WESTERN REGION

2009 TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 1

General Instructions

- o Reading Time- 5 minutes
- Working Time 2 hours
- o Write using a blue or black pen
- o Approved calculators may be used
- A table of standard integrals is provided at the back of this paper.
- All necessary working should be shown for every question.
- o Begin each question on a fresh sheet of paper.

Total marks (84)

- o Attempt Questions 1-7
- o All questions are of equal value

Questio	on 1	(12 Marks)	Begin a new booklet.		Marks
(a)	Divid	de the interval	from A (-3, 6) to B (12	2, -4) in the ratio 2:3	2
(b)	Find	the value of si	n105° in simplest exac	et form	2
(c)	Solve	e the inequality	$\sqrt{\frac{4}{1-x}} \le 3$ and graph y	your solution on the number line	3
(d)	Use t	he substitution	$u = \cos x$, to find $\int c$	$\cos^2 x \sin x dx$	2
(e)	Find	$\lim_{x \to \infty} \frac{3x^3 - 1}{x^2 + 1}$	$\frac{2x}{4}$		1
(f)	Find	the acute angle	e between the lines:	$x - \sqrt{3}y + 1 = 0$ $y = x - 4$	2

Mathematics Extension 1

2009 Trial HSC Examination

End of Question 1

2

Que	stion 2	(12 Marks)	Begin a new booklet.	Mark
(a)	i)	Show that $x-2$	is a factor of $x^3 - 4x^2 + 7x - 6$	1
	ii)	Show why x^3 –	$4x^2 + 7x - 6 = 0$ has only 1 real root.	2
(b)	(i)	Prove $\frac{1-\cos 2x}{\sin 2x}$	$\frac{c}{c} = \tan x$	1
	(ii)	Hence express	tan15° in simplest exact form.	1
(c)	Find	the value of $\int_{\frac{2}{\sqrt{3}}}^{2\sqrt{3}} \frac{1}{x^2}$	$\frac{dx}{x^2+4}$	3
(d)	How	many distinct peri	mutations of the letters of the word ARRANGE are	
	possi	ble		
	(i)	In a straight line		1
	(ii)	In a straight line	e when the "word" begins and ends with the letter R.	1
	(ii)	In a circle		2

End of Question 2

Question 3 (12 Marks) Begin a new booklet. Marks Determine the exact value of $\int_{2}^{3} \frac{xdx}{x^2 - 2}$ 3 State the domain and range of $y = \cos^{-1}\left(\frac{3x}{2}\right)$ If we take $t = \tan \frac{\theta}{2}$ then $\tan \theta = \frac{2t}{1-t^2}$ 3 Use the t results or otherwise to obtain θ correct to the nearest minute when $\frac{7\sin\theta}{2} + 2\cos\theta = 4$ A tower CX is observed at an angle of elevation 14° from a point A on level ground. The same tower is observed from B, 1 km from A, with an angle of elevation 17°. $A\hat{C}B = 120^{\circ}$. C is the base of the tower. Draw a diagram showing this information. 1 Calculate h, the height of the tower CX. (nearest m) 3

End of Question 3

Questi	on 4	(12 Marks) I	Begin a new booklet.	Marks
(a)	The po	lynomial equation	on $x^3 - 5x^2 + 7x + 5 = 0$ has 3 roots, α , β , γ	
	(i)	Find $\alpha + \beta + \gamma$		1
	(ii)	Find $\alpha\beta + \beta\gamma$ +	- γα	1
	(iii)	Find $\alpha^2 + \beta^2 +$	- y ²	2
(b)	(i)	Express $\sqrt{3} \sin$	$2\theta - \cos 2\theta$ in the form $R \sin(2\theta - \alpha)$, α acute.	2
	(ii)	Hence solve $\sqrt{3}$	$3 \sin 2\theta - \cos 2\theta = 1$; $0 \le \theta \le \pi$. Answer in exact form	n. 2
(c)		ortional to the d	ling states that the rate of change of temperature of a b ifference between the temperature of the body and its $k(T-D)$ where D is the surrounding temperature	•
	(i)	Show that $T =$	$D + Ce^{-kt}$ satisfies Newton's Law.	1
	(ii)	An ingot of Alu	uminium has an initial temperature of $1350^{\circ}C$	3
		After 10 minute	es in an environment at $25^{\circ}C$ its temperature has falle	n to
		$720^{\circ}C$. What t	total time elapses for the ingot to cool to 50°C	

End of Question 4

Quest	ion 5	(12 Marks)	Begin a new booklet.	Marks
(a)	The fi	unction $f(x) =$	$x^4 - 5x^3 + 11x^2 - 12x + 6$	
	This f	unction has onl	y 1 minimum near $x = 1.3$	
	(i)	Use one appli	cation of Newton's Method to obtain	3
		a better appro-	ximation to the x value of this minimum.	
	(ii)	Justify why f	f(x) = 0 has no roots	1
(b)	How	nany times sho	uld a die be thrown so that the probability of	2
	throw	ing an even nur	mber is greater than 0.99?	
(c)	A cub	e, side s, is gro	wing at a rate of 200cm ³ per second.	3
	At wh	at rate is the su	rface area growing at the moment when $s = 15$ cm?	
(d)	Prove	by Mathematic	eal Induction that,	3
	$(n)^3 +$	$(n+1)^3 + (n+2)^3$	$\binom{n}{2}$ is divisible by 9 for all positive whole numbers n	

End of Question 5

Question 6 (12 Marks) Begin a new booklet.

Marks

1

1

2

2

1

1

2

- (a) Consider the function $h(x) = \frac{3x}{1-x^2}$ for which $\lim_{x \to \infty} \frac{3x}{1-x^2} = 0$
 - (i) Describe the domain of h(x)
 - (ii) Find h(-2) and h(2)
 - (iii) Show why h(x) has no turning points
 - (iv) Sketch h(x) showing the important features
- (b) Find the volume generated when $y = \sec x$

between x = 0 and $x = \frac{\pi}{3}$ is rotated around the x axis.

Express your answer in simplest exact form.

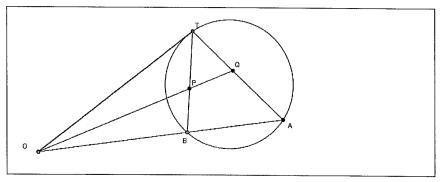
- (c) (i) Prove that $\frac{d^2x}{dt^2} = \frac{d}{dx} \left(\frac{v^2}{2} \right)$
 - (ii) A particle is moving in a straight line with $v^2 = 36 4x^2$
 - α Prove the particle is undergoing SHM
 - β What is the amplitude and period of the motion?
 - γ If the particle is initially at the origin, write an expression for its displacement in terms of t

End of Question 6

Question 7 (12 Marks) Begin a new booklet.

Marks

3


2

(a) AB is a chord in a circle. AB is produced to O outside the circle.

From O. the tangent OT is drawn to the circle.

The bisector of \hat{TOB} Meets TB at P and TA at Q.

Prove ΔTPQ is isosceles

(b) A rock is hurled from the top of a 15m cliff with an initial velocity of 26ms^{-1} at an angle of projection equal to $\tan^{-1} \left(\frac{5}{12} \right)$ above the horizontal.

The cliff overlooks a flat paddock.

The equations of motion of the stone are $\ddot{x} = 0$ and $\ddot{y} = -10$

- (i) Taking the origin as the base of the cliff, show the components of the rock's displacement are, x = 24t and $y = -5t^2 + 10t + 15$
- (ii) Calculate the time until impact with the paddock, and the distance of the impact from the base of the cliff.

Question 7 continues on page 9

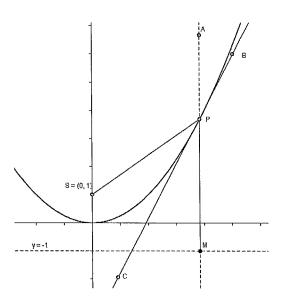
Question 7 (12 Marks) continued

Marks

2

2

1


- (c) The parabola $x^2 = 4y$ is shown in the diagram.

 The point P has coordinates $(2t, t^2)$. S(0, 1) is the focus and

 M is the foot of the perpendicular from P on the directrix. MP is produced to A.

 BPC is tangent to the parabola at P.
- (i) Find the length PS and PM. Describe ΔPSM
 - iigiii F5 aiid FM. Describe AFSM
- (ii) Find the gradient of the tangent BPC and of SM.

 What is true about the tangent and SM?
- (iii) Prove $A\hat{P}B = S\hat{P}C$

End of Examination

Western Region

2009
TRIAL HIGHER SCHOOL CERTIFICATE
EXAMINATION

Mathematics Extension 1

Solutions

Solutions Question 1 2009	Maules/Community
	Marks/Comments
a. $\left(\frac{mx_2 + nx_1}{m + n}, \frac{my_2 + ny_1}{m + n}\right) = \left(\frac{2 \times 12 + 3 \times -3}{5}, \frac{2 \times -4 + 3 \times 6}{5}\right)$	1
= (3, 2)	1
$\sin(60+45) = \sin 60 \cos 45 + \cos 60 \sin 45$	1
b. $= \frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{2}} + \frac{1}{2} \times \frac{1}{\sqrt{2}} = \frac{\sqrt{3} + 1}{2\sqrt{2}}$	1
c. $x \ne 1$, $4 = 3 - 3x$, $x = -\frac{1}{3}$ are critical points test $x = -1$ TRUE $4/2 < 3$ test $x = 0$ FALSE $4/1 > 3$	1 Or by multiplying by $(1-x)^2$
test $x = 2$ TRUE 4/-1<3 solution is $x \le -\frac{1}{3}$ or $x > 1$	
-1/3	1 pay 2 for any legitimate
	1 must have open circle on x = 1
$u = \cos x \frac{du}{dx} = -\sin x du = -\sin x dx$ d.	1
$I = -\int u^2 du = -\frac{1}{3}u^3 = -\frac{1}{3}\cos^3 x + c$	1 ignore constant of
	integration
e. $L = \frac{\lim \frac{3x^3}{x^2} - \frac{2x}{x^2}}{x \to \infty} = \frac{\lim \frac{3x - \frac{2x}{x^2}}{1 + \frac{4}{x^2}}}{1 + \frac{4}{x^2}} = \lim_{x \to \infty} 3x = \infty$	Or divide by x^3
f	1
$m_2 = \frac{1}{\sqrt{2}}, m_1 = 1$	1 /12
7.5	
$\tan\theta = \frac{m_2 - m_1}{1 + m_2 m_1}$	pay 1 for successful sub in formula 2 if correct
$= \frac{\left \frac{1}{\sqrt{3}} - 1\right }{1 + \frac{1}{\sqrt{3}}}$	conclusion
$= \left \frac{1 - \sqrt{3}}{\sqrt{3} + 1} \right $	
$\theta = 15^{\circ}$	

Solutions Question 2 2009	Marks/Comments
a.(i)	1
$x^3 - 4x^2 + 7x - 6$	
$P(2) = 0$ $2^3 - 4 \times 2^2 + 14 - 6 = 0$	
\therefore $(x-2)$ is a factor	1
(ii)Dividing $\frac{x^3 - 4x^2 + 7x - 6}{x - 2} = x^2 - 2x + 3$	1
a quadratic with negative discriminant and no real roots	
b (i)	
$\frac{1 - \cos 2x}{\sin 2x} = \frac{1 - (\cos^2 x - \sin^2 x)}{2\cos x \sin x} = \frac{1 - (1 - \sin^2 x - \sin^2 x)}{2\cos x \sin x}$	
$= \frac{2\sin^2 x}{2\cos x \sin x} = \frac{\sin x}{\cos x} = \tan x$	1
(ii) $\frac{1-\cos 30^{\circ}}{\sin 30^{\circ}} = \frac{1-\frac{\sqrt{3}}{2}}{\frac{1}{2}} = \frac{2-\sqrt{3}}{1} = 2-\sqrt{3}$	1
c.	
$\left[\frac{1}{2} \tan^{-1} \frac{x}{2} \right]_{\frac{3}{5}}^{2\sqrt{3}} = \frac{1}{2} \left(\tan^{-1} \sqrt{3} - \tan^{-1} \frac{1}{\sqrt{3}} \right) = \frac{1}{2} \left(\frac{\pi}{3} - \frac{\pi}{6} \right) = \frac{\pi}{12}$	3 1 per step
d. (i) $\frac{7!}{2!2!} = 1260$	1
(ii) $\frac{5!}{2!} = 60$	1
(iii) Fix the E or any of the single letters $\frac{6!}{2!2!} = 180$	2 /12

Solutions Question 3 2009	Marks/Comments
$\int_{2}^{3} \frac{x dx}{x^{2} - 2} = \left[\frac{1}{2} \ln(x^{2} - 2) \right]_{2}^{3} = \left[\ln \sqrt{x^{2} - 2} \right]_{2}^{3} = \ln \sqrt{7} - \ln \sqrt{2}$	3 lose 1 per error
a. $ = \ln\left(\frac{\sqrt{7}}{\sqrt{2}}\right) $	Any equivalent exact value is okay.
(72)	
b. $-1 \le \frac{3x}{2} \le 1$ $-\frac{2}{3} \le x \le \frac{2}{3}$ domain	1
range $0 \le y \le \pi$	1
c $\frac{7}{2}\sin\theta + 2\cos\theta = 4$ $\frac{7t}{1+t^2} + 2\frac{1-t^2}{1+t^2} = 4$	
$7t + 2 - 2t^2 = 4 + 4t^2 6t^2 - 7t + 2 = 0 (3t - 2)(2t - 1) = 0$	1
$\tan \frac{\theta}{2} = \frac{1}{2}, \frac{2}{3} = \frac{\theta}{2} = \tan^{-1} \left(\frac{1}{2}\right) $ and $\tan^{-1} \left(\frac{2}{3}\right)$	1
$\theta = 53^{\circ}8' \text{ or } 67^{\circ}23'$	1
d	
A 1000m B	1
d (ii) $AC = b = h \cot 14$ $BC = a = h \cot 17$	1
$c^{2} = a^{2} + b^{2} - 2ab\cos C$	
$1000^{2} = h^{2} \cot^{2} 14 + h^{2} \cot^{2} 17 - 2 \times h \cot 14 h \cot 17 \cos 120$	
$= h^{2}(\cot^{2}14 + \cot^{2}17 + \cot14\cot17)$ $= h^{2} \times 39.9035$	1
$h = \sqrt{1000000 \div 39.9035} = 158.3 \approx 158m$	1 /12

Solutions Question 4 2009	Marks/Comments
$a x^3 - 5x^2 + 7x + 5 = 0$	
(i) $\alpha + \beta + \gamma = -\frac{b}{a} = 5$	1
(ii) $\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a} = 7$	1
(iii) $(\alpha + \beta + \gamma)^2 = \alpha^2 + \beta^2 + \gamma^2 + 2\alpha\beta + 2\beta\gamma + 2\gamma\alpha$ $\therefore \alpha^2 + \beta^2 + \gamma^2 = 5^2 - 2 \times 7 = 11$	1 1
$\sqrt{3}\sin 2\theta - \cos 2\theta = 2\left(\frac{\sqrt{3}}{2}\sin(2\theta) - \frac{1}{2}\cos(2\theta)\right)$ b (i)	1 for r and α
$=2\sin\left(2\theta-\frac{\pi}{6}\right)$	1 for correct form
noting $\sin(A - B) = \sin A \cos B - \cos A \sin B$ (ii) $2\sin\left(2\theta - \frac{\pi}{6}\right) = 1$ $\left(2\theta - \frac{\pi}{6}\right) = \sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6}, \frac{5\pi}{6}$	1 for solving for 20
$2\theta = \frac{\pi}{3}, \ \pi \theta = \frac{\pi}{6}, \frac{\pi}{2}$	1 for θ
c) i) $T = D + Ce^{-kt}$ $\frac{dT}{dt} = -k(Ce^{-kt} + D - D) = -k(T - D)$	1
ii) $D = 25, C = 1325 \ T(10) = 720 = 25 + 1325e^{-10k}$	1 for equation
$\frac{695}{1325} = e^{-10k} \ln \frac{695}{1325} \div -10 = k = 0.0645255$	1 for k
$50 = 25 + 1325e^{-0.0645255t}$	1 for answer.
$e^{-0.0645255t} = \frac{25}{1325}$	112
$t = \ln \frac{25}{1325} \div 0.0645255 = 61.53 \text{min}$	

Solutions Question 5 2009	Marks/Comments
a. $f'(x) = 4x^3 - 15x^2 + 22x - 12$ $f'(1.3) = 0.038$	
f''(x) = 3.28	1
$x_2 = x_1 - \frac{f'(x_1)}{f''(x_1)} = 1.3 - \frac{0.038}{3.28} = 1.288$	1
$f''(x_1)$ 3.28	1
f'(1.288) = -0.00128	_
a ii $f(1.3) = 0.8611$ $x=1.3$ is so close to the minimum	1
that the curve cannot get much lower.	
b) 0.5 chance not even	
$0.5^7 = .0078125$ chance of not throwing < 1%	1
Therefore chance of at least 1 even > 99% if 7 rolls	1
$c \frac{ds}{dt} = \frac{ds}{dV} \times \frac{dV}{dt} = \frac{1}{3s^2} \times 200 = \frac{200}{675} = \frac{8}{27}$	1
$\frac{dSA}{dt} = \frac{dSA}{ds} \times \frac{ds}{dt} = 12s \times \frac{8}{27} = 53\frac{1}{3}cm^2s^{-1}$	1 1
d) If $n = 1$ $1^{3} + 2^{3} + 3^{3} = 36 = 9 \times 4$ so the result holds when $n = 1$	1
Assume that when $n = k$	
$(k)^3 + (k+1)^3 + (k+2)^3 = 9m, m \in C$	
RTP $(k+1)^3 + (k+2)^3 + (k+3)^3 = 9p, p \in C$	1
$LHS = 9m - k^{3} + (k+3)^{3} = 9m - k^{3} + k^{3} + 9k^{2} + 27k + 27$	
$=9(m+k^2+3k+3)=9p$	1 /12
as req ^d Hence since true for $n=1$, and since if true for $n=k$. Also true for $n=k+1$, by induction the result holds for all positive integers n	Penalise 1 if conclusion not stated

Solutions Question 6 2009	Marks/Comments
a) i) $x \neq \pm 1$	1
a) ii) $h(2) = -2$, $h(-2) = 2$	1
a) iii) $h(x) = \frac{3x}{1-x^2}$ $= \frac{3(1-x^2)-3x(-2x)}{(1-x^2)^2}$ $= \frac{3+3x^2}{(1-x^2)^2}$ positive numerator and denominator \therefore never zero a) iv)	1
2- 1- 1- 2- 3-2- 0-0-2-3-4	2 award 1 for progress
b) $V = \pi \int_{0}^{\frac{\pi}{3}} y^{2} dx = \pi \int_{0}^{\frac{\pi}{3}} \sec^{2} dx = \pi [\tan x]_{0}^{\frac{\pi}{3}} = \sqrt{3}\pi \text{ units}^{3}$	2
c) i) $\frac{d^2x}{dt^2} = \frac{dv}{dt} = \frac{dv}{dx} \times \frac{dx}{dt} = v, \frac{dv}{dx} = \frac{d\left(\frac{1}{2}v^2\right)}{dv}\frac{dv}{dx} = \frac{d}{dx}\left(\frac{v^2}{2}\right)$	1
c) ii) α $v^2 = 36 - 4x^2$ $\ddot{x} = \frac{d}{dx}(18 - 2x^2) = -4x$	1
$\ddot{x} = -n^2 x$ with $n = 2$ signifying SHM c) ii) β At the endpoints $v = 0$, $x = \pm 3$ amplitude = 3	1
1	1
$T=\frac{2\pi}{n}=\pi$	1
c) ii) γ $x = 3\sin(2t)$ OR $x = 3\cos(2t - \frac{\pi}{2})$	1 /12

Solutions Question 7 2009	Marks/Comments
a) $T\hat{O}P = B\hat{O}P$ (given bisector)	
$O\hat{T}P = T\hat{A}B$ (angle between chord and tangent equals	1
the angle in the alternate segment)	1
$O\hat{Q}A = O\hat{P}T$ (angle sum triangle)	1
But $O\hat{P}T = P\hat{T}Q + P\hat{Q}T$ and $O\hat{Q}A = P\hat{T}Q + T\hat{P}Q$ (exterior	
angle triangle)	
$\therefore P\hat{Q}T = P\hat{T}Q \text{ (equals - } P\hat{T}Q \text{)}$	
ΔTPQ is isosceles as req ^d	1
If $\tan \theta = \frac{5}{12} \cos \theta = \frac{12}{13} \sin \theta = \frac{5}{13}$	
$\ddot{x} = 0 \dot{x} = \int \ddot{x}dt = c \qquad \qquad \ddot{y} = -10 \dot{y} = \int \ddot{y}dt = -10t + c$	
b) $\dot{x} = 26 \times \frac{12}{12} = 24$ = $-10t + 10$	1
$y = \int \dot{y} dt = -5t^2 + 10t + c$	
$y = \int \dot{y} dt = -5t^2 + 10t + c$ $x = \int \dot{x} dt = 24t + c = 24t$ $= -5t^2 + 10 + 15$	
since components given in first line and origin is 15m below	
point of projection	1 explanation of evaluation
b)ii) Impact when $t = 0$	of Cs of I must be given
$0 = -5t^2 + 10t = 15$	
$0 = t^2 - 2t - 3 = (t - 3)(t + 1)$	1
whencet = 3	1
$x(3) = 24 \times 3 = 72m$	1
c) i) $PS = \sqrt{(2t-0)^2 + (t^2-1)^2} = \sqrt{t^4 + 2t^2 + 1} = t^2 + 1$	
$PM = t^2 + 1$	1
which is the distance of P above the x axis plus the distance	
of the directrix below the x axis The lengths are equal Δ <i>PSM</i> is isocseles	1
$y = \frac{x^2}{4} y' = \frac{x}{2} = t \text{ at } P$	
$\frac{y-4}{4}$ $y-\frac{1}{2}$ $\frac{y-1}{4}$	1
$m_{\rm SM} = \frac{-2}{2t} = -\frac{1}{t}$	1
21 1	_
: The two lines are perpendicular c)iii) The altitude of an isosceles triangle bisects the angle at	
the apex AND $A\hat{P}B = C\hat{P}M$ vertically opposite	
$\therefore A\hat{P}B = S\hat{P}C \text{ as req}^{d}$	1 /12
M.D - DI C us req	- ,14