2009 TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2

General Instructions

- o Reading Time- 5 minutes
- Working Time 3 hours
- Write using a black or blue pen
- o Approved calculators may be used
- A table of standard integrals is provided at the back of this paper.
- All necessary working should be shown for every question.
- Begin each question on a fresh sheet of paper.

Total marks (120)

- o Attempt Questions 1-8
- o All questions are of equal value

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

NOTE:
$$\ln x = \log_e x$$
, $x > 0$

Total Marks – 120 Attempt Questions 1-8 All Questions are of equal value

Begin each question on a NEW SHEET of paper, writing your name and question number at the top of the page. Extra paper is available.

Question 1 (15 marks) Begin a NEW sheet of paper.

Marks

a) By using the method of partial fractions, show that

4

$$\int \frac{dx}{x^2 - 1} = \ln \sqrt{\frac{x - 1}{x + 1}} + c$$

b) By making a suitable trigonometric substitution, evaluate

4

$$\int_0^1 \sqrt{1-x^2} \ dx$$

c) If $I = \int e^x \sin x \, dx$

4

Find *I* using the method of integration by parts.

d) Evaluate

3

$$\int_0^{\frac{\pi}{2}} \cos x \sin^3 x \, dx$$

End of Question 1

Question 2 (15 marks) Begin a NEW sheet of paper.

Marks

1

3

2

a) Given A = 3 - 4i and $B = \sqrt{3} + i$.

2009 Trial HSC Examination

- i) Find AB in x+iy form
-) Find $\frac{A}{B}$ in x + iy form
- iii) Find \sqrt{A} in x + iy form
- iv) Find B in modulus- argument form
- v) Hence find B^4 in x + iy form
- b) On separate Argand diagrams sketch the following loci:
 - i) $2 \ge |z| \ge 1$

1

- ii) $\frac{3\pi}{4} > \arg z > \frac{\pi}{4}$
- iii) $3 \ge \text{Re } Z \ge 0 \text{ and } 3 \ge \text{Im } Z \ge 1$

2

1

1

c) On the Argand diagram shown OABC is a rectangle with the length OA being twice OC.

OC represents the complex number x + iy.

Find the complex number represented by

- i) OA
- ii) OB
- iii) BC

End of Question 2

Marks

2

2

3

2

2

Question 3 (15 marks) Begin a NEW sheet of paper.

Marks

- a) A sequence of numbers u_n is given by $u_1 = 3, u_2 = 21$ and $u_n = 7u_{n-1} 10u_{n-2}$ for $n \ge 3$. Use mathematical induction to show that $u_n = 5^n 2^n$ for $n \ge 1$.
- b) i) Show that the area enclosed by a parabola of focal length a and its latus rectum is given by $A = \frac{8a^2}{3}$ units².
 - ii) A solid is formed such that its base is a semicircle of radius 1 metre. Vertical sections parallel to the diameter are parabolas with each latus rectum being a chord of the semicircle parallel to the diameter. By using the result from i) and the technique of slicing, find the volume of this solid.
- c) Shown are two circles centres H and K which touch at M. PQ and RM are common tangents.

- i) Show that quadrilaterals *HPRM* and *MRQK* are cyclic.
- ii) Prove that triangles PRM and MKQ are similar.

2

2

End of Question 3

Ques	tion 4	(15 marks) Begin a NEW sheet of paper.
a)		In that a,b,c , and d represent positive integers and $a+b+c=3d$. Show that $100a+10b+c$ is divisible
b)		oots of $x^3 + 3px + q = 0$ are α, β and γ , (none of a are equal to 0).
	i)	Find the monic equation with roots $\frac{\beta\gamma}{\alpha}$, $\frac{\alpha\gamma}{\beta}$ and $\frac{\alpha\beta}{\gamma}$, giving the coefficients in terms of p and q .
	ii)	Deduce that if $\gamma = \alpha \beta$ then $(3p-q)^2 + q = 0$
c)		rmine the values of a and b given that $(x+1)^2$ is a r of $P(x) = x^5 + 2x^2 + ax + b$.
d)	i)	Solve $Z^5 = 1$ over the complex field giving your answers in modulus-argument form.

End of Question 4

quadratic factors.

Hence write $Z^5 - 1$ as the product of linear and

Marks

1

1

1

2

Question 5 (15 marks) Begin a NEW sheet of paper.

Marks

2

2

2

a)

On the above sketch $\angle CDB = 90^{\circ}$, AC = 5 cm,

CD = 3 cm and BD = x cm.

Also $\angle BAC = \alpha$ and $\angle ABC = \theta$

- i) Determine the value x which will maximise θ .
- ii) Determine the maximum value of θ (nearest minute).
- b) The diagram shows a mass of 1 kg at R joined by two strings to a vertical rod at P and Q where PR = 4m and QR = 3 m. The mass is rotating horizontally with an angular velocity of 3π rad s^{-1} in horizontal circle $(g = 10 \text{ ms}^{-2})$

- i) Show that the radius of the rotation is 2.4m.
- ii) Calculate the tension in each string.
- iii) At what angular velocity would the tension in *QR* be zero?
- c) For the curve with equation $x^2 + 3xy y^2 = 13$, determine the gradient of the tangent at the point (2, 3) on the curve.

End of Question 5

- a) A mass of 1kg is falling under gravity (g) through a medium in which the resistance to the motion is proportional to the square of the velocity. (k = constant of proportionality)
 - i) Draw a sketch showing all forces acting.
 - ii) Write an equation for the acceleration of this mass.
 - iii) Show that the mass reaches a terminal velocity

given by
$$v = \sqrt{\frac{g}{k}}$$
.

iv) Show that the distance it has fallen when it reaches

a velocity
$$v$$
 m/s is given by $x = \frac{1}{2k} \ln \left(\frac{g}{g - kv^2} \right)$

b) i) Show that the recurrence (reduction)formula for

$$I_n = \int \sec^n x dx$$

is
$$I_n = \frac{1}{n-1} \tan x \sec^{n-2} x + \frac{n-2}{n-1} I_{n-2}$$

- ii) Hence evaluate $\int_{0}^{\frac{\pi}{4}} \int_{0}^{\sec^4 x dx}$
- A cubic equation in z has all real coefficients. If two of the roots are 3 and 2+i determine the equation.

End of Question 6

Question 7 (15 marks) Begin a NEW sheet of paper.

Marks

3

1

3

2

2

a`

The sketch shows the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ and the circle $x^2 + y^2 = a^2$ with $a, b \ge 0$. T lies on the circle where $\angle TOX = \theta$ and $0 \le \theta \le \frac{\pi}{2}$. The tangent at T meets OX at M and MP is perpendicular to OX with P on the hyperbola.

- i) Find the equation of the tangent TM and hence the coordinates of M.
- ii) Hence show that the coordinates of P are $(a \sec \theta, b \tan \theta)$
- iii) If $Q(a \sec \beta, b \tan \beta)$ is another point on the hyperbola, where $\theta + \beta = \frac{\pi}{2}$ and $\theta \neq \frac{\pi}{4}$, show that the equation of PQ is $ay = b(\cos \theta + \sin \theta)x ab$.
- iv) Every such chord PQ passes through a fixed point, find its coordinates.
- v) Show that as θ approaches $\frac{\pi}{2}$, PQ approaches a line parallel to an asymptote.

Question 7 continues on page 9.

Question 7 continued.

Marks

1

3

- b) i) By letting $Z = \cos \theta + i \sin \theta$ show that $Z^{n} + \frac{1}{Z_{n}} = 2 \cos n\theta.$
 - ii) Hence express $\cos^4 \theta$ in terms of $\cos n\theta$

End of Question 7

Marks

2

2

3

2

Question 8 (15 marks) Begin a NEW sheet of paper.

A particle is projected to just clear two poles of height h metres at distances of b and c metres from the point of projection. If v is the velocity of the projection at an angle θ to the horizontal:

i) Show that
$$v^2 = \frac{(b+c)g\sec^2\theta}{2\tan\theta}$$

- ii) Hence or otherwise show that $\tan \theta = \frac{h(b+c)}{bc}$
- iii) Also find an expression in terms of h, b and c, for the greatest height the particle reaches.

b)

The sketch shows a circuit with components *A*, *B* and *C* each, with a probability of being defective of *p*. If a component is defective current will not pass the component.

- i) Show that the probability of current not flowing from P to Q is $p^2(2-p)$.
- ii) A more complex circuit is created using repetitions of the basic circuit in part i). Find the probability that current cannot flow from M to K.

Question 8 continues on page 12.

Question 8 continued.		Marks	
c)	Cor	sider the word EXTENSION.	
	i)	How many distinct arrangements can be made of all the letters?	1
	ii)	In how many of these arrangements will the first and last letters be N?	1
	iii)	In how many of these arrangements will the vowels be grouped together?	1

End of Examination

WESTERN REGION

2009 TRIAL HSC EXAMINATION

Mathematics

Extension 2

SOLUTIONS

Ques	tion 1 Trial HSC Examination- Mathematics Extension 2	2009	
Part	Solution	Marks	Comment
(a)	Let $\frac{A}{x+1} + \frac{B}{x-1} = \frac{1}{x^2 - 1}$	1	
	$\therefore A(x-1)+B(x+1)=1$		
	If $x=1$ $2B=1$		
	$B = \frac{1}{2}$ If $x = -1$ $2A = -1$		Any method to find A and B
	$A = -\frac{1}{2}$	1	
	$\frac{dx}{x^2 - 1} = \frac{1}{2} \int \frac{1}{x - 1} - \frac{1}{x + 1} dx$	1	
	$\therefore \int = \frac{1}{2} \left[\ln(x-1) - \ln(x+1) \right] + C$		No mark for C
	$= \frac{1}{2} \ln \left(\frac{x-1}{x+1} \right) + C$	1	
	$= \ln \sqrt{\frac{x-1}{x+1}} + c$		Total = 4

Question 1		Trial HSC Examination- Mathematics	2009	
Part	Solution		Marks	Comment
(b)	Let $x = dx = -s$	π	1	Can use alternate methods ie $x = \sin \theta$
	$\int_0^1 \sqrt{ }$	$\frac{1}{1-x^2}dx = \int_{\frac{\pi}{2}}^{0} \sqrt{1-\cos^2\theta} \left(-\sin\theta d\theta\right)$		ie x – sino
	$=\int_{\frac{\pi}{2}}^{0}-$	$\sin^2 \theta d heta$	1	
	$=\frac{1}{2}\int_{\frac{\pi}{2}}^{0}$	$(\cos 2\theta - 1)d\theta$		
	$=\frac{1}{2}\left[\frac{1}{2}\right]$	$\sin 2\theta - \theta \bigg]_{\frac{\pi}{2}}^{0}$	1	
	$=\frac{1}{2}\left[\left(0\right)$	$\left(0-\frac{\pi}{2}\right)$		
	$=\frac{\pi}{4}$		1	
	_			Total = 4
(c)	J .	$\sin x dx$		
		$\int e^x \cos x dx$	1	
		$\ln x - (e^x \cos x - \int e^x [-\sin x] dx)$	1	
	$=e^x\sin$	$nx - e^x \cos x - I$		1
	$2I = e^{-\epsilon}$	$(\sin x - \cos x) + C$	1	
	$\therefore I = \frac{6}{3}$	$\frac{e^x}{2}(\sin x - \cos x) + C$	1	Total = 4
L	1		1	1

Ques	tion 1 Trial HSC Examination- Mathematics Extension 2	2009		
Part	Solution	Marks	Comment	
(d)	$\int_0^{\frac{\pi}{2}} \cos x \sin^3 x dx = \left[\frac{1}{4} \sin^4 x \right]_0^{\frac{\pi}{2}}$ $= \frac{1}{4} \left[\sin^4 \left(\frac{\pi}{2} \right) - \sin^4 (0) \right]$ $= \frac{1}{4} [1 - 0]$	1	May be done by a substitution of $u = \sin x$ $du = \cos x \ dx$	
	$=\frac{1}{4}$	1	Total = 3	

Questio		2009	
Part	Solution	Marks	Comment
(a) (i)	$AB = (3-4i)(\sqrt{3}+i)$		
	$=3\sqrt{3}+4+(3-4\sqrt{3})i$	1	
(ii)	$\frac{A}{B} = \frac{(3-4i)}{\left(\sqrt{3}+i\right)} \times \frac{\left(\sqrt{3}-i\right)}{\left(\sqrt{3}-i\right)}$		
410	$= \frac{3\sqrt{3} - 4}{4} + \frac{\left(-4\sqrt{3} - 3\right)i}{4}$	1	
(iii)	$x + iy = \sqrt{3 - 4i}(x + yreal)$		
	$\therefore x^2 - y^2 + 2xyi = 3 - 4i$		
	$\therefore x^2 - y^2 = 3(\alpha)$		
	$2xy = -4(\beta)$	1	
	Squaring $x^4 - 2x^2y^2 + y^4 = 9, 4x^2y^2 = 16$ $x^4 + 2x^2y^2 + y^4 = 25$		Other methods okay
	$(x^2 + y^2)^2 = 25$		
	$x^2 + y^2 = 5 \dots (\gamma)$	1	
	Adding $(\alpha + \gamma)2x^2 = 8$		
	$x = \pm 2$	i i	
	$\therefore y = \mp 1$		
	$\therefore \sqrt{A} = \pm (2 - i)$ $B = \sqrt{3} + i$	1	Total = 3
(iv)	i		
	$=2(\frac{\sqrt{3}}{2}+\frac{1}{2}i)$		
	$ B = 2 \qquad ArgB = \frac{\pi}{6}$ $= 2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$	1 for mod	
	$=2\left(\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}\right)$	1 for arg	
			Total = 2

Part Solution (v) $B^{4} = 2^{4} \left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6}\right)$ $= 16 \left(\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}\right)$ $= -8 + 8\sqrt{3}i$ (b) (i)	Marks 1	Comment Total = 2
$B^{4} = 2^{4} \left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6}\right)$ $= 16 \left(\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}\right)$ $= -8 + 8\sqrt{3}i$		Total = 2
$=-8+8\sqrt{3}i$	1	Total = 2
$= -8 + 8\sqrt{3}i$ (b) (i)	1	Total = 2
(b) (i)		
• • • • • • • • • • • • • • • • • • • •	1	
(ii)		
	1	
(iii) y	1	
(c) (i) $OA = 2(-y+ix)$	1	
$(ii) \qquad OB = OA + AB$		
= -2y + 2ix + x + iy		
1	1	
=2y-2xi	1	

Ques	tion 3	Trial HSC Examination- Mathematics Extension 2		2009	
Part	Solution		N	larks	Comment
(a)	$u_n = 5^n - 2^n$				7782-11
	$u_1 = 5 - 2 = 3$				
	\therefore True for n Assume this	=1 is true for $n=k$	1		
	i.e. $u_k = 5^k - $	2^k			
	For $u_{k+1} = 7u$	$u_{k-1} = 10u_{k-1}$			
	= 7($(5^k - 2^k) - 10(5^{k-1} - 2^{k-1})$			
	= 7.5	$5^k - 7.2^k - 2.5^k + 5.2^k$			
	= 5.5	$3^k - 2.2^k$	2		
	$=5^{k+1}$	$k^{-1}-2^{k+1} k \ge 2$			
	∴ If true for	n = k also true for $n = k + 1$			
	Hence by inc	luction true for positive integers n			
	$\therefore u_n = 5^n - 2$	' for n≥1	1		Total = 4

Gi) T	Tot consisted to the second se		
(ii)	Let semicircle be as shown with equation $x^{2} + y^{2} = 1 \qquad ; y \ge 0$ $\begin{array}{c c} & & \\ & & \\ \hline & & \\ & & \\ \hline & & \\ & & \\ \hline & & \\ & & $		Students do not need to use k
	Let slice be made at $y = k$		
	with thickness δk		
	When $y = k$,		
	$x = \pm \sqrt{1 - k^2}$		
	\therefore Length of latus rectum = $2\sqrt{1-k^2}$		
	$4a = 2\sqrt{1 - k^2}$		
	$a = \frac{\sqrt{1 - k^2}}{2}$	1	
	From (i)	:	
	Area of Section = $\frac{8}{3} \left(\frac{\sqrt{1-k^2}}{2} \right)^2$		
	$=\frac{8\left(1-k^2\right)}{12}$		
	· ·		
	$=\frac{2(1-k^2)}{2}$		
	3	1	
	Volume of slice = $\frac{2(1-k^2)}{3}\delta k$		
	Volume of solid = $\frac{2}{3} \int_0^1 (1-k^2) dk$		
	$=\frac{2}{3}\left[k-\frac{k^3}{3}\right]_0^1$	1	Total = 4
	$=\frac{2}{2}\left[\left(1-\frac{1}{2}\right)-(0)\right]$	1	
	$\begin{vmatrix} 3 \\ 3 \end{vmatrix} \begin{pmatrix} 3 \\ 3 \end{pmatrix} $ $\begin{vmatrix} -\frac{4}{9}m^3 \\ -\frac{1}{9}m^3 \end{vmatrix}$		

Ques	tion 4 Trial HSC Examination- Mathematics Extension 2	2009	
Part	Solution	Marks	Comment
(a)	100a+10b+c=99a+9b+a+b+c =9(11a+b)+3d =3(3[11a+b]+d)	1	
	Which is divisible by 3.	1	Total = 2
(b) (i)	$From x^3 + 3px + q = 0$		
(-)	$\alpha + \beta + \gamma = 0, \alpha\beta + \alpha + \beta\gamma + = 3p \ \alpha\beta\gamma = -q$		
	$\therefore \frac{\beta \gamma}{\alpha} + \frac{\alpha \gamma}{\beta} + \frac{\alpha \beta}{\gamma} = \frac{(\beta \gamma)^2 + (\alpha \gamma)^2 + (\alpha \beta)^2}{\alpha \beta \gamma}$		
	$=\frac{(\beta\gamma+\alpha\gamma+\alpha\beta)^2-2(\alpha\beta\gamma^2+\alpha\beta^2\gamma+\alpha^2\beta\gamma)}{\alpha\beta\gamma}$	1	
	$=\frac{(\beta\gamma+\alpha\gamma+\alpha\beta)^2-2\alpha\beta\gamma(\alpha+\beta+\gamma)}{\alpha\beta\gamma}$		
		i	
	$=\frac{(3p)^2 + 2q(0)}{-q} = -\frac{9p^2}{q}$		
	$\frac{\beta \gamma}{\alpha} \cdot \frac{\alpha \gamma}{\beta} + \frac{\alpha \gamma}{\beta} \cdot \frac{\alpha \beta}{\gamma} + \frac{\beta \gamma}{\alpha} \cdot \frac{\alpha \beta}{\gamma} = \gamma^2 + \alpha^2 + \beta^2$	1	
	$= (\gamma + \alpha + \beta)^2 - 2(\alpha\beta + \alpha\gamma + \beta\gamma)$		
	=0-2.3p		
	=-6p	1	
	$\frac{\beta \gamma}{\alpha} \cdot \frac{\alpha \gamma}{\beta} \cdot \frac{\alpha \beta}{\gamma} = \alpha \beta \gamma$	1	
	$\alpha \beta \gamma$	1	
	=-q		
	$\therefore \text{Re quired equation is } x^3 + \frac{9p^2}{q}x^2 - 6px + q = 0$		Total = 4

7	Question 4 Trial HSC Examination- Mathematics Extension 2 2		
Part	Solution	Marks	Comment
(b) (ii)	For $\gamma = \alpha \beta$ $\alpha \beta$		
	$\frac{\alpha\beta}{\gamma} = 1$ is a root	1	
	$\therefore 1 + \frac{9p^2}{q} - 6p + q = 0$		
	$q + 9p^2 - 6pq + q^2 = 0$		
	$\therefore (3p-q)^2 + q = 0$	1	Total = 2
(c)	Let $P(x) = x^5 + 2x^2 + ax + b$		
	If $(x+1)^2$ is a factor $P(-1) = P'(-1) = 0$	1	
	$\therefore P(-1) = -1 + 2 - a + b = 0$	1	
	$\therefore -a+b=-1$	1	
	$P'(x) = 5x^4 + 4x + a$		
	P'(-1) = 5 - 4 + a = 0		
	a = -1		
	∴ b = -2	1	Total = 3
(d)	Let $Z = cis\theta$		
	$Z^5 = cis5\theta$		
	$\therefore \cos 5\theta + i \sin 5\theta = 0$		
	$\theta = 0, \frac{2\pi}{5}, \frac{4\pi}{5}, \frac{6\pi}{5}, \frac{8\pi}{5}$		
	i.e. = $0, \frac{2\pi}{5}, \frac{4\pi}{5}, \frac{-4\pi}{5}, \frac{-2\pi}{5}$	1	
	$\therefore \text{ Roots are } Z_1 = 1, \qquad Z_2 = cis \frac{2\pi}{5}, \qquad Z_3 = cis \frac{4\pi}{5}$		
	$Z_4 = cis(-\frac{4\pi}{5})$ $Z_5 = cis(-\frac{2\pi}{5})$	1	Total = 2
	$=\overline{Z}_3$ $=\overline{Z}_2$	1	

Ques	·		2009	
Part	Solution		Marks	Comment
(e) ii)	$z^{5}-1$			
	$=(z-z_1)(z$	$-z_2)(z-z_5)(z-z_3)(z-z_4)$		
	$=(z-z_1)(z^2)$	$^{2}-(z_{2}+z_{2}z_{5})(z^{2}-(z_{3}+z_{4})z+z_{3}z_{4})$	1	
	$=(z-1)(z^2)$	$-2z\cos\frac{2\pi}{5}+1)(z^2-2z\cos\frac{4\pi}{5}+1)$	1	
	l	5 5		Total = 2

Quest	tion 5 Trial HSC Examination- Mathematics Extension 2	2009	1
Part	Solution	Marks	Comment
(a) (i)	$\angle BCD = \alpha + \theta(\text{Exterior } \angle \text{ of } \Delta ABC)$		
	$\tan \alpha = \frac{x}{8}$		
	$\tan(\alpha+\theta) = \frac{x}{3}$		
	$\therefore \frac{x}{3} = \frac{\tan \alpha + \tan \theta}{1 - \tan \alpha \tan \theta}$	1	
	$x - x \tan \alpha \tan \theta = 3 \tan \alpha + 3 \tan \theta$		Any
	$x - x \cdot \frac{x}{8} \tan \theta = \frac{3x}{8} + 3 \tan \theta$		method
	$\therefore (\frac{x^2}{8} + 3) \tan \theta = \frac{5x}{8}$		
	$\therefore \tan \theta = \frac{5x}{8} \times \frac{8}{x^2 + 24}$		
	$\tan \theta = \frac{5x}{x^2 + 24}$	1	
	Differentiate both sides		
	$\sec^2 \theta d\theta = \frac{(x^2 + 24)5 - 5x \cdot 2x}{(x^2 + 24)^2} dx$		
	$\frac{d\theta}{dx} = \frac{120 - 5x^2}{(x^2 + 24)^2} \cdot \cos^2$	1	
	For maximum θ , $\frac{d\theta}{dx} = 0$		
	$\theta \pm 90^{\circ} \therefore 120 - 5x^2 = 0$		
	$x^2 = 24 \qquad x = \sqrt{24} = 2\sqrt{6}$		
	$\therefore x = 2\sqrt{6} \text{ cm gives the maximum value of } \theta$		
	Test $x \sqrt{6} = 2\sqrt{6} = 3\sqrt{6}$	1	Total = 4
	$\frac{d\theta}{dx}$ + 0 -		
	∴ max		
			:
			J

Quest	tion 5 Trial HSC Examination- Mathematics Extension 2	2009		
Part	Solution	Marks	Comment	
(a) (ii)	$\tan \theta = \frac{5 \times \sqrt{24}}{24 + 24}$	1		
	$\theta = 27^{\circ}2'$ is maximum value.			
(b)	Let centre for rotation be S			
(i)	Let $PS = x$			
	$\therefore SQ = 5 - x$			
	$\therefore x^2 + r^2 = 16$			
l	$\int (5-x)^2 + r^2 = 9$	1		
	$x^2 - 25 + 10x - x^2 = 7$			
	10x = 32			
	x = 3.2			
	$\therefore (3.2)^2 + r^2 = 16$			
	$\therefore r = 2.4$	1	Total = 2	
(b)	Let tension in $PR = T_1(N)$ and in $QR = T_2(N)$			
(ii)	Let $\angle QPR = \alpha$ and $\angle PQR = \beta$			
	Resolving forces at R			
	Vertically $T_1 \cos \alpha = T_2 \cos \beta + g$			
	$\therefore T_1 \cos \alpha - T_2 \cos \beta = g$			
	i.e. $\frac{4}{5}T_1 - \frac{3}{5}T_2 = 10$ (1)	1		
	Horizontally $T_1 \sin \alpha + T \sin \beta = mrw^2$			
	i.e. $\frac{3}{5}T_1 + \frac{4}{5}T_2 = 2.4(3\pi)^2$ (2)	1		
	Solving simultaneously gives $T_1 = 135.9$ Newtons(1dp)	1	T 4 1	
	and $T_2 = 164.5$ Newtons(1dp)	1	Total = 4	

Ques	uestion 5 Trial HSC Examination- Mathematics Extension 2 2009		
Part	Solution	Marks	Comment
(b) iii)	In (1) above when $T_2 = 0$		
111)	$\frac{4}{5}T_1 = 10$		
	$\left[\frac{5}{5}^{1_1-10}\right]$		
	$T_1 = 12.5$	1	
	∴ Substitute in (2)		
:	$\frac{3}{5} \times 12.5 = 2.4w^2$		
	$\therefore w^2 = 3.125$		
	w = 1.77 (2dp)		
	$\therefore T_2 = 0$ when angular velocity 1.77 rad s ⁻¹	1	Total = 2
(c)	$x^2 + 3xy - y^2 = 13$		~
	$2x + 3y + 3x \cdot \frac{dy}{dx} - 2y \cdot \frac{dy}{dx} = 0$		
	$\frac{dy}{dx}(3x-2y) = -(2x+3y)$	1	
	$\frac{dy}{dx} = \frac{-(2x+3y)}{(3x-2y)}$		
	$\therefore at (2,3) \qquad \frac{dy}{dx} = -\frac{(4+9)}{6-6}$		
	∴ Gradient infinite		
	∴ Tangent is vertical	1	Total = 2

Quest	ion 6 Trial HSC Examination- Mathematics Extension 2	2009	
Part	Solution	Marks	Comment
(a) (i)	kv^{2} $mg = g$	1	
(a) (ii)	$\ddot{x} = g - kv^2$	1	
(a) (iii)	When $\ddot{x} = 0$ $g = kv^2$	1	
(9)	$\therefore v = \sqrt{\frac{g}{k}}$		
(iv)	$\ddot{x}\frac{d}{dx}(\frac{1}{2}v^2) = g - kv^2$		
	$= \frac{d}{dv} (\frac{1}{2}v^2) \cdot \frac{dv}{dx} = g - kv^2$	1	
	$=v.\frac{dv}{dx}=g-kv^2$	1	
	$\therefore \frac{dv}{dx} = \frac{g - kv^2}{v}$	1	:
	$\frac{dx}{dv} = \frac{v}{g - kv^2}$		
	$\therefore x = -\frac{1}{2k} \ln(g - kv^2) + c$	1	
	When $x = 0$ $v = 0$		
	$\therefore c = \frac{1}{2k} \ln g$		
	$\therefore x = -\frac{1}{2k}\ln(g - kv^2) + \frac{1}{2k}\ln g$		
	$=\frac{1}{2k}\ln(\frac{g}{g-kv^2})$	1	Total = 4

Ques	tion 6 Trial HSC Examination- Mathematics Extension 2 2	:009	
Part	Solution	Marks	Comment
(b) (i)	$I_n = \int \sec^n x dx$		
	$= \int \sec^{n-2} x \cdot \sec^2 x dx$		
	$= \tan x \cdot \sec^{n-2} x - \int (n-2) \sec^{n-3} x \cdot \tan x \cdot \sec x \tan x dx$	1	
	$= \tan x \sec^{n-2} x - (n-2) \int \sec^{n-2} x \cdot \tan^2 x dx$	1	
	$= \tan x \sec^{n-2} x - (n-2) \int \sec^{n-2} x \cdot (\sec^2 x - 1) dx$		
	$= \tan x \sec^{n-2} x - (n-2) \int (\sec^n x - \sec^{n-2} x) dx$		
	$= \tan x \sec^{n-2} x - (n-2)I_n + (n-2)I_{n-2}$	1	
	$I_n + (n-2)I_n = (n-1)I_n = \tan x \sec^{n-2} x + (n-2)I_{n-2}$		
	$I_n = \frac{1}{n-1} \tan x \sec^{n-2} x + \frac{n-2}{n-1} I_{n-2}$	1	Total = 4
(b) (ii)	$\int_0^{\frac{\pi}{4}} \sec^4 x dx = I_4 = \left[\frac{1}{3} \tan x \sec^2 x + \frac{2}{3} \int \sec^2 x \right]_0^{\frac{\pi}{4}}$		
	$= \left[\frac{1}{3} \tan x \sec^2 x + \frac{2}{3} \tan x \right]_0^{\frac{\pi}{4}}$		
	$= \left(\frac{1}{3}\tan\frac{\pi}{4}\sec^2\frac{\pi}{4} + \frac{2}{3}\tan\frac{\pi}{4}\right) - \left(\frac{1}{3}\tan 0\sec^2 0 + \frac{2}{3}\tan 0\right)$	1	
	$= \left(\frac{1}{3} \times 1 \times 2 + \frac{2}{3} \times 1\right) - 0$		
	$=\frac{4}{3}$	1	Total = 2

Ques	tion 6	Trial HSC Examination- Mathematics Extension 2	2009	
Part	Solution		Marks	Comment
(c)	If one roo	ot is $2+i$, another is $2-i$		
	$\therefore (z-(2))$	(+i)(z-(2-i)(z-3)=0	1	
	(z-2-i)	(z-2+i)(z-3)=0		
	$\left \left(z^2 - 4z - \right) \right $	+5)(z-3)=0		
	$\int z^3 - 7z^2 -$	+17z-15=0	1	
				Total = 2

Quest	ion 7 Trial HSC Examination- Mathematics Extension 2	2009	
Part	Solution	Marks	Comment
(a) (i)	Coordinates of T are $(a\cos\theta, a\sin\theta)$ $x^2 + y^2 = a^2$		
	$\therefore 2x + 2y \frac{dy}{dx} = 0$	1	
	$\therefore \frac{dy}{dx} = -\frac{x}{y}$		
	$at T \frac{dy}{dx} = -\frac{\cos \theta}{\sin \theta}$	1	
	∴ Equation <i>TM</i>		
	$y - a\sin\theta = -\frac{\cos\theta}{\sin\theta}(x - a\cos\theta)$		
	$x\cos\theta + y\sin\theta = a$		
	When $y = 0$ $x = a \sec \theta$	1	
	\therefore Coordinates M are $(a \sec \theta, 0)$		Total = 3
(a) (ii)	$\operatorname{On} \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text{ when } x = a \sec \theta$		
	$a^2 \frac{\sec^2 \theta}{a^2} - \frac{y^2}{b^2} = 1$		
	$\frac{y^2}{b^2} = \sec^2 \theta - 1$		
	$\frac{y^2}{b^2} = \tan^2 \theta$		
	$\therefore y = b \tan \theta$		
	Coordinates of P are $(a \sec \theta, b \tan \theta)$	1	

<u> </u>			
(a) iii)	$a\sec\beta = a\sec(\frac{\pi}{2} - \theta)$		
	$= a \cos ec$		
	$b\tan\beta = b\tan(\frac{\pi}{2} - \theta)$		
	$=b\cot\theta$	1	
	Gradient $PQ = \frac{b \cot \theta - b \tan \theta}{a \cos \sec \theta - a \sec \theta}$		
	$= \frac{b}{a} \left\{ \frac{\frac{\cos \theta}{\sin \theta} - \frac{\sin \theta}{\cos \theta}}{\frac{1}{\sin \theta} - \frac{1}{\cos \theta}} \right\}$		
	$= \frac{b}{a} \left\{ \frac{\cos^2 \theta - \sin^2 \theta}{\frac{\sin \theta \cos \theta}{\cos \theta - \sin \theta}} \right\}$		
	$=\frac{b}{a}\left(\frac{\cos^2\theta-\sin^2\theta}{\cos\theta-\sin\theta}\right)$		
	= $\frac{b}{a}$ (cos θ + sin θ) ∴ Equation PQ is	1	
'	$y - b \tan \theta = \frac{b}{a} (\cos \theta + \sin \theta) (x - a \sec \theta)$		
	$y - b \tan \theta = \frac{b}{a} (\cos \theta + \sin \theta) x - b \cos \theta \sec \theta - b \sin \theta \sec \theta$		
	$y - b \tan \theta = \frac{b}{a} (\cos \theta + \sin \theta) x - b - b \tan \theta$		
	$y = \frac{b}{a} (\cos \theta + \sin \theta) x - b$		
	$ay = b(\cos\theta + \sin\theta)x - ab$	1	Total = 3
(a) (iv)	All of the lines have the same y intercept.	1	
(14)	i.e. $y = -b$		
	\therefore The fixed point is the intercept $(0,-b)$	1	Total = 2

(a) (v)	Equations of Asymptotes are $y = \pm \frac{b}{a}x$		
	Gradients of asymptotes are $m = \pm \frac{b}{a}$	1	
	As $\theta \to \frac{\pi}{2}$ the equation of $PQ \to ay = b(0+1)x - ab$		
	$\therefore \text{ Gradient of } PQ \to \frac{b}{a}$	1	
	$\therefore PQ$ approaches a line which is parallel to an asymptote.	1	Total = 2
(b)	$z = \cos\theta + i\sin\theta$		
i)	$\frac{1}{z} = z^{-1} = \cos \theta - i \sin \theta$		
	By De Moivres Theorem		
	$z^n = \cos n\theta + i\sin n\theta$		
	$z^{-n} = \cos n\theta - i\sin n\theta$		
	$z^{n} + z^{-n} = \cos n\theta + i\sin n\theta + \cos n\theta - i\sin n\theta$		
	$z^n + \frac{1}{z^n} = 2\cos n\theta$	1	
ii)	$\left(z + \frac{1}{z}\right)^4 = z^4 + 4z^3 \frac{1}{z} + 6z^2 \frac{1}{z^2} + 4z \frac{1}{z^3} + \frac{1}{z^4}$	1	
	$= \left(z^4 + \frac{1}{z^4}\right) + 4\left(z^2 + \frac{1}{z^2}\right) + 6$		
	$(2\cos\theta)^4 = 2\cos 4\theta + 4(2\cos 2\theta) + 6$	1	
	$2^4 \cos^4 \theta = 2\cos 4\theta + 8\cos 2\theta + 6$		
	$\cos^4 \theta = \frac{1}{8} \cos 4\theta + \frac{1}{2} \cos 2\theta + \frac{3}{8}$	1	Total = 3

Ques	Question 8 Trial HSC Examination- Mathematics 20 Extension 2		2009	
Part	Solution		Marks	Comment
(a) (i)	Equatio	n of trajectory is		-
	$y = x \tan x$	$n\theta - \frac{gx^2}{2v^2} \cdot \sec^2\theta$		
	Passes 1	through (b,h) and (c,h)		
	1	$= b \tan \theta - \frac{gb^2}{2v^2} \sec^2 \theta $ (1)	1	
		$c \tan \theta - \frac{gc^2}{2v^2} \sec^2 \theta $ (2)		
	$\therefore b \tan \theta$	$\theta - \frac{gb^2}{2v^2}\sec^2\theta = c\tan\theta - \frac{gc^2}{2v^2}\sec^2\theta$		
	(b-c)t	$an \theta = (b^2 - c^2) \frac{g}{2v^2} \sec^2 \theta$	1	
		$(b+c)\frac{g}{2v^2}\sec^2\theta$		
	$v^2 = \frac{b}{a}$	$\frac{+c)g\sec^2\theta}{2\tan\theta}$	1	Total = 3
(a)		ate result into (1)	1	10141 - 3
(ii)	h = b ax	$\ln \theta - \frac{gb^2 \sec^2 \theta}{2} \frac{2 \tan \theta}{(b+c)g \sec^2 \theta}$		
	h = b ta	$n\theta - \frac{b^2 \tan \theta}{b+c}$	1	
	h(b+c)	$=(b^2+bc)\tan\theta-b^2\tan\theta$		
		$=bc\tan\theta$		
	\therefore tan θ	$=\frac{h(b+c)}{bc}$	1	Total = 2

Quest	Question 8 Trial HSC Examination- Mathematics 2 Extension 2		
Part	Solution	Marks	Comment
(a) (iii)	Greatest height at $x = \frac{b+c}{2}$		
	$\therefore y = \left(\frac{b+c}{2}\right) \tan \theta - \left(\frac{b+c}{2}\right)^2 \cdot \frac{g \sec^2 \theta \cdot 2 \tan \theta}{2(b+c)g \sec^2 \theta}$	1	
	$y = \left(\frac{b+c}{2}\right) \tan \theta - \left(\frac{b+c}{4}\right) \tan \theta$		
	$y = \left(\frac{b+c}{4}\right) \tan \theta$		
	$y = \left(\frac{b+c}{4}\right) \frac{h(b+c)}{bc}$	1	Total = 2
	$y = \frac{h(b+c)^2}{4bc}$	ľ	1 otal = 2
(b) (i)	No current if failure of A and (B or C or B and C)	1	
	$\therefore P(Failure) = p \Big[p (1-p) + (1-p) p + p.p \Big]$ $= p \Big(p - p^2 + p - p^2 + p^2 \Big)$	1	
	$=p(2p-p^2)$		Total = 3
(b)	$=p^{2}(2-p)$		Total 3
(ii)	Let $q = p^2(2-p)$ $P(Failure) = q^2(2-q)$	1	
	$= [p^{2}(2-p)]^{2}[2-p^{2}(2-p)]$		
	$= p^{4} (2-p)^{2} (p^{3}-2p^{2}+2)$	1	Total = 2
(c) (i)	$\frac{9!}{2! \times 2!} = 90720$	1	
(c) (ii)	$\frac{7!}{2!} = 2520$	1	
(c) (iii)	$\frac{6!}{2!} \times \frac{4!}{2!} = 4320$	1	