WESTERN REGION

2009 TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics

General Instructions

- o Reading Time 5 minutes.
- o Working Time 3 hours.
- o Write using a blue or black pen.
- o Approved calculators may be used.
- A table of standard integrals is provided at the back of this paper.
- All necessary working should be shown for every question.
- Begin each question on a fresh sheet of paper.

Total marks (120)

- o Attempt Questions 1-10.
- o All questions are of equal value.

2009 Trial HSC Examination

Mathematics

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$

NOTE:
$$\ln x = \log_e x$$
, $x > 0$

Question 2 (12 Marks)

Marks

Ques	tion 1 (12 Marks) Use a Separate Sheet of paper	Marks
(a)	Express 3.531 as a fraction in simplest form.	2
(b)	If $\tan \theta = \frac{7}{8}$ and $\cos \theta < 0$, find the exact value of $\csc \theta$	1
(c)	Evaluate $\frac{3.24^2 - 2.1^2}{\sqrt{36 + 2.1}}$ correct to 3 significant figures.	1
(d)	Solve $ 15 - 4x \le 3$	2
(e)	If $k = \frac{1}{3}m(v^2 - u^2)$ find the value of m when $k = 724$, $v = 14.2$ and $u = 7.4$.	2
(f)	Find the period and amplitude for the graph of $3y = \sin\left(2x - \frac{\pi}{4}\right)$.	2
(g)	Paint at the local hardware store is sold at a profit of 30% on the cost price. If a drum of paint is sold for \$67.50, find the cost price.	2

Use a Separate Sheet of paper

The lines AB and CB have equations x-2y+9=0 and 4x-y-20=0 respectively.

(a) Find the coordinates of the point B. 2 Show that the equation of the line AC is 9x+10y-45=0. (b) 2 Calculate the distance AC in exact form. (c) 2 Find the equation of the line perpendicular to BC which passes 2 passes through A. Calculate the shortest distance between the point B and the line AC. 2 Hence find the area of the triangle ABC. State the inequalities that together define the area bounded by 2 the triangle \overrightarrow{ABC} .

2

2

2

2

1

1

2

Question 3 (12 Marks) Use a Separate Sheet of paper Marks

- (a) Differentiate with respect to x.
 - i. $3x \sqrt[3]{x}$
 - ii. $\frac{\sin 2x}{e^{2x}}$
- (b) Find:
 - i. $\int \frac{dx}{e^{3x}}$
 - ii. $\int_0^\pi \sec^2 \frac{x}{4} \, dx \ .$
- (c) If α and β are the roots of the equation $3x^2 4x 7 = 0$ Find:
 - i. $\alpha + \beta$.
 - ii. $2\alpha^2 + 2\beta^2$.
 - iii. the equation with roots $2\alpha^2$ and $2\beta^2$.

Ouestion 4 (12 Marks)

Use a Separate Sheet of paper

Marks

(a) The right triangle ABC is shown below. BC || FE, BD \perp AC, \angle FBD = θ , BF = x, EF = y and BD = z.

Prove that:

i. $\angle FEA = \theta$

ii. $AF = y \tan \theta$

iii. $z = (x + y \tan \theta) \cos \theta$

iv. $z = x \cos \theta + y \sin \theta$

1 1

2

1

2

- (b) The federal government distributes \$500 million in order to stimulate the economy. Each recipient spends 80% of the money that he or she receives. In turn, the secondary recipient spends 80% of the money that they receive, and so on. What was the total spending that results from the original \$500 million into the economy?
- (c) A ship sails from port A, 60 nautical miles due west, to a port B. It then proceeds a distance of 50 nautical miles on a bearing of 210° to a port C.

i. Draw a diagram to illustrate the information given.

ii. Find the distance (nearest nautical mile) and bearing of C from A.

Question 5 (12 Marks)

Use a Separate Sheet of paper

Marks

1

1

1

3

2

1

2

(a) In a raffle in which 1000 tickets are sold, there is a first prize of \$1000, a second prize of \$500 and a third prize of \$200. The prize winning tickets are drawn consecutively without replacement, with the first ticket winning first prize.

Find the probability that:

i. a person buying one ticket in the raffle wins:

α. first prize.

first prize.

3. at least \$500

γ. no prizes.

ii. a person buying two tickets in the raffle wins:

α. at least \$500

ABCD is a parallelogram, BP = DQ.

Prove DP = BQ

- (c) i. Is the series $\log 3 + \log 9 + \log 27 + \dots$ arithmetic or geometric? Give reasons for your answer.
 - iii. Find the sum of the first 10 terms of the series.
- (d) Find the radius and centre of the circle with equation

 $4x^2 - 4x + 4y^2 + 24y + 21 = 0$

Question 6		(12 Marks) Use a Separate Sheet of paper	Marks
(a)	a) A curve has a gradient function with equation $\frac{dy}{dx} = 6(x-1)(x-2)$.		
	i.	If the curve passes through the point (1, 2), what is the equation of the curve?	2
	ii.	Find the coordinates of the stationary points and determine their nature.	2
	iii.	Find any points of inflexion.	2
	iv.	Graph the function showing all the main features.	2
(b)	Shov	w that $\frac{(1 + \tan^2 \theta) \cot \theta}{\cos ec^2 \theta} = \tan \theta$	3
(c)	Eval	luate $\lim_{\theta \to 0} \frac{\sin 2\theta}{3\theta}$	1

1

1

1

2

3

Question 7 (12 Marks) Use a Separate Sheet of paper Marks

- (a) The parabola $y = x^2$ and the line y = x + 2 intersect at points A and B respectively. Find the coordinates of the points A and B. Hence find the area bounded by the parabola and the line.
- (b) The minute hand on a clock face is 12 centimetres long. In 40 minutes
 - i. Through what angle does the hand move (in radians)?
 - ii. How far does the tip of the hand move?
 - iii. What area does the hand sweep through in this time?
- (c) Use Simpson's rule to evaluate $\int_{1}^{2.5} f(x) dx$, to 1 decimal place using the 7 function values in the table below.

x	1.00	1.25	1.50	1.75	2.00	2.25	2.50
f(x)	3.43	2.17	0.38	1.87	2.65	2.31	1.97

(d) A function is defined by the following features:

$$\frac{d^2y}{dx^2} > 0$$
 for $x < -1$ and $1 < x < 3$.

$$\frac{dy}{dx} = 0$$
 when $x = -3, 1$ and 5.

$$y = 0$$
 when $x = 1$.

Sketch a possible graph of the function.

Question 8 (12 Marks)

Use a Separate Sheet of paper

Marks

(a) The graph of the curve y = f(x) is drawn below.

- i. Name the points of inflexion.
- ii. When is the graph decreasing?
- iii. Sketch the gradient function.

1

2

3

1

- (b) Steve borrows \$15 000 for a new car. He decides to repay the loan plus interest at 6% pa compounded monthly. He repays the loan in monthly installments of \$P.
 - i. Show that after three months the amount that Steve owes is \$[15226·13 P(3·015025)].
 - After two years of repaying his loan, Steve still owes \$10 000 on the loan. What was the monthly repayment?
 - Sketch the graph of the parabola $2x = y^2 8y + 4$, showing the vertex, focus and the directrix.

2

Question 9		(12 Marks)	Use a Separate Sheet of paper	Marks
(a)	A particle moves in a straight line so that its displacement (in m) from a fixed point O at time t seconds is given by $x = 2\sin 2t$, $0 \le t \le 2\pi$.			
	Find:			
	i.	The initial velocity		1
	ii.	The acceleration after	$\frac{\pi}{12}$ seconds.	1
	iii.	When the particle is a	at rest.	2
	iv.	The displacement of t	the particle when it is at rest.	2
(b)	x = 3 i		we $y = \sqrt{\frac{2x}{3x^2 - 1}}$ between the lines $x = 1$ and exis. Find the volume of the solid of	3
(c)	The rate at which Carbon Dioxide will be produced when conducting an experiment is given by $\frac{dV}{dt} = \frac{1}{100} (30t - t^2)$ where $V \text{ cm}^3$ is the volume of gas produced after t minutes. i. At what rate is the gas being produced 15 minutes after the		1	
	1.	experiment begins.	s being produced 15 minutes after the	1

How much Carbon Dioxide has been produced during this time?

Questi	on 10	(12 Marks)	Use a Separate Sheet of paper	Marks
(a)	An open cylindrical can is made from a sheet of metal with an area of 300cm ² .		un is made from a sheet of metal with an area	
	i.	Show that the	volume of the can is given by $V = 150r - \frac{1}{2}\pi r^3$.	2
	ii.	Find the radius and calculate the	of the cylinder that gives the maximum volume his volume.	4
(b)	(b) The population of a certain town grows at a rate proportional to the population. If the population grows from 20 000 to 25 000 in two years, find:			
	i.	The population further 8 years	a of the town, to the nearest hundred, after a	3
	ii.	Calculate the r	ate of change at this time.	1
(c)	If log	$a_a 2 + 2 \log_a x - 1$	$\log_a 6 = \log_a 3$ find the value of x.	2

End of Examination.

Western Region

2009

TRIAL HIGHER SCHOOL CERTIFICATE

EXAMINATION

Mathematics

Solutions

Solutions	Marks/Comments
Ouestion 1	
(a) Let $x = 0.53131$ or $3.531 = 5 + \frac{5}{10} + \frac{31}{1000} + \frac{31}{100000}$	2 marks – 1 for correct method 1 correct answer
10x = 5.3131 Limiting Sum $\frac{31}{1000} + \frac{31}{100000} + \frac{31}{10000000}$.	
$100x = 53 \cdot 1313$ $a = \frac{31}{1000}$ $S_{\infty} = \frac{a}{1-r}$	
000x = 531.3131 31	
990 x = 526	
$x = \frac{526}{990} = \frac{263}{495} = \frac{31}{1000} \div \frac{99}{100}$	
$\therefore \ 3 \cdot 531 = 3 \frac{263}{495} \qquad \qquad = \frac{31}{990}$	
$\therefore 3 \cdot 531 = 3 + \frac{5}{10} + \frac{31}{990} = 3\frac{263}{495}$	
$x^{2} = 7^{2} + 8^{2} Since$ $= 49 + 64 tan \theta = \frac{7}{2} and cos \theta = \frac{1}{2}$	< n
7	< 0 1 Mark – Correct Answer
$x = \sqrt{113}$ $\therefore cosec \ \theta = -\frac{\sqrt{113}}{7}$	
8	
c) $\frac{3\cdot24^3-2\cdot1^2}{\sqrt{36+2\cdot1}} = 0.986242288$	1 Mark – Correct rounded
= 0.986	answer
d) $ 15 - 4x \le 3$ $15 - 4x \le 3 \text{ or } 15 - 4x \ge -3$ $-4x \le -12$ $-4x \ge -18$	
$x \ge 3 \text{ or } x \le 4\frac{1}{2}$	2 Marks – 1 for each solution
(e) $k = \frac{1}{3}m(v^2 - u^2)$	2 Marks – 1 for substitution
$724 = \frac{1}{3}m(14 \cdot 2^2 - 7.4^2)$	- 1 for answer

2

$$2172 = m(146.88)$$

$$m = \frac{2172}{146.88} = 14.7875817$$

$$= 14.8 (3sf)$$

(f)
$$3y = \sin\left(2x - \frac{\pi}{4}\right)$$

 $y = \frac{1}{3}\sin\left(2x - \frac{\pi}{4}\right)$

2 marks - 1 for period 1 for amplitude

$$\therefore \text{ amplitude } = \frac{1}{3} \qquad \text{ period } = \frac{2\pi}{2} = \pi$$

(g)
$$130\% = \$67.50$$

 $1\% = \frac{67.50}{130} = 0.51923....$

2 Marks - 1 for 1% 1 for Cost price

Cost Price = $\frac{67.50}{130}$ × 100 = \$51.92

Solutions	Marks/Comments
Question 2 (a) $x-2y+9=0$ (1) 4x-y-20=0(2) From (2) y=4x-20(3) Sub (3) into (1) B is the point (7, 8) x-2(4x-20)+9=0 x-8x+40+9=0 -7x=-49 x=7 Hence $y=8$	2 marks – 1 for method 1 for correct answer
(b) $m(AC) = \frac{4\frac{1}{2} - 0}{0 - 5}$ $= -\frac{9}{10}$ $y - y_1 = m(x - x_1)$ $y - 0 = -\frac{9}{10}(x - 5)$ 10y = -9x + 45 9x + 10y - 45 = 0	2 marks – 1 for gradient 1 for equation
(c) $AC = \sqrt{(0-5)^2 + (4\frac{1}{2} - 0)^2}$ $= \sqrt{(-5)^2 + (4\frac{1}{2})^2}$ $= \sqrt{25 + \frac{81}{4}}$ $= \frac{\sqrt{181}}{2}$	2 marks – 1 for substitution 1 for answer
(d) $m(BC) = \frac{8-0}{7-5} = \frac{8}{2} = 4$	2 marks – 1 for gradient of line 1 for equation
(e) $d = \frac{[9(7)+10(8)-45]}{\sqrt{9^2+10^2}} = \frac{[63+80-45]}{\sqrt{81+100}} = \frac{98}{\sqrt{181}}$ Area = $\frac{1}{2}$ bh = $\frac{1}{2} \times \frac{\sqrt{181}}{2} \times \frac{98}{\sqrt{181}} = 24\frac{1}{2}$ square units.	2 marks – 1 for substitution 1 for answer
(f) $x-2y+9 \ge 0$ $4x-y-20 \le 0$ $9x+10y-45 \ge 0$	2 marks - lose 1 mark for each incorrect
4	

Solutions	Marks/Comments
Ouestion 3 (a) i. $\frac{d}{dx} \left[3x \sqrt[5]{x} \right] = vu' + uv'$ $= 3 \times x^{\frac{1}{8}} + 3x \times \frac{1}{3}x^{-\frac{2}{8}}$ $= 4x^{\frac{1}{8}}$ $= 4\sqrt[3]{x}$ Derivative = $4\sqrt[5]{x}$	2 marks – 1 for method 1 for answer
ii. $\frac{d}{dx} \left[\frac{\sin 2x}{e^{2x}} \right] = \frac{(e^{2x})(2\cos 2x) - (\sin 2x)(2e^{2x})}{(e^{2x})^2}$ $= \frac{2e^{2x} \left[\cos 2x - \sin 2x \right]}{(e^{2x})^2}$ $= \frac{2 \left[\cos 2x - \sin 2x \right]}{e^{2x}}$	2 marks – 1 for method 1 for answer
(b) i. $\int \frac{dx}{e^{3x}} = \int e^{-3x} dx = -\frac{1}{3}e^{-3x} + C$	2 marks – 1 for method 1 for answer
ii. $\int_0^{\pi} \sec^2 \frac{x}{4} dx = 4 \left[\tan \frac{x}{4} \right]_0^{\pi}$ $= 4 \left[\tan \frac{\pi}{4} - \tan 0 \right] = 4$	2 marks – 1 for integral 1 for answer
(c) i. $\alpha + \beta = -\frac{b}{\alpha} = -\frac{-4}{3} = \frac{4}{3}$ $2\alpha^2 + 2\beta^2 = 2(\alpha^2 + \beta^2)$ $= 2\left[(\alpha + \beta)^2 - 2\alpha\beta\right]$ $\therefore a = \left[(4)^2 - (-7)\right]$	1 mark
ii. $= 2\left[\left(\frac{4}{3} \right)^2 - 2\left(\frac{-7}{3} \right) \right]$ $= 2\left[\left(\frac{16}{9} \right) + \left(\frac{14}{3} \right) \right]$ $= \frac{116}{9}$	1 mark
iii. Equation with roots $2\alpha^2$ and $2\beta^2$ has equation	1 mark
$x^{2} - (2\alpha^{2} + 2\beta^{2})x + (2\alpha^{2} \times 2\beta^{2}) = 0$ i.e. $x^{2} - 2[(\alpha + \beta)^{2} - 2\alpha\beta]x + 4(\alpha\beta)^{2} = 0$	2 marks – 1 for method 1 for answer

[(A) 2	
$x^{2} - 2\left[\left(\frac{4}{3}\right)^{2} - 2\left(\frac{-7}{3}\right)\right]x + 4\left(\frac{-7}{3}\right)^{2} = 0$	
$x^2 - 2\left[\frac{16}{9} + \frac{14}{3}\right]x + \frac{156}{9} = 0$	
$x^2 - 2\left[\frac{58}{9}\right]x + \frac{196}{9} = 0$	
$x^2 - \frac{116}{9}x + \frac{196}{9} = 0$	
$9x^2 - 116x + 196 = 0$	

Solutions	Marks/Comments
Question 4	
(a) i. $\angle FBD = \theta$ (Given) $\angle DBC = 90^{\circ} - \theta$ $\angle BCD = 180^{\circ} - 90^{\circ} - (90 - \theta)$ (angle sum of $\triangle BCD$) $= \theta$ $\therefore \angle FEA = \theta$ (Corresponding angles to $\angle BCD$, FE BC)	2 marks – 1 for proof 1 for reasons
ii. $\angle AFE = 90^{\circ}$ (Corresponding angles FE BC) $\tan \theta = \frac{AF}{y}$ $\therefore AF = y \tan \theta$	1 mark
iii. In $\triangle ABD$, $\cos \theta = \frac{z}{AF + FB}$ $z = (AF + FB) \cos \theta$ $= (x + y \tan \theta) \cos \theta$	1 mark
iv. $z = (x + y \tan \theta) \cos \theta$ $= x \cos \theta + y \tan \theta \cos \theta$ $= x \cos \theta + y \frac{\sin \theta}{\cos \theta} \cos \theta$ $= x \cos \theta + y \sin \theta$	1 mark
(b) $a = 500\ 000000 \times 0.8$ $ S_{oa} = \frac{a}{1-r} $ $ = \frac{4}{5} $ $ = \frac{500\ 000\ 000 \times 0.8}{1-\frac{2}{5}} $ $ = \frac{400\ 000\ 000}{\frac{1}{5}} $ $ \$2\ 000\ 000\ 000$	2 marks – 1 for substation into formula - 1 for answer
(c) i. B 60nm A 20° θ	1 for correct diagram
ii. $AC^2 = 50^2 + 60^2 - 2 \times 50 \times 60 \cos 120^{\circ}$ AC = 95.3939 = 95 nm	2 marks – 1 for substitution - 1 for answer
$\frac{\sin \theta}{50} = \frac{\sin 120}{95.3939}$ $\sin \theta = \frac{50 \sin 120}{95.3939}$ $\theta = 27^{\circ} \text{(nearest degree)}$	2 marks – 1 for 27° - 1 for bearing
Bearing = 270 - 27 = 243°	

Question 5

(a) i. α . P(Wins first Prize) = $\frac{1}{1000}$

β. P(At least \$500) = $\frac{2}{1000}$ or 0.002

 γ . P(no prizes) = $1 - \frac{3}{1000} = \frac{997}{1000}$ or 0.997

ii. P(At least \$500) = $1 - (\frac{998}{1000} \times \frac{997}{999})$ = 0.003997997

(b) ABCD is a parallelogram and BP = DQ

Then

$$AP = AB - PB$$

= DC - DQ
= QC
In $\Delta \Box$ s APD, BCQ

AP = QC (proven above)

AD = BC (opposite sides of parallelogram)

∠PAD = ∠QCB (opposites angles of a parallelogram)

 \therefore DP = BQ (corresponding side in congruent triangles)

Series is Arithmetic with a common difference of log 3

ii.
$$S_n = \frac{n}{2} [2\alpha + (n-1)d]$$

 $S_{10} = \frac{10}{2} [2(\log_a 3) + (10-1)\log_a 3]$
 $= 5[2\log_a 3 + 9\log_a 3]$
 $= 5[11\log_a 3]$
 $= 55\log_a 3$
 $= \log_a 3^{55}$

(d) $4x^2 - 4x + 4y^2 + 24y + 21 = 0$ $x^2 - x + y^2 + 6y = -\frac{21}{4}$ $\left(x^2 - x + \frac{1}{4}\right) + \left(y^2 + 6y + 9\right) = -\frac{21}{4} + \frac{1}{4} + 9$ $\left(x - \frac{1}{2}\right)^2 + \left(y + 3\right)^2 = 4$ Centre $\left(\frac{1}{2}, -3\right)$, Radius = 2 1 mark

1 mark

1 mark

1 mark

3 marks - 1 for showing

AP = QC

1 for proving

triangles congruent

1 for DP = BQ

2 marks – 1 for type of series 1 for reason i.e the value of d

1 for S_{10} in either form

2 marks - 1 for centre 1 for radius

Question 6

(a) i.
$$\frac{dy}{dx} = 6(x-1)(x-2)$$
 $\frac{d^2y}{dx^2} = 12x-18$
 $= 6(x^2 - 3x + 2)$
 $= 6x^2 - 18x + 12$
 $y = \int (6x^2 - 18x + 12) dx$
 $= 2x^3 - 9x^2 + 12x + C$

$$= 2x^{3} - 9x^{2} + 12x + C$$
When $x = 1, y = 2$

$$2 = 2(1)^{3} - 9(1)^{2} + 12(1) + C$$

$$2 = 2 - 9 + 12 + C$$

$$0 = 3 + C$$

$$C = -3$$

Equation of curve is $y = 2x^3 - 9x^2 + 12x - 3$

ii.
$$\frac{dy}{dx} = 6(x-1)(x-2)$$
 but $\frac{dy}{dx} = 0$ for Stationary Points i.e. $6(x-1)(x-2) = 0$

$$x = 1$$
 or $x = 2$
i.e. $(1, 2)$, $(2,1)$

At (1, 2),
$$\frac{d^3y}{dx^2} < 0$$
 Maximum at (1, 2)

At (2, 1),
$$\frac{d^3y}{dx^2} > 0$$
 Mimimum at (2,1)

iii.
$$\frac{d^2y}{dx^2} = 12x - 18 = 0$$
 for inflexion point
 $12x = 18$
 $x = 1\frac{1}{2}$ i.e. $(1\frac{1}{2}, 1\frac{1}{2})$

At
$$(1\frac{1}{2}, 1\frac{1}{2})$$
 $\frac{x}{d^{2}y} - \frac{1}{0} + \frac{1\frac{1}{2}}{2}$ Concavity changes at $x = 1\frac{1}{2}$

Point of inflexion at (1½, 1½)

At
$$x = -1$$
, $y = 2(-1)^3 - 9(-1)^2 + 12(-1) - 3$
= -26

At
$$x = 3$$
, $y = 2(3)^3 - 9(3)^2 + 12(3) - 3$
= 6

At
$$x = 0$$
, $y = -3$

2 marks - 1 for integration 1 for equation with correct value of "c"

2 marks – 1 for points 1 for testing points

2 marks – 1 for inflexion point 1 for testing

Question 7

Marks/Comments

(a) $y = x^2 - - - (1)$ y = x + 2 - - - (2)

(1) In (2)

$$x^{2} = x + 2$$

$$x^{2} - x - 2 = 0$$

$$(x + 1)(x - 2) = 0$$

$$x = -1 \text{ or } x = 2$$

i.e. A (-1, 1) B (2, 4)

Solutions

$$A = \left| \int_{a}^{b} (f(x) - g(x)) dx \right|$$

$$= \left| \int_{-1}^{2} (x + 2 - x^{2}) dx \right|$$

$$= \left[\frac{x^{2}}{2} + 2x - \frac{x^{3}}{3} \right]_{-1}^{2}$$

$$= \left(\frac{4}{2} + 4 - \frac{8}{3} \right) - \left(\frac{1}{2} - 2 + \frac{1}{3} \right)$$

$$= 3\frac{1}{3} - 1\frac{1}{6}$$

$$= 4\frac{1}{2} \text{ sq units}$$

(b) i. Angle =
$$\frac{40}{60} \times 360$$

= $240 \times \frac{\pi}{180}$
= $\frac{4\pi}{3}$

$$ii. l = r\theta$$
$$= 12 \left(\frac{4\pi}{3}\right)$$
$$= 16\pi \text{ cm.}$$

iii.
$$A = \frac{1}{2}r^2\theta$$
$$= \frac{1}{2}(12)^2 \left(\frac{4\pi}{3}\right)$$
$$= 96\pi \text{ cm.}$$

4 marks – 1 for each point (2)

1 for integration

1 for answer

1 mark

1 mark

1 mark

(c) $A = \frac{h}{3} [ends + 2odds + 4 evens]$ 2 marks - 1 for use of formula $=\frac{0.25}{3}\left[(3\cdot 43+1\cdot 97)+2(0\cdot 38+2.65)+4(2\cdot 17+1\cdot 87+2\cdot 31)\right]$ 1 for answer = 3.0716= 3.1 (1dp)(d) Max turning point at x=5 Horizontal inflexion at (1,0) 3 marks - 1 for inflexions 1 for stationary points 1 for point on graph (1, 0) Min turning point at x=-3 Inflexion points at x=-1 and x=3

Solutions	Marks/Comments
Question 8	
(a) i. B, C, D	1 mark
ii. From A to C and then from C to E	1 mark
iii.	
A C E	1 mark
(b) i. Let \$P be the amount repaid each month $\$A_n$ - Amount owing after n repayments	2 marks - 1 for working 1 for proof
$A_{1} = 15\ 000 \times 1 \cdot 005 - P$ $A_{2} = A_{1} \times 1 \cdot 005 - P$ $= (15\ 000 \times 1 \cdot 005 - P) \times 1 \cdot 005 - P$ $= 15\ 000 \times 1 \cdot 005^{2} - P(1 + 1 \cdot 005)$ $A_{3} = A_{2} \times 1 \cdot 005 - P$ $= [15\ 000 \times 1 \cdot 005^{2} - P(1 + 1 \cdot 005)] \times 1.005 - P$ $= 15\ 000 \times 1 \cdot 005^{3} - P(1 \cdot 005 + 1 \cdot 005^{2}) - P$ $= 15\ 000 \times 1 \cdot 005^{3} - P(1 + 1 \cdot 005 + 1 \cdot 005^{2})$ $= 15226 \cdot 13 - P(3 \cdot 015025)$	Tioi proof
ii. $A_{24} = 15000 \times 1.005^{24} - P(1 + 1.005 + \dots + 1.005^{23})$ but $A_{24} = 10000$	3 marks - 1 for working - 1 for sum of GS
$ \begin{array}{l} \div 10\ 000 = 15\ 000\ \times 1 \cdot 005^{24} - P(1+1\cdot 005\dots\dots+1\cdot 005^{23}) \\ P(1+1\cdot 005\dots\dots+1\cdot 005^{24}) = 15\ 000\ \times 1 \cdot 005^{24} - 10\ 000 \\ P = \frac{15\ 000\ \times 1\cdot 005^{24} - 10\ 000}{(1+1\cdot 005\dots + 1\cdot 005^{24})} & \text{GS with } a = 1, r = 1\cdot 005, n = 24 \\ = 15\ 000\ \times 1\cdot 005^{24} - 10\ 000 + \frac{1\cdot 005^{24} - 1}{0\cdot 005} & \text{S} = \frac{1(1\cdot 005^{24} - 1)}{1\cdot 005^{24} - 1} \\ = \frac{(15\ 000\ \times 1\cdot 005^{24} - 10\ 000) \times 0\cdot 005}{1\cdot 005^{24} - 1} & = \frac{1\cdot 005^{24} - 1}{0\cdot 005} \end{array} $	- 1 for answer

= \$271.60 4 marks – 1 for sketch (c) $2x = y^2 - 8y + 4$ $y^2 - 8y = 2x - 4$ $y^2 - 8y + 16 = 2x - 4 + 16$ $(y - 4)^2 = 2x + 12$ $(y - 4)^2 = 2(x + 6)$ 1 for vertex 1 for focus 1 for directrix Vertex = (-6, 4)4a = 2 $\alpha = \frac{1}{2}$ $Focus = \left(-5\frac{1}{2}, 4\right)$ Directrix: $x = -6\frac{1}{2}$ x = -6.5Directrix y = 4Focus (-5.5, 4) Vertex (-6, 4)-6.5

Solutions	Marks/Comments
Question 9	
(a) $x = 2\sin 2t$ $\dot{x} = 4\cos 2t$ $\ddot{x} = -8\sin 2t$	
i. $t = 0$ $\dot{x} = 4\cos 2(0)$ = 4×1 = 4 m/s	1 mark
ii. $t = \frac{\pi}{12} \ddot{x} = -8 \sin 2\left(\frac{\pi}{12}\right)$ $= -8 \sin\left(\frac{\pi}{6}\right)$ $= -8 \times \frac{1}{2}$ $= -4 \text{ m/s}^2$	1 mark
iii. $\dot{x} = 0$ then $4\cos 2t = 0$ i.e. $\cos 2t = 0$ $2t = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \frac{7\pi}{2}, \dots$ $t = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}, \dots$	2 marks – 1 for working 1 for answer
iv. $x = 2 \sin 2t$ $= 2 \sin 2 \left(\frac{\pi}{4}\right)$ $= 2$ $\therefore x = \pm 2 \text{ m}$	2 marks - 1 for working 1 for answer
(b) $V = \int_a^b [f(x)]^2 dx$ = $\int_1^3 \left(\sqrt{\frac{2x}{3x^2 - 1}} \right)^2 dx$	3 marks – 1 use of formula 1 for Integral 1 for answer
$= \int_{1}^{3} \frac{2x dx}{3x^{2} - 1}$ $= \frac{1}{3} \left[\ln(3x^{2} - 1) \right]_{1}^{3}$ $= \frac{1}{3} \left[\ln(3 \times 3^{2} - 1) - \ln(3 \times 1^{2} - 1) \right]$ $= \frac{1}{3} \left(\ln 26 - \ln 2 \right)$ $= \frac{1}{3} \left(\ln \frac{26}{2} \right)$ $= \frac{1}{3} (\ln 13)$	

(c) i.
$$\frac{dV}{dt} = \frac{1}{100} (30t - t^2)$$
when $t = 15$

$$\frac{dV}{dt} = \frac{1}{\frac{100}{100}} [30(15) - (15)^2]$$

$$= \frac{22\frac{1}{2}}{\frac{100}{100}}$$

$$= 2\frac{1}{4} \text{ cm}^3 / \text{min}$$
ii. $V = \int_0^{15} \frac{1}{100} (30t - t^2)$

$$= \frac{1}{100} \left[15t^2 - \frac{t^3}{3} \right]_0^{15}$$

$$= \frac{1}{100} \left\{ \left[15(15)^2 - \frac{15^8}{3} \right] - [0] \right\}$$

$$= \frac{1}{100} \left[3375 - 1125 \right]$$

$$= \frac{1}{100} (2250)$$

$$= 22.5 \text{ cm}^3$$

Solutions	Marks/Comments
Question 10	
(a) i. $SA = \pi r^2 + 2\pi r h = 300$ $2\pi r h = 300 - \pi r^2$ $h = \frac{300 - \pi r^2}{2\pi r}$	2 marks – 1 for "h" 1 for "V"
$V = \pi r^2 h$ $= \sqrt{r} \sqrt[300 - \pi r^2]$ $= 150r - \frac{\pi r^3}{2}$	
ii. $V = 150r - \frac{1}{2}\pi r^3$ $\dot{V} = 150 - \frac{3}{2}\pi r^2$ $\dot{V} = -3\pi r \qquad \text{which is less than 0 for positive } r$	4 marks – 1 for differentials 1 for value of 'r' 1 for test 1 for max volume
Stat Pts when $\dot{V} = 0$ i.e. $150 - \frac{3}{2} \pi r^2 = 0$ $150 = \frac{3}{2} \pi r^2$	
$100 = \pi r^2$ $r^2 = \frac{100}{\pi}$	
$r^2 = \pm \sqrt{\frac{100}{\pi}}$	
Now max Volume when $r > 0$ i.e. $r = \sqrt{\frac{100}{\pi}} = 5.641895835$	
$V = 150 \sqrt{\frac{100}{\pi}} - \frac{\pi}{2} \left(\sqrt{\frac{100}{\pi}} \right)^3 = 564 \cdot 1895835$ $= 564 \text{ m}^3 \text{ (nearest m}^3\text{)}$	
(b) i. $\frac{dP}{dt} = kP$ $\therefore P = P_0 e^{kt}$	
When $t = 0$, $P = 20\ 000$, $\therefore P_0 = 20\ 000$ So $P = 20\ 000e^{kt}$	3 marks – 1 for value of 'k' 1 for equation
When $t = 2$, $P = 25\ 000$ 25 000 = 20 000 e^{2k}	1 population
$\frac{5}{4} = e^{2k}$	
$ \ln\left(\frac{5}{4}\right) = 2k $	
$k = \ln\left(\frac{5}{4}\right) \div 2$ $k = 0.111571775$	
$\therefore P = 20\ 000e^{0.111571775t}$	

When t = 10 $P = 20 \ 000e^{0.111571775}$ (10) = 61 000 people (nearest 100) ii. $\frac{dp}{dt} = 61\ 000 \times 0 \cdot 111571775$ 1 for rate of change = 6 806 people / year (c) $\log_a 2 + 2\log_a x - \log_a 6 = \log_a 3$ $\log_a 2 + \log_a x^2 - \log_3 6 = \log_a 3$ $\log_a \frac{2x^2}{6} = \log_a 3$ $\therefore \frac{2x^2}{6} = 3$ $2x^2 = 18$ $x^2 = 9$ 2 marks - 1 manipulation of 1 for answer $x = \pm 3$ going back to original equation, cannot have log (-3) so x = 3