WESTERN REGION

2007
TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 1

General Instructions

- o Reading Time- 5 minutes
- o Working Time 2 hours
- Write using a black or blue pen
- o Approved calculators may be used
- A table of standard integrals is provided at the back of this paper.
- All necessary working should be shown for every question.
- Begin each question on a fresh sheet of paper.

Total marks (84)

- o Attempt Questions 1-7
- o All questions are of equal value

Trial HSC 2007 Mathematics Extension 1

Total Marks – 84
Attempt Questions 1-7
All Questions are of equal value

Begin each question on a NEW SHEET of paper, writing your name and question number at the top of the page. Extra paper is available.

Ques	stion 1 (12 marks) Use a SEPARATE sheet of paper.	Marks
a)	State the domain and range of $y = \sin^{-1}\left(\frac{2x}{3}\right)$.	2
b)	The point P (-2, 5) divides the interval joining A (-4, 1) and B (x, y) internally in the ratio 2:3. Find the coordinates of the point B.	2
c)	Using the substitution $u = 2x^2 - 3x$, or otherwise, find $\int \frac{(4x-3)dx}{\sqrt{2x^2 - 3x}}$	3
d)	Find the Cartesian equation of the curve defined by the parametric equations $x = \sin \theta$ and $y = \cos^2 \theta - 3$	2
e)	Evaluate $\lim_{x \to 0} \frac{\sin\left(\frac{3x}{4}\right)}{2x}$	3

End of Question 1

Trial HSC 2007

Ques	stion 2 (12 marks) Use a SEPARATE sheet of paper.	Marks
a)	Find $\frac{d}{dx}(x\cos^{-1}x)$	2
b)	Find the coefficient of x^8 in the expansion of $\left(\frac{1}{3}x^2 + 2\right)^5$	2
c)	Use the table of standard integrals to evaluate $\int_0^{\frac{\pi}{3}} \sec 2x \tan 2x \ dx$	2
d)	A bottle of medicine which is initially at a temperature of 10° C is placed into a room which has a constant temperature of 25° C. The medicine warms at a rate proportional to the difference between the temperature of the room and the temperature (T) of the medicine. That is, T satisfies the equation	
	$\frac{dT}{dt} = -k(T - 25)$	
	i) Show that $T = 25 + Ae^{-kt}$ satisfies this equation.	1
	ii) If the temperature of the medicine after ten minutes is 16° C, find its temperature after 40 minutes.	3
e)	Find $\int \cos^2 9x \ dx$	2

End of Question 2

Quest	tion 3 (12 marks) Use a SEPARATE sheet of paper.	Marks
a)	For th	the function $f(x) = \sin x - \cos^2 x$	
	i)	Show that $f(x)$ has a root between $x=2$ and $x=3$.	1
	ii)	Starting with $x_1 = 2.2$ use one application of Newton's method to find a better approximation for the root. Answer correct to 2 significant figures.	3
b)		many distinct eight letter arrangements can be made using the sof the word PARALLEL?	2
c)	Find t	robability of a grommet being faulty after manufacture is 0.09. he probability that there are more than two faulty grommets in h of ten.	2
d)		ticle P is moving in a straight line with its position in metres a fixed origin at a time t seconds being given by $x = 4\cos\left(2t - \frac{\pi}{6}\right).$	
	i)	Show that P is moving in simple harmonic motion.	2
	ii)	What is the amplitude of the motion?	1
	iii)	What is the maximum speed of the particle?	1

End of Question 3

in a round, what is the probability that she will pick 5

Marks

1

3

Question 4 (12 marks) Use a SEPARATE sheet of paper.

Marks

a) Use mathematical induction to prove that

3

$$\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$

for all positive integers n.

b) In the circle centre O, the tangent PQ is 4 cm. The secant RQ is x cm and the chord RS is y cm.

i) Show that $y = x - \frac{16}{x}$

1

ii) Show that as x increases, so does y.

- 2
- For the polynomial equation $p(x) = x^3 2x^2 + 4x 5 = 0$, with roots α , β , and γ , find the value of
 - i) $\alpha + \beta + \gamma$ 1

What is the geometric significance of the case where x = 4?

- ii) $\alpha^2 + \beta^2 + \gamma^2$
- iii) $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$
- d) A particle is moving in simple harmonic motion about a fixed point O. Its period is 4π seconds and its amplitude is 3 m. Give an equation that relates its velocity ν to its position x.

End of Question 4

Que	estion 5 (12 marks) Use a SEPARATE sheet of paper.
a)	Experience shows there is a probability of $\frac{2}{3}$ that Josie will choose the winner of any one game in football tipping competitions.
	i) In a football tipping competition in which there are 8 games

- ii) In a competition in which there are 10 games in a round what is the probability that she will pick at least 8 winners?
- The points P, Q, S and T lie on the circumference of a circle. SQ is a diameter of the circle and TP || SQ.
 ∠PSQ = x°

Find an expression for $\angle TSP$ in terms of x.

winners?

Trial HSC 2007

c) Find an expression for $\sin 5x$ in terms of $\sin x$ and $\cos x$

Question 5 continues on page 7

Question 5 (Continued)

Marks

1

2

d) A conservationist observes the angle of elevation of the top of a tree, which is h metres tall, from two positions. From a point X, due south of the tree, it is 20° and from point Y, due east of the tree, it is 28°. The distance XY is 500 m.

- i) Write expressions for XZ and YZ in terms of h.
- ii) Calculate the value of h.

End of Question 5

Question 6 (12 marks) Use a SEPARATE sheet of paper.

Trial HSC 2007

Marks

a) A plane flying at a height of 2000 m observes a stationary blimp at a height of 3200 metres drop an object. The moment the object is released, the plane fires a projectile at an angle θ to the horizontal in the direction of the object at a velocity of 240 m/s. The horizontal distance between the plane and the blimp is 3.6 km at the time the projectile is fired.

The equations of motion of the projectile are:

$$x = 240t \cos \theta$$
$$y = 2000 + 240t \sin \theta - gt^2$$

The equations of motion of the dropped object (relative to a point below the plane) are:

$$x = 3600$$

 $y = 3200 - gt^2$
(Use $g = 10 \text{ms}^{-2}$)

3

- i) What is the angle at which the projectile must be fired to intercept the object, and how long does it take to reach it?
- 1

i) At what height does the projectile intercept the object?

Question 6 continues on page 9

Marks

Question 6 (Continued)

- b) Use the expansion of the equation 2 $(1+x)^{n+1} = (1+x)(1+x)^n$ to show that:
 - By differentiation of $(1+x)^{2n}$ show that 2 $\binom{2n}{1} + 2\binom{2n}{2} + 3\binom{2n}{3} + \dots + n\binom{2n}{n} = n \cdot 4^n$
- Sketch the function $f(x) = 2 + \frac{4}{(x-3)}$ for x > 3, indicating c) i) 2 any asymptotes.
 - Find the inverse function $f^{-1}(x)$. ii) 2

End of Question 6

Question 7 (12 marks) Use a SEPARATE sheet of paper.

Trial HSC 2007

Marks

1

2

2

1

1

2

A spotlight is in the centre of a rectangular nightclub which measures 24 m by 16 m. It is spinning at a rate of 20 rev/min. Its beam throws a spot which moves along the walls as it spins.

24 m

- Write the rate of rotation $\frac{d\theta}{dt}$ in radians/sec
- Find an expression for the velocity $\frac{dx}{dt}$ in terms of x at which the spot appears to be moving along the wall from A to B.
- What is the difference in the velocities at which the spot appear to be moving at the points A, nearest to the light and B, furthest from the light?
- The polynomial $P(x) = x^4 + Ax^3 + 9x^2 + 4x 12 = 0$ has a b) root at x = 3. Find the value of A.
 - The polynomial has another root at x = -1 and a double root. Fully factorise P(x).
 - Sketch y = P(x).
- A tangent to the parabola $x^2 = 4ay$ at the point T (2at, at^2) meets 3 the parabola $x^2 = -4ay$ in two points P and Q. Show that the locus of M, the midpoint of PQ, is also a parabola and give its equation.

End of Question 7 **End of Examination**

WESTERN REGION

2007 TRIAL HSC EXAMINATION

Mathematics

Extension 1

SOLUTIONS

Quest	ion 1 HSC Trial Examination-Extension 1	2007	
Part	Solution	Marks	Comment
(a)	$y = \sin^{-1}\left(\frac{2x}{3}\right)$ $\frac{2x}{3} = \sin y$ $x = \frac{3}{2}\sin y$ Domain is $-\frac{3}{2} \le x \le \frac{3}{2}$ Range is $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$	2	1 each for domain and range
(b)	Ends are at A(-4, 1) and B(x, y) P (-2, 5) divides AB in the ratio 2:3. $\frac{2x+3(-4)}{5} = -2 \text{ and } \frac{2y+3(1)}{5} = 5$ $2x-12 = -10 \qquad 2y+3 = 25$ $2x = 2 \qquad 2y = 22$ $x = 1 \qquad y = 11$ B is the point (1, 11)	2 marks	1 mark for equations 1 for solution
(0)	Using $u = 2x^2 - 3x$ find $\int \frac{(4x-3)}{\sqrt{2x^2 - 3x}}$ $u = 2x^2 - 3x$ $\frac{du}{dx} = 4x - 3$ $du = (4x - 3) dx$ $\int \frac{(4x - 3)dx}{\sqrt{2x^2 - 3x}} = \int \frac{du}{\sqrt{u}}$ $= \int u^{-\frac{1}{2}} du$ $= 2u^{\frac{1}{2}} + c$ $= 2(2x^2 - 3x)^{\frac{1}{2}} + c$ $= 2\sqrt{2x^2 - 3x} + c$	3 marks	3 marks for final solution. 2 marks if small error made in any stage but other wise okay 1 mark if du found or a start made

Solution	Marks	G
		Comment
$x = \sin \theta$ and	2	2 marks for
$y = \cos^2 \theta - 3$	marks	correct
$y = \left(1 - \sin^2\theta\right) - 3$		solution.
$y = \left(1 - x^2\right) - 3$		1 mark if method
$v = -2 - r^2$		correct, but
		single error
		made.
$\sin\left(\frac{3x}{x}\right)$ $\sin\left(\frac{3x}{x}\right)$	3	3 marks for
$\lim_{4 \to 1} \frac{4}{4}$	marks	final solution.
$\lim_{x\to 0} 2x \xrightarrow{x\to 0} \frac{8}{x} \xrightarrow{3\times 2x}$		Solution.
3 8		2 marks if
(3x)		small error
-3 (4)		made in any
$8 \xrightarrow{x \to 0} \frac{3x}{}$		stage but other wise
4		okay
$=\frac{3}{2}$		ORaj
8		1 mark if an
		attempt made
		to get
		standard limit
	$y = (1 - \sin^2 \theta) - 3$ $y = (1 - x^2) - 3$ $y = -2 - x^2$ $\sin\left(\frac{3x}{4}\right) = \lim_{x \to \infty} \frac{\sin\left(\frac{3x}{4}\right)}{4}$	$y = (1 - \sin^2 \theta) - 3$ $y = (1 - x^2) - 3$ $y = -2 - x^2$ $\lim_{x \to 0} \frac{\sin\left(\frac{3x}{4}\right)}{2x} = \lim_{x \to 0} \frac{\sin\left(\frac{3x}{4}\right)}{\frac{8}{3} \times \frac{3 \times 2x}{8}}$ $= \frac{3}{8} \times \lim_{x \to 0} \frac{\sin\left(\frac{3x}{4}\right)}{\frac{3x}{4}}$ $= \frac{3}{8} \times \lim_{x \to 0} \frac{\sin\left(\frac{3x}{4}\right)}{\frac{3x}{4}}$

Question 2 HSC Trial Examination- Extension 1 2007					
Part	Solution	Marks	Comment		
(a)	$\frac{d}{dx}(x\cos^{-1}x) = x.\left(\frac{-1}{\sqrt{1-x^2}}\right) + 1.\cos^{-1}x$ $= \frac{-x}{\sqrt{1-x^2}} + \cos^{-1}x$	2	1 for use of product rule 1 for individual derivatives		
(b)	Required term of $\left(\frac{1}{3}x^2 + 2\right)^5$ is $\binom{5}{4} \left(\frac{1}{3}x^2\right)^4 (2)^1 = \frac{10}{81}x^8$	2	2 for correct result		
	Required coefficient is $\frac{10}{81}$		1 if state the general term correctly but don't simplify.		
(c)	$\int_0^{\frac{\pi}{3}} \sec 2x \tan 2x dx = \left[\frac{1}{2} \sec 2x\right]_0^{\frac{\pi}{3}}$ $= \left(\frac{1}{2} \sec \frac{2\pi}{3}\right) - \left(\frac{1}{2} \sec 0\right)$ $= -1 - \frac{1}{2}$ $= -1\frac{1}{2}$	2	1 for correct use of standard integrals 1 for substitution		
(d) i)	$T = 25 + Ae^{-kt} \Rightarrow T - 25 = Ae^{-kt}$ $\frac{dT}{dt} = -kAe^{-kt}$ $\frac{dT}{dt} = -k(T - 25)$	1	Mark only if deriviative found and result shown		

i .

Ques	tion 2 HSC Trial Examination-Extension 1	2007	
Part	Solution	Marks	Comment
(d) (ii)	$T = 25 + Ae^{-kt}$ When $t = 0$, $T = 10$ $10 = 25 + A(1)$ $A = -15$ When $t = 10$, $T = 16$ $16 = 25 - 15e^{-10k}$ $\frac{9}{15} = e^{-10k}$ $\ln\left(\frac{9}{15}\right) = -10k$ $k = 0.051 \ (2 \text{ sig fig})$ When $t = 40$ $T = 25 - 15e^{-0.051(40)}$ $= 23 \ (2 \text{ sig fig})$ The temperature is about $23^{\circ}C$	3	3 marks for obtaining final answer. 2 marks if error made in calculation of A or of k. 1 mark if only A is found or if method is correct, but there are multiple errors
(e)	$\int \cos^2 9x dx = \int \frac{1}{2} (1 + \cos 18x) dx$ $= \frac{1}{2} \left(x + \frac{1}{18} \sin 18x \right) + c$ $= \frac{x}{2} + \frac{1}{36} \sin 18x + c$	1	

.

Part Solution Marks Comment (a)i) $f(x) = \sin x - \cos^2 x$ has a root between $x = 2$ and $x = 3$ if it changes sign. $f(2) = \sin 2 - \cos^2 2$ ≈ 0.74 (2 sig fig) $f(3) = \sin 3 - \cos^2 3$ ≈ -0.84 (2 sig fig) So a root exists between $x = 2$ and $x = 3$ a)ii) $f(x) = \sin x - \cos^2 x$ $f'(x) = \cos x - 2 \cos x \cdot (-\sin x)$ $= \cos x + 2 \cos x \sin x$ $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$ $= 2.2 - \frac{f(2.2)}{f'(2.2)}$ And the distribution of the properties of the p	Ques	1100 11101	2007	
sign. $f(2) = \sin 2 - \cos^2 2$ ≈ 0.74 (2 sig fig) $f(3) = \sin 3 - \cos^2 3$ ≈ -0.84 (2 sig fig) So a root exists between $x = 2$, and $x = 3$ a)ii) $f(x) = \sin x - \cos^2 x$ 3 1 for derivative $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$ 1 for correct use of $x_2 = x_1 - \frac{f(x_2)}{f'(x_2)}$ 2 $x_2 = 2.2 - \frac{f(2.2)}{f'(2.2)}$ 2 $x_3 = 2.2 - \frac{f(2.2)}{f'(2.2)}$ 2 $x_4 = 2.2 - \frac{f(2.2)}{f'(2.2)}$ 3 $x_5 = 2.2 - \frac{f(2.2)}{f'(2.2)}$ 3 $x_5 = 2.2 - \frac{f(2.2)}{f'(2.2)}$ 2 $x_5 = 2.2 - \frac{f(2.2)}{f'(2.2)}$ 2 $x_5 = 2.2 - \frac{f(2.2)}{f'(2.2)}$ 3 $x_5 = \frac{8!}{3!2!} = \frac{40320}{12} = 3360$ ways 2 $x_5 = \frac{1}{1} = \frac$		Solution	Marks	Comment
$f(3) = \sin 3 - \cos^{2} 3$ $\approx -0.84 (2 \text{ sig fig})$ So a root exists between $x = 2$, and $x = 3$ a)ii) $f(x) = \sin x - \cos^{2} x$ $f'(x) = \cos x - 2 \cos x \cdot (-\sin x)$ $= \cos x + 2 \cos x \sin x$ $x_{2} = x_{1} - \frac{f(x_{1})}{f'(x_{1})}$ $= 2.2 - \frac{f(2.2)}{f'(2.2)}$ $= 2.2 - \frac{\sin 2.2 - \cos^{2} 2.2}{\cos 2.2 + 2 \cos 2.2 \sin 2.2}$ $= 2.5 \text{ (to 2 sig fig)}$ (b) Arrangements = $\frac{8!}{3!2!} = \frac{40320}{12} = 3360 \text{ ways}$ 2 1 for 8! 1 for evaluating and the standard experiments of the standard experiments	(a)i)	sign.	1	
a)ii) So a root exists between $x = 2$, and $x = 3$ a)iii) $f(x) = \sin x - \cos^2 x$ $f'(x) = \cos x - 2 \cos x \cdot (-\sin x)$ $= \cos x + 2 \cos x \sin x$ $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$ $= 2.2 - \frac{f(2.2)}{f'(2.2)}$ $= 2.2 - \frac{\sin 2.2 - \cos^2 2.2}{\cos 2.2 + 2 \cos 2.2 \sin 2.2}$ $= 2.5 \text{ (to 2 sig fig)}$ (b) Arrangements = $\frac{8!}{3!2!} = \frac{40320}{12} = 3360 \text{ ways}$ 2 1 for evaluating the evaluating of the evaluation		≈ 0.74 (2 sig fig)		
So a root exists between $x = 2$, and $x = 3$ a)ii) $f(x) = \sin x - \cos^2 x$ $f'(x) = \cos x - 2 \cos x \cdot (-\sin x)$ $= \cos x + 2 \cos x \sin x$ $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$ $= 2.2 - \frac{f(2.2)}{f'(2.2)}$ $= 2.2 - \frac{\sin 2.2 - \cos^2 2.2}{\cos 2.2 + 2 \cos 2.2 \sin 2.2}$ $= 2.2 - (-0.30)$ $= 2.5 \text{ (to 2 sig fig)}$ (b) Arrangements = $\frac{8!}{3!2!} = \frac{40320}{12} = 3360 \text{ ways}$ $(c) Probability of more than two faulty grommets = 1 - P(two or less faulty) = 1 - [P(0 f) + P(1 f) + P(2 f)]$ $= 1 - [(\frac{10}{0})(0.09)^0(0.91)^{10} + (\frac{10}{1})(0.09)^1(0.91)^9 + (\frac{10}{2})(0.09)^2(0.91)^8]$ $= 1 - [0.95]$		$f(3) = \sin 3 - \cos^2 3$		
a)ii) $f(x) = \sin x - \cos^2 x$ $f'(x) = \cos x - 2 \cos x \cdot (-\sin x)$ $= \cos x + 2 \cos x \sin x$ $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$ $= 2.2 - \frac{f(2.2)}{f'(2.2)}$ $= 2.2 - \frac{\sin 2.2 - \cos^2 2.2}{\cos 2.2 + 2 \cos 2.2 \sin 2.2}$ $= 2.2 - (-0.30)$ $= 2.5 \text{ (to 2 sig fig)}$ (b) Arrangements = $\frac{8!}{3!2!} = \frac{40320}{12} = 3360 \text{ ways}$ 2 1 for 8! 1 for evaluating 1 for evaluating 2 for evaluating 2 for evaluating 3 for evaluating 4 for evaluating 5 for evaluating 6 for evaluating 6 for evaluating 6 for evaluating 6 for evaluating 7 for evaluating 7 for evaluating 8 for evaluating 9 for evaluating		\approx -0.84 (2 sig fig)		
$f(x) = \cos x - 2 \cos x \cdot (-\sin x)$ $= \cos x + 2 \cos x \sin x$ $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$ $= 2.2 - \frac{f(2.2)}{f'(2.2)}$ $= 2.2 - \frac{\sin 2.2 - \cos^2 2.2}{\cos 2.2 + 2 \cos 2.2 \sin 2.2}$ $= 2.5 \text{ (to 2 sig fig)}$ (b) Arrangements = $\frac{8!}{3!2!} = \frac{40320}{12} = 3360 \text{ ways}$ $(c) Probability of more than two faulty grommets = 1 - P(two or less faulty) = 1 - [P(0 f) + P(1 f) + P(2 f)]$ $= 1 - [(\frac{10}{0})(0.09)^0(0.91)^{10} + (\frac{10}{1})(0.09)^1(0.91)^9 + (\frac{10}{2})(0.09)^2(0.91)^8]$ $= 1 - [0.95]$ $= 1 - [0.95]$		So a root exists between $x = 2$ and $x = 3$		
$f'(x) = \cos x - 2\cos x \cdot (-\sin x)$ $= \cos x + 2\cos x \sin x$ $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$ $= 2.2 - \frac{f(2.2)}{f'(2.2)}$ $= 2.2 - \frac{\sin 2.2 - \cos^2 2.2}{\cos 2.2 + 2\cos 2.2 \sin 2.2}$ $= 2.2 - (-0.30)$ $= 2.5 \text{ (to 2 sig fig)}$ (b) Arrangements = $\frac{8!}{3!2!} = \frac{40320}{12} = 3360 \text{ ways}$ $(c) Probability of more than two faulty grommets = 1 - P(two or less faulty) = 1 - [P(0 f) + P(1 f) + P(2 f)]$ $= 1 - [(\frac{10}{0})(0.09)^0(0.91)^{10} + (\frac{10}{1})(0.09)^1(0.91)^9 + (\frac{10}{2})(0.09)^2(0.91)^8]$ $= 1 - [-0.95]$	a)ii)	$f(x) = \sin x - \cos^2 x$	3	
$x_{2} = x_{1} - \frac{f(x_{1})}{f'(x_{1})}$ $= 2.2 - \frac{f(2.2)}{f'(2.2)}$ $= 2.2 - \frac{\sin 2.2 - \cos^{2} 2.2}{\cos 2.2 + 2\cos 2.2 \sin 2.2}$ $= 2.5 \text{ (to 2 sig fig)}$ (b) Arrangements = $\frac{8!}{3!2!} = \frac{40320}{12} = 3360 \text{ ways}$ $(c) \text{ Probability of more than two faulty grommets} = \frac{1 - \text{P(two or less faulty)}}{1 - [\text{P(0 f)} + \text{P(1 f)} + \text{P(2 f)}]}$ $= 1 - [\frac{10}{0}(0.09)^{0}(0.91)^{10} + \frac{10}{1}(0.09)^{1}(0.91)^{9} + \frac{10}{2}(0.09)^{2}(0.91)^{8}]$ $= 1 - [0.95]$		$f'(x) = \cos x - 2\cos x \cdot (-\sin x)$		delivative
Sewtons Newtons Method 1 for for evaluating				
$= 2.2 - \frac{f(2.2)}{f'(2.2)}$ $= 2.2 - \frac{\sin 2.2 - \cos^2 2.2}{\cos 2.2 + 2\cos 2.2 \sin 2.2}$ $= 2.5 \text{ (to 2 sig fig)}$ (b) Arrangements = $\frac{8!}{3!2!} = \frac{40320}{12} = 3360 \text{ ways}$ 2 1 for 8! 1 for division (c) Probability of more than two faulty grommets = 1 - P(two or less faulty) = 1 - [P(0 f) + P(1 f) + P(2 f)] $= 1 - [\frac{10}{0}(0.09)^0(0.91)^{10} + \frac{10}{1}(0.09)^1(0.91)^9 + \frac{10}{2}(0.09)^2(0.91)^8]$ $= 1 - [0.95]$		$x_2 = x_1 - \frac{1}{f'(x_1)}$		
$= 2.2 - \frac{\sin 2.2 - \cos^2 2.2}{\cos 2.2 + 2\cos 2.2 \sin 2.2}$ $= 2.2 - (-0.30)$ $= 2.5 \text{ (to 2 sig fig)}$ (b) Arrangements = $\frac{8!}{3!2!} = \frac{40320}{12} = 3360 \text{ ways}$ 2 1 for 8! 1 for division (c) Probability of more than two faulty grommets = 1 - P(two or less faulty) = 1 - [P(0 f) + P(1 f) + P(2 f)] $= 1 - [(\frac{10}{0})(0.09)^{0}(0.91)^{10} + (\frac{10}{1})(0.09)^{1}(0.91)^{9} + (\frac{10}{2})(0.09)^{2}(0.91)^{8}]$ $= 1 - [0.95]$		$=2.2-\frac{f(2.2)}{f'(2.2)}$		
$= 2.2 - (-0.30)$ $= 2.5 \text{ (to 2 sig fig)}$ (b) Arrangements = $\frac{8!}{3!2!} = \frac{40320}{12} = 3360 \text{ ways}$ $= \frac{8!}{1 \text{ for } 8!}$ 1 for division (c) Probability of more than two faulty grommets = $1 - P(\text{two or less faulty})$ $= 1 - [P(0 \text{ f}) + P(1 \text{ f}) + P(2 \text{ f})]$ $= 1 - [\left(\frac{10}{0}\right)(0.09)^{0}(0.91)^{10} + \left(\frac{10}{1}\right)(0.09)^{1}(0.91)^{9} + \left(\frac{10}{2}\right)(0.09)^{2}(0.91)^{8}]$ $= 1 - [0.95]$				1 for
$= 2.5 \text{ (to 2 sig fig)}$ (b) Arrangements = $\frac{8!}{3!2!} = \frac{40320}{12} = 3360 \text{ ways}$ 2 1 for 8! 1 for division (c) Probability of more than two faulty grommets = $1 - P(\text{two or less faulty}) = 1 - [P(0 \text{ f}) + P(1 \text{ f}) + P(2 \text{ f})]$ $= 1 - \left[\binom{10}{0} (0.09)^0 (0.91)^{10} + \binom{10}{1} (0.09)^1 (0.91)^9 + \binom{10}{2} (0.09)^2 (0.91)^8 \right] = 1 - [0.95]$		$=2.2 - \frac{\sin 2.2 - \cos^2 2.2}{\cos 2.2 + 2\cos 2.2 \sin 2.2}$		evaluating
(b) Arrangements = $\frac{8!}{3!2!} = \frac{40320}{12} = 3360 \text{ ways}$ 2 1 for 8! 1 for division (c) Probability of more than two faulty grommets = $1 - P(\text{two or less faulty}) = 1 - [P(0 \text{ f}) + P(1 \text{ f}) + P(2 \text{ f})]$ $= 1 - \left[\binom{10}{0} (0.09)^0 (0.91)^{10} + \binom{10}{1} (0.09)^1 (0.91)^9 + \binom{10}{2} (0.09)^2 (0.91)^8 \right]$ $= 1 - [0.95]$		=2.2-(-0.30)		
Arrangements = $\frac{6}{3!2!} = \frac{16320}{12} = 3360 \text{ ways}$ 1 for division (c) Probability of more than two faulty grommets = $1 - P(\text{two or less faulty})$ = $1 - [P(0 \text{ f}) + P(1 \text{ f}) + P(2 \text{ f})]$ = $1 - [\binom{10}{0}(0.09)^0(0.91)^{10} + \binom{10}{1}(0.09)^1(0.91)^9 + \binom{10}{2}(0.09)^2(0.91)^8]$ 1 = $1 - [0.95]$		= 2.5 (to 2 sig fig)		
$ \begin{vmatrix} 1 - P(\text{two or less faulty}) \\ =1 - [P(0 \text{ f}) + P(1 \text{ f}) + P(2 \text{ f})] \end{vmatrix} $ $=1 - [\binom{10}{0}(0.09)^{0}(0.91)^{10} + \binom{10}{1}(0.09)^{1}(0.91)^{9} + \binom{10}{2}(0.09)^{2}(0.91)^{8}] $ $=1 - [0.95]$	(b)	Arrangements = $\frac{8!}{3!2!} = \frac{40320}{12} = 3360$ ways	2	1 for
$=1-\left[P(0 \text{ f}) + P(1 \text{ f}) + P(2 \text{ f})\right]$ $=1-\left[\binom{10}{0}(0.09)^{0}(0.91)^{10} + \binom{10}{1}(0.09)^{1}(0.91)^{9} + \binom{10}{2}(0.09)^{2}(0.91)^{8}\right]$ $=1-\left[0.95\right]$ 1	(c)	Probability of more than two faulty grommets =		
$=1-\left[\binom{10}{0}(0.09)^{0}(0.91)^{10}+\binom{10}{1}(0.09)^{1}(0.91)^{9}+\binom{10}{2}(0.09)^{2}(0.91)^{8}\right]$ $=1-\left[0.95\right]$				
=1-[0.95]		-1-[r(0 1) + r(1 1) +r(2 1)]		
		$=1-[\binom{10}{0} (0.09)^0 (0.91)^{10} + \binom{10}{1} (0.09)^1 (0.91)^9 + \binom{10}{2} (0.09)^2 (0.91)^8]$	1	
= 0.05		=1-[0.95]		
		= 0.05	1	

Ques	tion 3 HSC Trial Examination-Extens	on 3 HSC Trial Examination- Extension 1 2007		
Part	Solution	Marks	Comment	
(d) (i)	$x = 4\cos\left(2t - \frac{\pi}{6}\right)$	2		
	$\dot{x} = -8\sin\left(2t - \frac{\pi}{6}\right)$			
	$\ddot{x} = -16\cos\left(2t - \frac{\pi}{6}\right)$			
	$\ddot{x} = -4\left[4\cos\left(2t - \frac{\pi}{6}\right)\right]$		1 for \ddot{x}	
	$\ddot{x} = -2^2 \left[4 \cos \left(2t - \frac{\pi}{6} \right) \right]$		1 for	
	$\ddot{x} = -2^2 x$ which is of the form $\ddot{x} = -n^2 x$		statement of SHM	
	so it is in simple harmonic motion.		OI SITIVI	
(d)	Amplitude is 4 units	1		
ii)				
(d) iii)	Maximum speed is 8 m/s	1		

.

Ouestion 4 HSC Trial Examination- Extension 1 2007					
Part S	Solution	Marks	Comment		
A	Prove $\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$ Assume for $n = k$ $\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \dots + \frac{1}{k(k+1)} = \frac{k}{k+1}$	3			
	Show that when $n = k + 1$				
I	$\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \dots + \frac{1}{k(k+1)} + \frac{1}{(k+1)(k+2)} = \frac{k+1}{k+2}$ $LHS = \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \dots + \frac{1}{k(k+1)} + \frac{1}{(k+1)(k+2)}$		1 mark for stating the assumption.		
1	$=\frac{k}{(k+1)}+\frac{1}{(k+1)(k+2)}$		1 for proving case for k+1		
	$= \frac{k(k+2)+1}{(k+1)(k+2)}$ $= \frac{k^2+2k+1}{(k+1)(k+2)}$				
	$=\frac{\left(k+1\right)^2}{\left(k+1\right)\left(k+2\right)}$		1 for n=1 and conclusion.		
	$= \frac{k+1}{k+2}$ $= RHS$		Adjust accordingly if done in		
W	The first first for $n = k$, is also true for $n = k + 1$. When $n = 1$ LHS = $\frac{1}{1(1+1)} = \frac{1}{2}$ RHS = $\frac{1}{1+1} = \frac{1}{2}$		different order.		
	true for $n = 1$, and by induction true for all integers $n \ge 1$				

Oues	tion 4 HSC Trial Examination- Extension 1	2007	
Part	Solution	Marks	Comment
(b)	a) In the circle centre O, the tangent PQ is 4 cm. The secant RQ is x cm and the chord RS is y cm.		
	P 4 y S x-y		
	(i) $PQ^2 = RQ \cdot QS$ $4^2 = x(x-y)$ $16 = x^2 - xy$ $xy = x^2 - 16$ $y = x - \frac{16}{x}$	1	
	(ii) $y = x - 16x^{-1}$ $\frac{dy}{dx} = 1 + 16x^{-2}$ $= 1 + \frac{16}{x^2}$ As $x^2 \ge 0$, $\frac{dy}{dx} > 0$	2	Other statements about graph which show it is increasing are acceptable.
	\therefore y is an increasing function for $x > 0$ (iii) If $x = 4$ then $y = 0$ This means that QS = RQ = PQ = 4 RQ (SQ) becomes a tangent to the circle. (Tangents from an external point are equal)	1	Either statement relating to both lines being tangents okay for the mark.
(c) i)	$\alpha + \beta + \gamma = \frac{-b}{a} = 2$	1	
(c) ii)	$\alpha\beta + \beta\gamma + \alpha\gamma = \frac{c}{a} = 4$ $\alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \alpha\gamma)$ $= 2^2 - 2(4)$ $= -4$	1	

Ques	tion 4 HSC Trial Examination-Extension 1	2007	
Part	Solution	/larks	Comment
(c) iii)	$\alpha\beta\gamma = \frac{-d}{a} = 5$		
	$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\alpha\beta + \alpha\gamma + \beta\gamma}{\alpha\beta\gamma} = \frac{4}{5}$		
(d)	Amplitude = $a = 3$		1 for correct
	$Period = 4\pi = \frac{2\pi}{n} \rightarrow n = \frac{1}{2}$		values of a and n
	$v^2 = n^2 \left(a^2 - x^2 \right)$		
	$v^2 = \left(\frac{1}{2}\right)^2 \left(3^2 - x^2\right)$		1 for equation
	$v^2 = \frac{\left(9 - x^2\right)}{4}$		

Ques	tion 5 HSC Trial Examination- Extension 1	2007	
Part	Solution	Marks	Comment
(a) i)	$P(X=5) = {8 \choose 5} \left(\frac{2}{3}\right)^5 \left(\frac{1}{3}\right)^3 = \frac{1792}{6561} = 0.273$	1	Full mark if left as product.
(a) ii)	$P(X \ge 8) = {10 \choose 8} \left(\frac{2}{3}\right)^8 \left(\frac{1}{3}\right)^2 + {10 \choose 9} \left(\frac{2}{3}\right)^9 \left(\frac{1}{3}\right)^1 + {10 \choose 10} \left(\frac{2}{3}\right)^{10} \left(\frac{1}{3}\right)^6$ $= 0.299$	2	2 marks if left as sum of terms
(b)	$\angle SQP = 90^{\circ}$ (angle in a semicircle) $\angle TPS = x^{\circ}$ (alternate angles on lines) $\angle TSQ = \angle TSP + x^{\circ}$ (adjacent angles) $\angle QPT = 90^{\circ} + x^{\circ}$ (adjacent angles) $\angle TSQ + \angle QPT = 180^{\circ}$ (opposite angles in cyclic quadrilateral) $\angle TSP + x^{\circ} + 90^{\circ} + x^{\circ} = 180^{\circ}$ $\angle TSP = 90^{\circ} - 2x^{\circ}$	3	Alternate solutions possible. 3 marks for complete solution 2 marks if a step is missing 1 if a start made with a correct relevant
(c)	$\sin 5x = \sin (4x + x)$ $= \sin 4x \cos x + \cos 4x \sin x$ $= 2 \sin 2x \cos 2x \cos x + (\cos^2 2x - \sin^2 2x) \sin x$ $= 4 \sin x \cos x (\cos^2 x - \sin^2 x) \cos x + ((\cos^2 x - \sin^2 x)^2 - (2 \sin x \cos x)^2) \sin x$ $= 4 \sin x \cos^4 x - 4 \sin^3 x \cos^2 x + \cos^4 x \sin x - 2 \sin^3 x \cos^2 x + \sin^5 x - 4 \sin^3 x \cos^2 x$ $= 5 \sin x \cos^4 x - 10 \sin x^3 \cos^2 x + \sin^5 x$	3	statement Three marks for any form that includes only powers of sinx & cosx 2 marks for incomplete expansion 1 mark if started using any valid breakup of sin5x

Questio	on 5 HSC Trial Examination-Extension 1	2007	
Part S	Solution	Marks	Comment
	$\tan 20^{\circ} = \frac{h}{XZ} \qquad \tan 28^{\circ} = \frac{h}{YZ}$ $XZ = \frac{h}{\tan 20^{\circ}} \qquad YZ = \frac{h}{\tan 28^{\circ}}$	1	1 mark if both expressions given
ii) ta h	$\frac{h^2}{\tan^2 20^\circ} + \frac{h^2}{\tan^2 28^\circ} = 500^2$ $t^2 \left(\frac{\tan^2 28^\circ + \tan^2 20^\circ}{\tan^2 28^\circ \tan^2 20^\circ}\right) = 250000$ $t^2 = \frac{250000 \tan^2 28^\circ \tan^2 20^\circ}{\tan^2 28^\circ + \tan^2 20^\circ}$ $t^2 = 22551.44$ $t^2 = 150 \text{ m}$	2	2 marks for use of Pythagoras and final answer. 1 mark if started using Pyth or trig correctly, but not finished

Questio	on 6 HSC Trial Examination-Extension 1 200	7	
Part	Solution	Marks	Comment
(a) i)	$x = 240t \cos \theta \qquad x = 3600$ $y = 2000 + 240t \sin \theta - gt^2 \qquad y = 3200 - gt^2$ To intercept, the x and y values must be equal. $240t \cos \theta = 3600 \text{and} 2000 + 240t \sin \theta - gt^2 = 3200 - gt^2$ $t \cos \theta = 15 \qquad \text{and} t \sin \theta = 5$ $\frac{t \sin \theta}{t \cos \theta} = \frac{1}{3}$ $\tan \theta = \frac{1}{3}$ $\theta = 18^{\circ}26^{\circ}$ $t = \frac{5}{\sin \theta} = \frac{5}{\sin 18^{\circ}26^{\circ}} = 15.8 \sec$	3	3 for full solution obtained 2 if equated x and y and attempted to solve 1 if equated x and y only
ii)	$y = 3200 - gt^2$	1	
	$=3200-10\times15.8^{2}$		
(b) i)	= 700 metres $(1+x)^{n+1} = \binom{n+1}{0} + \binom{n+1}{1}x + \binom{n+1}{2}x^2 + \binom{n+1}{3}x^3 + \dots$ $(1+x)(1+x)^n = \binom{n}{0} + \binom{n}{1}x + \binom{n}{2}x^2 + \binom{n}{3}x^3 + \dots$	2	2 for full solution
	$+\binom{n}{0}x + \binom{n}{1}x^2 + \binom{n}{2}x^3 + \binom{n}{3}x^4 + \dots$ $= \binom{n}{0} + \binom{n}{1} + \binom{n}{0}x + \binom{n}{1} + \binom{n}{2}x^2 + \dots$ Equating coefficients of x^2 $\binom{n+1}{2} = \binom{n}{1} + \binom{n}{2}$		1 if wrote out expansion but not equated coeff or mistake in expansion

Questi	on 6 HSC Trial Examination-Extension 1 200	7	
Part	Solution	Marks	Comment
(b) ii)	$(1+x)^{2n} = {2n \choose 0} + {2n \choose 1}x + {2n \choose 2}x^2 - {2n \choose 2n-1}x^{2n-1} + {2n \choose 2n}x^{2n}$ Differentiating both sides gives:	2	2 for full solution
1	$2n(1+x)^{2n-1} = \left(\binom{2n}{1} + 2\binom{2n}{2}x + \dots (2n-1)\binom{2n}{2n-1}x^{2n-2} + (2n)\binom{2n}{2n}x^{2n-1} \right)$ Let $x = 1$ $2n(2)^{2n-1} = \left(\binom{2n}{1} + 2\binom{2n}{2} + \dots (2n-1)\binom{2n}{2n-1} + (2n)\binom{2n}{2n} \right)$ $n(2)^{2n} = \binom{2n}{1} + 2\binom{2n}{2} + 3\binom{2n}{3} \dots (2n-1)\binom{2n}{2n-1} + (2n)\binom{2n}{2n}$ $n4^n = \binom{2n}{1} + 2\binom{2n}{2} + 3\binom{2n}{3} \dots (2n-1)\binom{2n}{2n-1} + (2n)\binom{2n}{2n}$		l if differentiati on done correctly but not finished or mistake in diff then followed on okay
(c)	$f(x) = 2 + \frac{4}{(x-3)}$	2	1 for sketch 1 for asymptotes x = 3 and y = 2
	3 4 5 6 7 8 9		

Question	n 6 HSC Trial Examination- Extension 1	2007	
Part	Solution	Marks	Comment
ii)	Inverse function comes from $x = 2 + \frac{4}{y - 3}$ $x - 2 = \frac{4}{y - 3}$	2	2 for full solution
	$\frac{y-3}{4} = \frac{1}{x-2}$ $y-3 = \frac{4}{x-2}$ $y = 3 + \frac{4}{x-2}$		1 if substituted x and y correctly but mistake made after
	Inverse function is $f^{-1}(x) = 3 + \frac{4}{x-2}$		
	Sketch of inverse shown but not required.		

Ques	tion 7 HSC Trial Examination-Extension 1	2007	
Part	Solution	Marks	Comment
(a)	$20 \text{ rev/min} = 20 \times 2\pi \text{ rad/min}$	1	
i)	$=\frac{40\pi}{60}=\frac{2\pi}{3} \text{ rad/sec}$		
(a) ii)	$\tan \theta = \frac{x}{8}$ $x = 8 \tan \theta$	2	2 marks for full solution
	$\frac{dx}{d\theta} = 8\sec^2\theta$ $\frac{dx}{dt} = \frac{dx}{d\theta} \cdot \frac{d\theta}{dt}$ $= 8\sec^2\theta \cdot \frac{2\pi}{3}$		1 mark if done in terms of θ or otherwise
The second secon	$= \frac{16\pi}{3} \sec^2 \theta$ $= \frac{16\pi}{3} (1 + \tan^2 \theta)$		incomplete
	$= \frac{16\pi}{3} \left(1 + \tan^2 \theta \right)$ $= \frac{16\pi}{3} \left(1 + \left(\frac{x}{8} \right)^2 \right)$		
(a) iii)	At A, $x = 0$ $\frac{dx}{dt} = \frac{16\pi}{3} \left(1 + \left(\frac{0}{8} \right)^2 \right)$ $= \frac{16\pi}{3}$ $= \frac{16\pi}{3}$ $= \frac{16\pi}{3} \left(\frac{13}{4} \right)$ $= \frac{52\pi}{3}$ At B, $x = 12$ $\frac{dx}{dt} = \frac{16\pi}{3} \left(1 + \left(\frac{12}{8} \right)^2 \right)$ $= \frac{52\pi}{3}$	2	1 mark if only one found correctly or if subtraction incorrect.
	Difference = $\frac{52\pi - 16\pi}{3}$ $= \frac{9\pi}{4} \text{ m/s}$	The state of the s	

Ques	stion 7 HSC Trial Examination- Extension 1	2007	
Part	Solution	Marks	Comment
(b) i)	$P(x) = x^{4} + Ax^{3} + 9x^{2} + 4x - 12 = 0$ $P(3) = 3^{4} + Ax^{3} + 9x^{2} + 4x - 12 = 0$ $27A + 162 = 0$ $27A = -162$ $A = -6$	1	
(b)	Sum of roots = $\frac{-b}{a} = \frac{-(-6)}{1} = 6$	1	
ii)	$(3) + (-1) + 2\gamma = 6$ $2\gamma = 4$ $\gamma = 2$ Roots are 3, -1, 2, 2 $P(x) = (x-3)(x+1)(x-2)^{2}$		
(b) iii)	-5 -15	2	1 mark for correct roots including double root 1 mark for correct orientation and y intercept

Ques	tion 7 HSC Trial Examination-Extension 1	2007	
Part	Solution	Marks	Comment
(c)	Tangent has equation $y = tx - at^2$ Intersects 2nd parabola where $x^2 = -4a(tx - at^2)$ $x^2 + 4atx - 4a^2t^2 = 0$ $x = \frac{-4at \pm \sqrt{(4at)^2 - 4.1(-4a^2t^2)}}{2}$ $x = \frac{-4at \pm \sqrt{32a^2t^2}}{2}$ $x = \frac{-4at \pm \sqrt{32a^2t^2}}{2}$ $x = \frac{4at(-1 \pm \sqrt{2}at)}{2}$ $y = t(\frac{-4at \pm \sqrt{\sqrt{2}at}}{2} - at^2)$ $y = -2at^2 \pm 2\sqrt{2}at^2$ $y = -3at^2 \pm 2\sqrt{2}at^2$	3	2 for coordinates of end points of PQ

Question 7	HSC Trial Examination- Extension 1	2007	
Part Solution		Marks	Comment
Find coo	rdinates of M		
$x = \frac{4at}{x}$ $x = -2at$ $y = \frac{-3at}{x}$	rdinates of M $\frac{-1+\sqrt{2}}{2} + \frac{4at(-1-\sqrt{2})}{2}$ $\Rightarrow t = \frac{x}{-2a}$ $\frac{x^2+2\sqrt{2}at^2+-3at^2-2\sqrt{2}at^2}{2} = -3at^2$ $\frac{x}{-2a}$ Which is a parabola.		1 for equation of locus.