi}{2}} d\theta$

c) By using the table of standard integrals and manipulation, find $\int_0^1 \frac{dx}{\sqrt{4x^2 + 36}}$

d) If $I = \int e^x \sin x \, dx$, find I.

e) Without evaluating, explain why $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^5 x \, dx = 0.$

End of Question 1

Marks

2

2

Question 2		(15 marks)	Use a SEPARATE sho	eet of pa	per.	
a)	Given that		ent the complex numbers	$\sqrt{3}+i$	and	$1-\sqrt{2}i$

Given that A and B represent the complex numbers	$\sqrt{3}+i$	and	$1-\sqrt{2}i$
respectively, find:			

i)
$$\frac{A}{B}$$
 in the form $x+iy$

iii) the complex number
$$C$$
 in $x+iy$ form, given that $\arg C = 2\arg A$ and $|C| = 3|A|$.

b)

On the Argand diagram above, OABC is a square, with OC representing the complex number 4 + 3i.

Write down the complex numbers represented by:

On an Argand diagram sketch the regions defined by the following, where Z is a complex number:

i)
$$1 \le |Z| \le 3$$

ii)
$$\frac{\pi}{4} \le \arg Z \le \frac{\pi}{2}$$

iii)
$$-1 \le \operatorname{Re}(Z) \le 2$$

End of Question 2

<u>Tria</u>	Trial HSC Examination 2007 Mathematics Extension 2				
Que	estion	3 (15 marks) Use a S	SEPARATE sheet of paper.	Marks	
a)	i)	On the same set of axes draw $y = \ln x$ and $y = \sin x$ for 0		2	
	ii)	By using your graphs from particular equation $\ln x - \sin x = 0$.	t (i), find an approximate solut	ion for the 1	
	iii)	Using one application of Newt approximation for your answer		rate 2	
	iv)	On the same set of axes as you over the same domain.	used for part (i), sketch $y = 1$	$nx + \sin x$ 2	
b)	Give	on $f(x) = \ln x$, and considering	your graph of $y = \ln x$ in par	t (a),	

draw separate sketches of:

$$i) \quad y = |f(x)|$$

ii)
$$y = [f(x)]^2$$

iii)
$$y = \frac{1}{f(x)}$$

Prove, using Mathematical Induction, that the total number of diagonals in an *n*-sided polygon is given by $\frac{n(n-3)}{2}$.

End of Question 3

3

2

Use a SEPARATE sheet of paper. Marks Question 4 (15 marks)

Show that the area enclosed between the parabola $x^2 = 4ay$ and its latus rectum is $\frac{8a^2}{3}$ units².

Cross-sections perpendicular to the x-axis are parabolas with latus rectums in the xy plane.

- i) Show that the area of the cross-section at x = h is $\frac{16 h^2}{6}$ units². 3 [Use your answer to part (a)]
- ii) Hence, find the volume of this solid.
- i) Show that a reduction formula for $I_n = \int (\ln x)^n dx$ is 2 $I_n = x \left(\ln x\right)^n - I_{n-1}.$
 - ii) Hence, or otherwise, evaluate $\int_{1}^{e} (\ln x)^{3} dx$. 2
- Find an equation which has roots which are the squares of the roots of 3 $3x^3 + 2x^2 + x - 6 = 0$.

End of Question 4

Trial HSC	Examination 2007		Mathematics Extension 2
Question	5 (15 marks)	Use a SEPARATE sheet of paper	. Mark
a) i)	Show that the equation	of the normal to the hyperbola $\frac{\lambda}{a}$	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ 3
		$(\tan \theta)$ is $ax \sin \theta + by = (a^2 + b^2)$	
ii)	If the normal in part (i) find the coordinates of	intersects the x-axis at A and the A and B .	y-axis at B , 2
iii)		tes of M , the midpoint of AB are	
	$x = \frac{1}{2a^2} \left(a^2 + b^2 \right)$) $\sec \theta$ and $y = \frac{1}{2b} (a^2 + b^2) \tan \theta$	θ.
iv)	Hence, find the equation	n of the locus of M in Cartesian	form. 2
v)	If $a = b$, what can you	say about the locus in part (iv)?	1
	If the gradient of the tangence point (5, 2).	$x^2 - 3xy + 2y^2 = 3xy + 2y^2 + 2y^2 = 3xy + 2y^2 + 2y$	2
c) i)	Show that $\sin x + \sin 3$	$3x = 2\sin 2x \cos x.$	1
ii)	Hence, or otherwise, so	$1 \text{ve } \sin x + \sin 2x + \sin 3x = 0 \text{ for}$	$0 \le x \le 2\pi.$

End of Question 5

2

2

Marks

1

1

2

1

I THAT THE BAR	immunor, 2001		
Question 6	(15 marks)	Use a SEPARATE sheet of paper.	Marks
a) If $z = 0$	$\cos \theta + i \sin \theta$		

- - Find the complex roots of $z^5 + 1 = 0$.
 - Hence express $z^5 + 1 = 0$ as the product of linear and quadratic factors.
 - Using your result for part (i), show that $\cos \frac{\pi}{5} + \cos \frac{3\pi}{5} = \frac{1}{2}$. 2
- Given $z = \cos \theta + i \sin \theta$, show that $z^n z^{-n} = 2 \cos n\theta$.
 - ii) Hence, express $\cos^6 \theta$ in terms of $n\theta$. 3
 - iii) Using your answer to part (ii), evaluate $\int_{-1}^{\frac{\pi}{6}} \cos^6 \theta \ d\theta.$
- Over the complex field, the polynomial $P(x) = 2x^3 15x^2 + 18x 13$ has a zero at x = 3 - 2i.

Determine the other two zeros of P(x).

End of Question 6

Que	stion	7 (15 marks) Use a SEPARATE sheet of paper.
a)	h me	ass of $m \log n$ is allowed to fall under gravity from a stationary position stress above the ground. It experiences resistance proportional to the re of its velocity, νms^{-1} .
	i)	Explain why the equation for this motion is $\ddot{x} = g - kv^2$, (where k is a constant).
	ii)	Show that $\frac{d}{dx} \left(\frac{1}{2} v^2 \right) = \ddot{x}$

Trial HSC Examination 2007

- iii) Hence show that $v^2 = \frac{g}{k} (1 e^{-kx})$
- Find the velocity at which the mass hits the ground in terms of g, h and k. 1
- What would be the terminal velocity of this mass if it were allowed 1 to fall without resistance?
- The diagram below shows a point P rotating in a circle of radius 1 metre, whose centre is at O.

AB is a diameter produced to C such that OC = 2 metres.

The angular velocity of P is given by $\dot{\theta} = \pi$ rad/sec. $(\theta = \angle POB)$

- i) Find the angular velocity of P about A and about B.
- If $\angle PCO = \alpha$, show that $\sin(\alpha + \theta) = 2\sin\alpha$.
- Hence find the angular velocity of P about C at the instant when $\theta = \frac{\pi}{2}$. 4

End of Question 7

Marks Use a SEPARATE sheet of paper. **Ouestion 8** (15 marks)

- A motorcyclist is riding inside a sphere of radius 10 metres. What must be his minimum speed if he is to successfully ride in a vertical circle passing through the top of the sphere? $(g = 10 \,\mathrm{ms}^{-2})$
- 2
- If pqr represents a three digit number (i.e. pqr = 100p + 10q + r) and p+q+r=3A, where A is a positive integer; show that the number pqr is also divisible by 3.
- 2

3

4

ABCD is a cyclic quadrilateral. BA and CD produced intersect at E. The circles EAD and FCD intersect at both G and D. BC and AD produced intersect at F.

Prove that the points E, G and F are collinear. (Hint: join FG, EG and DG)

Trial HSC Examination 2007

- A triangle is formed by joining three points on the number plane. Verify that the coordinates of the centroid (the point of intersection of the medians of the triangle) is given by averaging the x-coordinates and averaging the y-coordinates of the vertices.
- Use the method of Mathematical Induction to prove De Moivre's theorem, $(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$.

End of Examination

STANDARD INTEGRALS

STANDARD INTEGRALS
$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a} \cos ax dx = \frac{1}{a} \cot ax dx = \frac{1}{a} \cot$$

$$\int \frac{1}{a^2 + x^2} dx \qquad = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$$

NOTE:
$$\ln x = \log_e x$$
, $x > 0$

WESTERN REGION

2007 TRIAL HSC EXAMINATION

Mathematics

Extension 2

SOLUTIONS

Ques	Question 1 Trial HSC Examination- Mathematics Extension 2			
Part	Solution	Marks	Comment	
(a)	$\int x^2 e^x dx = x^2 e^x - \int 2x e^x dx$	2	1	
	$=x^2e^x-\left[2xe^x-\int 2xe^xdx\right]$		1	
	$= x^{2}e^{x} - 2xe^{x} + 2e^{x} + c$	-		
	$=e^{x}\left(x^{2}-2x+2\right)+c$			
(b) .	i) A B 5	3		
	Let $\frac{A}{2t+1} + \frac{B}{2-t} = \frac{5}{(2t+1)(2-t)}$			
	$\therefore A(2-t)+B(2t+1)=5$			
	Put $t = 2$, then $5B = 5 \rightarrow B = 1$			
	put $t = -\frac{1}{2}$, then $\frac{5}{2}A = 5 \to A = 2$		1	
	$\therefore \int_0^1 \frac{5dt}{(2t+1)(2-t)} = \int_0^1 \left(\frac{2}{2t+1} + \frac{1}{2-t}\right) dt$			
	$= \left[\ln(2t+1) - \ln(2-t)\right]_0^1$		1	
	$= \left[\ln \left(\frac{2t+1}{2-t} \right) \right]_0^1$			
	$= \ln 5 - \ln \left(\frac{1}{2}\right)$		1	
	= In 10			

Ques	tion 1 Trial HSC Examination- Mathematics Extens	ion 2	2007
Part	Solution	Marks	Comment
(b)			
ii)	$t = \tan\frac{\theta}{2} \rightarrow \frac{dt}{d\theta} = \frac{1}{2}\sec^2\frac{\theta}{2} = \frac{1}{2}\left(1 + \tan^2\frac{\theta}{2}\right)$	3	
	$\frac{d\theta}{dt} = \frac{1+t^2}{2} \to \frac{dt}{d\theta} = \frac{2}{1+t^2}$		
	When $\theta = \frac{\pi}{2}$, $t = 1$ and When $\theta = 0$, $t = 0$		1
	$\int_0^{\frac{\pi}{2}} \frac{d\theta}{3\sin\theta + 4\cos\theta} = \int_0^1 \frac{\frac{2}{1+t^2}}{\frac{6t}{1+t^2} + \frac{4(1-t^2)}{1+t^2}} dt$		
	$= \int_0^1 \frac{dt}{3t + 2 - 2t^2}$		1
	$=\frac{1}{5}\int_{0}^{1}\frac{5dt}{(2t+1)(2-t)}$		1
	$=\frac{1}{5}\ln 10$ [from (i)]		
(c)	$\int \frac{dx}{\sqrt{4x^2 + 36}} = \frac{1}{2} \int \frac{dx}{\sqrt{x^2 + 9}}$	2	1
	$=\frac{1}{2}\int \frac{dx}{\sqrt{x^2+9}}$		1
	$=\frac{1}{2}\ln\left(x+\sqrt{x^2+9}\right)+c$		

Ques	estion 1 Trial HSC Examination- Mathematics Extension 2					
Part	Solution	Marks	Comment			
(d)	$I = \int e^x \sin x dx$	3				
	$=e^x\sin x-\int e^x\cos xdx$		1			
	$= e^x \sin x - \left[e^x \cos x \int e^x \sin x dx \right]$					
	$= e^x \sin x - e^x \cos x - \int e^x \sin x dx$		1			
	$=e^{x}(\sin x-\cos x)-I$		1			
	$2I = e^x \left(\sin x - \cos x\right)$					
	$I = \frac{1}{2}e^x(\sin x - \cos x) + c$					
(e)	As $y = \sin^5 x$ is an odd function, then	2				
100 m (m)	$\int_{-\frac{\pi}{2}}^{0} \sin^5 x dx = -\int_{0}^{\frac{\pi}{2}} \sin^5 x dx$		1 Other			
	2		ways			
	$\therefore \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^5 x dx = \int_{-\frac{\pi}{2}}^{0} \sin^5 x dx + \int_{0}^{\frac{\pi}{2}} \sin^5 x dx$		possible			
	= 0					

Ques	tion 2 Trial HSC Examination- Mathematics Exten	sion 2	2007
Part	Solution	Marks	Comment
(a) i)	$\frac{A}{B} = \frac{\sqrt{3+i}}{1-\sqrt{2}i} \times \frac{1+\sqrt{2}i}{1+\sqrt{2}i}$ $\sqrt{3} + \sqrt{6}i + i - \sqrt{2}$	2	1
	$= \frac{\sqrt{3} + \sqrt{6}i + i - \sqrt{2}}{3}$ $= \frac{\sqrt{3} - \sqrt{2}}{3} + \frac{\sqrt{6} + 1}{3}i$		1
ii)	$A = \sqrt{3} + i$	2	
	$ A = \sqrt{3+1} = 2 \therefore \operatorname{mod} A = 2$		
	$\therefore A = 2\left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right)$		1
	If $\arg A = 0$		
	$\cos \theta = \frac{\sqrt{3}}{2} \sin \theta = \frac{1}{2}$		
	$\therefore \theta^2 = \frac{\pi}{6}$		
	$\therefore \arg A = \frac{\pi}{6}$		1
iii)	arg C = 2 arg A	3	
	$\therefore \arg C = \frac{\pi}{3}$		1
	$\mod C = 3 \mod A$		
	=3×2		1
	= 6		1
	$C = 6\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$		
	$=6\left(\frac{1}{2}+i\sqrt{\frac{3}{2}}\right)$		
	$=3+i3\sqrt{3}$		1
(b) i)	OA = iOC	1	
	$=i\left(4+3i\right)$		
	=-3+4i		
ii)	OB + OA = (4+3i) + (-3+4i)	1	
(b)	=1+7i		
(b) iii)	AC = OC - OA	2	1 mark for
	=(-3+4i)-(4+3i)		wrong subtraction
	=-7+i		SUULIACHUII

Ques	tion 2 Tri	2007	
Part	Solution	Marks	Comment
(c) i)	4 3	1	
(c) ii)	2	1	
(c) iii)	< 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	

Ques	stion 3	Trial HSC Examination- Mathematics Extension	1 2	2007
Part	Solution		Marks	Comment
(a) i) & iv)	y y 2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	$y = \ln x$ $y = \ln x + \sin x$ $y = \sin x$	2	1 for sine graph 1 for log graph
(a) ii)	For $\ln x - \sin x$		1	
iii)	$f'(x) = \frac{1}{x} - \frac{1}{x}$ $f'(2.2) = \frac{1}{2.2}$ $a_2 = a_1 - \frac{f(1)}{f'(1)}$ $= 2.2 - \frac{-0.0}{1.04}$ $= 2.22 \text{(to)}$	$\frac{1}{2} - \cos(2.2) = 1.043$ $\frac{(a_1)}{(a_1)}$ $\frac{20}{13}$ 2 d.p.)	2	1 for use of Newtons Method 1 for evaluating
iv)	See graph ab		2	I for general shape I for location of t.p. and intercept.

Ques	tion 3 Trial HSC Examination- Mathematics Extension	2	2007
Part	Solution	Marks	Comment
(b) i)	у Ф	1	
	5 10 15 20 x		
	-2		
ii)	4	1	
	5 10 15 20 x		
iii)		2	1 for curve <i>x</i> >1
			1 for asymptote and curve $0 < x < 1$
	2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		

	tion 3 Trial HSC Examination- Mathematics Extension		2007
Part	Solution	Marks	Comment
(c)	When $n = 3$, a 3-sided polygon (triangle) has no diagonals.		
	and $\frac{n(n-3)}{2} = \frac{3 \times 0}{2} = 0$		1
	2 2		1
	Assume true for $n = k$		
	i.e. a k-sided polygon has $\frac{k(k-3)}{2}$ diagonals.		
	k+1-sided polygon		
	obtained by adding		
	k-sided polygon a vertex, X, between A		
	and B in a k -sided		
	B		
	polygon. E A E A E A		
	We can join X to every other existing vertex of the k -sided polygon, but two of these are the sides AX and BX, so there are $k-2$ new diagonals. There is also a new diagonal joining AB so there are a total of $k-1$ new diagonals. The $k+l$ -sided polygon has all the diagonals of the k -sided polygon plus the extra $k-1$ diagonals. The number of diagonals = $\frac{k(k-3)}{2} + k - 1$		2 marks for any reasonable case being put for the number of diagonals when
	$=\frac{k(k-3)+2k-2}{2}$		n = k + 1
	$=\frac{k^2-k-2}{2}$		
	$=\frac{\left(k+1\right)\left(k-2\right)}{2}$		
	$=\frac{\left(k+1\right)\left(k+1-3\right)}{2}$		1 for k+1 formula
	\therefore if true for $n = k$ it is also true for		and conclusion
	n = k + 1	i	COHORDION
	Since true for $n = 3$, by induction it is		
İ	true for all polygons with $n \ge 3$		

Ques	tion 4 Trial HSC Examination- Mathematics Extension	. 2	2007
Part	Solution	Marks	Comment
(a)	End points of latus rectum are $(2a,a)$ and $(-2a,a)$	3	
	$Area = 4a^2 - \int_{-2a}^{2a} \frac{x^2}{4a} dx$		1
	$=4a^2 - \frac{1}{12a} \left[x^3 \right]_{-2a}^{2a}$		
	$=4a^2 - \frac{1}{6a} \left[x^3 \right]_0^{2a}$		1
	$=4a^2 - \frac{8a^2}{6}$		
	$=\frac{8a^2}{3}unit^2$		1
1 1	a+x=h	3	
	$\frac{y^2}{4} = 1 - \frac{h^2}{16}$		1
	$y^{2} = 4 - \frac{h^{2}}{4}$ $y = \pm 2\sqrt{1 - \frac{h^{2}}{16}}$		
1			1
	For parabola $2a = 2\sqrt{1 - \frac{h^2}{16}}$		
	$a = \sqrt{1 - \frac{h^2}{16}}$		
	$\therefore Area = \frac{8}{3} \left(1 - \frac{h^2}{16} \right)$		1
	$=\frac{16-h^2}{6}units^2$		

Ques	Question 4 Trial HSC Examination- Mathematics Extension 2 2007					
Part	Solution	Marks	Comment			
(b)	-2					
ii)	$\partial V = \frac{16 - h^2}{6} \partial h$	2				
ĺ	$V = \lim_{x \to \infty} \sum_{h=-4}^{4} \frac{16 - h^2}{6} \ \partial h$					
	0.4		4			
	$=2\int_{0}^{4}\frac{16-h^{2}}{6}dh$		1			
	$=\frac{1}{3}\left[16h-\frac{h^3}{3}\right]^4$					
	L10					
	$=\frac{1}{3}\left[\left(6-\frac{64}{3}\right)-0\right]$					
			1			
	$Volume = \frac{128}{9} \text{ units}^3 \left(14\frac{2}{9}\right)$					
(c) i)	ſ	2				
1)	$(i)I_n = \int \left(\ln x\right)^n dx$					
	(,)n		1			
	$\therefore I_n = x(\ln x)^n - \int x(\ln x)^{n-1} dx$		1			
	(a)n ((a)n-1					
	$= x(\ln x)^n - n \int (\ln x)^{n-1} dx$					
	$=x\ln^n x - nI_{n-1}$		1			
	n-1					
(c) ii)	e	2				
")	$I_3 = \int_1^e \ln^3 x dx$					
	. Ce					
	$= \left[x \ln^3 x\right]_1^e - 3 \int_1^e \ln^2 x dx$					
1						
	$= \left[x \ln^3 x - 3 \left(x \ln^2 x \right) \right]_1^e + 6 \int_1^e \ln^1 x dx$					
			1			
	$= \left[x \ln^3 x - 3x \ln^2 x + 6x \ln x \right]_1^e - 6 \int_1^e \ln^0 x dx$					
			.			
	$= \left[x \ln^3 x - 3x \ln^2 x + 6x \ln x - 6x \right]_1^e$		1			
	=(e-3e+6e-6e)-(-6)					
	=6-2e					

Ques	Question 4 Trial HSC Examination- Mathematics Extension 2		12	2007
Part	Solution		Marks	Comment
(d)	$3x^3 + 2x^2 +$	5x - 6 = 0	3	
	Let $A = x^2$			į
	$\sqrt{A} = x$			
	$\therefore 3A\sqrt{A} + 2$	$2A + 5\sqrt{A} - 6 = 0$		1
	$\sqrt{A}(3A+5)$	=6-2A		
	Squaring gi	ves		
	$A(9A^2+30)$	$(A+25) = 36 - 24A + 4A^2$		1
	$9A^3 + 30A^2$	$+25A = 36 - 24A + 4A^2$		
	$\therefore 9A^3 + 26A$	$4^2 49 A - 36 = 0$		
	∴ Required	equation is		1
	$9x^3 + 26x^2$	+49x-36=0		

Quest	ion 5 Trial HSC Examination- Mathematics Extension	1 2	2007
Part	Solution	Marks	Comment
(a) i)	$\frac{x^2}{a^2} - \frac{y^2}{6^2} = 1$	3	
	$\therefore \frac{2x}{a^2} - \frac{2y}{b^2} \times \frac{dy}{dx} = 0$		1
	$\therefore \frac{dy}{dx} = \frac{b^2x}{a^2y}$		1
	$\therefore \text{Gradient of normal} = -\frac{a^2y}{b^2x}$		
	at $P = \frac{-a^2b\tan\theta}{b^2a\sec\theta}$		1
	$=-\frac{a}{b}\sin\theta$		
	$\therefore \text{ Eq'n is } y - b \tan \theta = -\frac{a}{b} \sin \theta \left(x - a \sec \theta \right)$		
	$by - b^2 \tan \theta = ax \sin \theta + a^2 \sin \theta \sec \theta$		
	$= -ax\sin\theta + a^2\tan\theta$		1
	$\therefore ax\sin\theta + by = (a^2 + b^2)\tan\theta$		
ii)	At A, $y = 0$	2	
	$\therefore x = \frac{\left(a^2 + b^2\right)}{a\sin\theta}\tan\theta$		1
	At B, $x = 0$		
	$\therefore y = \frac{a^2 + b^2}{b} \tan \theta$.,,,,	1

Ques	Question 5 Trial HSC Examination- Mathematics Extension 2		
Part	Solution	Marks	Comment
(a) iii)	Coords of M $x = \frac{1}{2} \left[\left(\frac{a^2 + b^2}{a \sin \theta} \right) \tan \theta + 0 \right]$ $= \frac{\left(a^2 + b^2 \right) \tan \theta}{2a \sin \theta}$ $= \frac{\left(a^2 + b^2 \right) \frac{\sin \theta}{\cos \theta}}{2a \sin \theta}$	2	1
To American	$x = \frac{\left(a^2 + b^2\right)}{2a} \sec \theta$ $y = \frac{1}{2} \left[\frac{\left(a^2 + b^2\right)}{b} \tan \theta + 0 \right]$ $y = \left(\frac{a^2 + b^2}{2b}\right) \tan \theta$		1
(a) iv)	From (iii) $\tan \theta = \frac{2by}{a^2 + b^2} + \sec \theta = \frac{2ax}{a^2 + b^2}$ as $\sec^2 \theta - \tan^2 \theta = 1$ $\therefore \frac{4a^2x^2}{\left(a^2 + b^2\right)^2} - \frac{4b^2y^2}{\left(a^2 + b^2\right)^2}$ $\therefore 4a^2x^2 - 4b^2y^2 = \left(a^2 + b^2\right)^2$	2	1
(a) v)	If $a = b$, $4a^2x^2 - 4a^2y^2 = 4a^4$ $x^2 - y^2 = a^2$ $\frac{x^2}{a^2} - \frac{y^2}{a^2} = 1$ Which would be the original hyperbola when $a = b$ (OR by putting $a = b$ in parametric equations for $x \& y$)	1	

Quest	ion 5 Trial HSC Examination- Mathematics Extension	n 2	2007
Part	Solution	Marks	Comment
(b)	$x^2 - 3xy + y^2 = 3$	2	
	$\therefore 2x - \left(3y + 3x\frac{dy}{dx}\right) + 2y\frac{dy}{dx} = 0$		
	$(2y-3x)\frac{dy}{dx} = 3y-2x$		
	$\frac{dy}{dx} = \frac{3y - 2x}{2y - 3x}$		1
	At (5, 2) $\frac{dy}{dx} = \frac{15-4}{10-6} = \frac{11}{4}$		
	$\therefore \text{ Gradient of tangent} = \frac{11}{4}$		1
(c) i)	$\sin x + \sin 3x$	1	
	$=\sin(2x-x)+\sin(2x+x)$		
	$= \sin 2x \cos x - \cos 2x \sin x + \sin 2x \cos x + \cos 2x \sin x$		
	$=2\sin 2x\cos x$		
ii)	$\sin x + \sin 2x + \sin 3x = 0$	2	
	$2\sin 2x\cos x + \sin 2x = 0$		1
	$\sin 2x \left(2\cos x + 1\right) = 0$		1
	$\therefore \sin 2x = 0 , \cos x = -\frac{1}{2}$		
	$2x = 0$, π , 2π , 3π , 4π		
	$x = 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi, \frac{2\pi}{3}, \frac{4\pi}{3}$		1

Ques	tion 6 Trial HSC Examination- Mathematics Extension 2	2007	
Part	Solution	Marks	Comment
(a)		2	
i)	$z^5 + 1 = 0$		
	$z^5 = -1$		
	By De Moivre's Theorem,		
	$\cos 5\theta + i\sin 5\theta = -1$		
	Equating real parts gives		
	$\cos 5\theta = -1$		
	$5\theta = \pi$, 3π , 5π , 7π , 9π		1
	$\theta = \frac{\pi}{5}, \frac{3\pi}{5}, \pi, \frac{7\pi}{5}, \frac{9\pi}{5}$		
	$\therefore \text{ The roots are:} z_1 = cis\frac{\pi}{5}, z_2 = cis\frac{3\pi}{5}, z_3 = cis\pi = -1,$		
	$z_4 = cis\frac{7\pi}{5} = \overline{z}_2$, $z_5 = cis\frac{9\pi}{5} = \overline{z}_1$		
			1
ii)	$z^{5}+1=(z-z_{3})[(z-z_{2})(z-z_{4})][(z-z_{1})(z-z_{5})]$	2	1
	$= (z+1)\left(z^2 - 2z\cos\frac{3\pi}{5} + 1\right)\left(z^2 - 2z\cos\frac{\pi}{5} + 1\right)$		1
iii)	Sum of the roots = 0	2	
	$\therefore -1 + cis\left(\frac{\pi}{5}\right) + cis\left(\frac{3\pi}{5}\right) + cis\left(\frac{-\pi}{5}\right) + cis\left(\frac{-3\pi}{5}\right) = 0$		1
	$-1 + 2\cos\frac{\pi}{5} + 2\cos\frac{3\pi}{5} = 0$		
	$2\cos\frac{\pi}{5} + 2\cos\frac{3\pi}{5} = 1$		
	$\therefore \cos\frac{\pi}{5} + \cos\frac{3\pi}{5} = \frac{1}{2}$		1
(p)	$z^n = \cos n\theta + i \sin n\theta$	1	
i)	$z^{-n} = \cos n\theta - i\sin n\theta$		
	$z^n + z^{-n} = 2\cos n\theta$		

Ques	stion 6 Trial HSC Examination- Mathematics Extension 2	2007	
Part	Solution	Marks	Comment
(b)	$\left(z + \frac{1}{z}\right)^6 = \left(2\cos n\theta\right)^6$ $= 64\cos^6\theta$	3	1
	Also, $\left(z + \frac{1}{z}\right)^{6} = z^{6} + 6z^{5} \frac{1}{z} + 15z^{4} \frac{1}{z^{2}} + 20z^{3} \frac{1}{z^{3}} + 15z^{2} \frac{1}{z^{4}} + 6z \frac{1}{z^{5}} + \frac{1}{z^{6}}$ $64\cos^{6}\theta = \left(z^{6} + \frac{1}{z^{6}}\right) + 6\left(z^{4} + \frac{1}{z^{4}}\right) + 15\left(z^{2} + \frac{1}{z^{2}}\right) + 20$ $= 2\cos 6\theta + 12\cos 4\theta + 30\cos 2\theta + 20$ $\cos^{6}\theta = \frac{1}{32}\cos 6\theta + \frac{3}{16}\cos 4\theta + \frac{15}{32}\cos 2\theta + \frac{5}{16}$		1
(b) iii)	$\int_{0}^{\frac{\pi}{6}} \cos^{6} \theta d\theta = \frac{1}{32} \int_{0}^{\frac{\pi}{6}} (\cos 6\theta + 6 \cos 4\theta + 15 \cos 2\theta + 10) d\theta$ $= \frac{1}{32} \left[\frac{1}{6} \sin 6\theta + \frac{3}{2} \sin 4\theta + \frac{15}{2} \sin 2\theta + 10\theta \right]_{0}^{\frac{\pi}{6}}$	2	1
	$= \frac{1}{32} \left[\left(0 + \frac{3}{2} \times \frac{\sqrt{3}}{2} + \frac{15}{2} \times \frac{1}{2} + 10 \frac{\pi}{6} \right) - (0) \right]$ $= \frac{1}{32} \left(\frac{3\sqrt{3} + 15}{4} + \frac{5\pi}{3} \right)$		1
(c)	$P(x) = 2x^3 - 15x^2 + 18x - 13$ If $x = 3 - 2i$ is a root of $P(x) = 0$, then $\overline{x} = 3 + 2i$ is also a root. Let K be the third root.	2	1
	Product of the roots = $(3-2i)(3+2i)K = \frac{13}{2}$ $(9+4)K = \frac{13}{2}$ $13K = \frac{13}{2}$ $K = \frac{1}{2}$		Any other valid method okay to find 3 rd root.
	The zeros are $(3-2i)$, $(3+2i)$ and $\frac{1}{2}$		1

Quest	Question 7 Trial HSC Examination- Mathematics Extension 2		2007		
Part	Solution			Marks	Comment
(a) V	Resistance this is action: $x = g - \frac{1}{2}$	ng against the gravity g	k v ²	1	
	$\frac{d}{dv}\left(\frac{1}{2}v^2\right)$	$= \frac{dx}{dt} \times \frac{dv}{dx}$ $= \frac{dv}{dt}$ $= \ddot{x}$		1	
	When $x = 0$ $\therefore c = \frac{1}{k} \ln g$ $\therefore x = \frac{1}{k} \ln g$ $x = \frac{1}{k} \ln \left(-\frac{1}{g} \right)$ $e^{kx} = \frac{g}{g - kn}$ $ge^{kx} - kv^2 e$	$\frac{kv^2}{kv^2}$ $\ln(g - kv^2) + c$ $0, v = 0$ $g - \frac{1}{k}\ln(g - kv^2)$ $\frac{g}{v - kv^2}$ $\frac{g}{v^2}$ $\frac{g}{v^2}$		4	1 1
	$\therefore v^2 = \frac{g(e)}{k}$	$\frac{kx-1}{e^{kx}}$ or $\frac{g(1-e^{-kx})}{k}$			1

Quest	Question 7 Trial HSC Examination- Mathematics Extension 2		
Part	Solution	Marks	Comment
(a) iv)	When $x = h$	1	
	$v^2 = \frac{g\left(1 - e^{-kh}\right)}{k}$		
	$\therefore v = \sqrt{\frac{g}{k} \left(1 - e^{-kh} \right)}$		
v)	Terminal velocity when	1	
	$\ddot{x} = g - kv^2 = 0$		
	$kv^2 = g$		
	$v = \sqrt{\frac{g}{k}}$		
	Terminal Velocity = $\sqrt{\frac{g}{k}}$		
(b)		2	
i)	$Let \angle OAP = \phi$ and $\angle OPB = \gamma$		
	$\therefore \phi = \frac{1}{2}\theta (\angle \text{ at centre twice angle at circumference})$		
:	$\dot{\phi} = \frac{1}{2}\dot{\theta} = \frac{\pi}{2}$		1
	Angular velocity about A is $\frac{\pi}{2}$ rad/sec		
	$\gamma = \frac{\pi}{2} - \theta \left(\angle APB = \frac{\pi}{2}, \angle \text{ in semicircle, angle sum of } \Delta \right)$		
	$\therefore \dot{\gamma} = -\dot{\phi} = -\frac{\pi}{2}$		
	Angular velocity about B is $\frac{-\pi}{2}$ rad/sec		1
ii)	If $\angle PCO = \alpha$		
	$\angle OPC = \pi - (\alpha + 0)$		
	By Sine Rule, $\frac{\sin \alpha}{1} = \frac{\sin (\pi - (\alpha + \theta))}{2}$		
	(As $\sin(\pi - a) = \sin A$) $2\sin \alpha = \sin(\alpha + \theta)$	1	

Overtion 7 Trial HSC Examination Mathematics Extension 2 2007				
$\overline{}$	nestion 7 Trial HSC Examination- Mathematics Extension 2			Commont
Part	Solution		Marks	Comment
(b)			4	
iii)				1
1111)				
	$[2\cos\alpha -$	$\cos(\alpha+\theta)\big]\dot{\alpha} = \dot{\theta}\cos(\alpha+\theta)$		1
	$\therefore \dot{\alpha} = \frac{\dot{\theta} \cos(\alpha + \theta)}{2\cos\alpha - \cos(\alpha + \theta)}$			
	$\therefore \alpha = \frac{1}{2c}$	$\cos \alpha - \cos(\alpha + \theta)$		
	When θ =	$\frac{\pi}{2}$ and $\dot{\theta} = \pi$		1
	١ ٧٠	$\frac{1}{5}$ $\sin\alpha = \frac{1}{\sqrt{5}}$		
	$\dot{\alpha} = \frac{\pi}{2\cos}$	$\frac{\cos\left(\alpha + \frac{\pi}{2}\right)}{\sin\alpha - \cos\left(\alpha + \frac{\pi}{2}\right)}$		
	$=\frac{\pi \cdot (-\sin \alpha)}{2\cos \alpha}$	$\frac{(\ln \alpha)}{+ \sin \alpha}$		
NAME OF THE PROPERTY OF THE PR	$=\frac{-\pi \times \frac{1}{\sqrt{5}}}{\frac{4}{\sqrt{5}} + \frac{1}{\sqrt{5}}}$	$\frac{\frac{1}{5}}{\frac{1}{5}} = -\frac{\pi}{5}$		1
	Angular V	Velocity about B is $-\frac{\pi}{5}$ rad/sec		

Ques	uestion 8 Trial HSC Examination- Mathematics Extension 2		2007	
Part	Solution	Marks	Comment	
(a)	At the top of the sphere $\frac{mv^2}{r} \ge mg$ $v^2 \ge Rg$ $\ge 10 \times 10$ ≥ 100	2	1	
	∴ $v \ge 10$ ∴ He must have a speed of at least 10 ms ⁻¹		1	
(b)	$\alpha\beta\gamma = 100\alpha + 10\beta + \gamma$ $= 99\alpha + 9\beta + \alpha + \beta + \gamma$ $= 3(11\alpha + 3\beta) + 3A$ $= 3(11\alpha + 3\beta + A)$ Which is divisible by 3	2	1	
(c)	Let $\angle BCD = x^{\circ}$ and $\angle BAD = y^{\circ}$ $\angle DGF = \angle BCD$ (exterior \angle of cyclic quad CDGF) = x° $\angle DGE = \angle BAD$ (exterior \angle of cyclic quad AEGD) = y° $\angle FGE = \angle DGF + \angle DGE = x^{\circ} + y^{\circ}$ =180° (Opposite angles of cyclic quad ABCD) $\therefore F, G$ and E are collinear.	3	Any correct reasoning receives 3 marks. 2 if simple error or if not quite finished, 1 if major error or start made but not followed through.	

Ques	stion 8 Trial HSC Examination- Mathematics Extension 2	2007	
Part	Solution	Marks	Comment
(d)	Let the triangle be as shown	4	
	Midpoint of AC = O (0, 0) Midpoint of BC = E ($a+b$, c) Equation of OB $y = \frac{c}{b}x$ Equation of AE $\frac{y-0}{x-2a} = \frac{c-0}{3a+b}$ $y = \frac{c}{3a+b}(x+2a)$		1
	Solving simultaneously $\frac{c}{b}x = \frac{c}{3a+b}x + \frac{2ac}{3a+b}$ $\left(\frac{c}{b} - \frac{c}{3a+b}\right)x = \frac{2ac}{3a+b}$ $\frac{c(3a+b-b)}{b(3a+b)}x = \frac{2ac}{3a+b}$ $\frac{3a}{b}x = 2a$ $x = \frac{2b}{3}$ $\therefore y = \frac{c}{b} \cdot \frac{2b}{3}$ $\Rightarrow \frac{2c}{3}$ $\therefore \text{ Average of } x \text{ coordinates} = \frac{2b+2a-2a}{3} = \frac{2b}{3}$ Average of $y \text{ coordinates} = \frac{2c+0+0}{3} = \frac{2c}{3}$		1

Ques	tion 8 Trial HSC Ex	on 8 Trial HSC Examination- Mathematics Extension 2		2007	
Part	Solution		Marks	Comment	
(e)	When $n = 1$ $(\cos \theta + i \sin \theta)^{1} = \cos \theta + i \sin \theta$		4	1	
	Assume true for $n = k$ $\therefore (\cos \theta + i \sin \theta)^k = \cos k\theta$	$+i\sin k\theta$		1	
		$i \sin \theta$) $\theta + i \sin k\theta \cos \theta - \sin k\theta \sin \theta$ $\theta + i (\sin k\theta \cos \theta + \sin \theta \cos k\theta)$		1	
	: if true for $n = k$, is also the But since true for $n = 1$, by positive integer $n \ge 1$	rue for $n = k + 1$		1	