WESTERN REGION

2008
HSC Preliminary Course
FINAL EXAMINATION

Mathematics - Extension 1

General Instructions

- o Reading Time 5 minutes.
- o Working Time 11/2 hours.
- o Write using a blue or black pen.
- Board approved calculators may be used.
- A table of standard integrals is provided at the back of this paper.
- o All necessary working should be shown for every question.
- o Begin each question on a fresh sheet of paper.

Total marks (60)

- o Attempt Questions 1-5.
- o All questions are of equal value.

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx \qquad = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$$

NOTE: $\ln x = \log_e x$, x > 0

Prelimi	nary Cou	rse 2008	Final Examination	Mathematics – Extension 1
Quest	ion 1	(12 Marks)	Use a Separate Sheet of p	paper Marks
(a)	Solve	the inequality	$\frac{3x}{3x-4} \le 3$	3
(b)			seated in a row on the stage for a they be placed if:	an assembly. 3
	i)	there are no re	estrictions on where they sit?	
	ii)	two particular	students insist on sitting next to e	each other?
	iii)	two particular	students refuse to sit next to each	other?
(c)	and 4 of Lat	Liberal Party moour Party Memer on the comm	o be chosen from 8 Labour Party nembers. It is necessary that there abers and there is at least 1 Libera nittee. In how many ways can the	is majority Il Party
(d)	Find t	he acute angle l	between the lines $x + 2y = 0$ and $x = 0$	x - 3y = 0.
(e)		int $P(x,y)$ wh	-7) and $B(-1,-4)$. Find the coich divides the interval AB external	

End of Question 1

Preliminary Course 2008

Final Examination

Mathematics - Extension 1

Question 2 (12 Marks)

Use a Separate Sheet of paper

Marks

(a) In the triangle below, $AB \parallel FE$, and $\angle FCE = \angle DEB = 90^{\circ}$

- i) Prove that $\triangle ABC \parallel | \triangle DBE$ and $\triangle ABC \parallel | \triangle FCE$
- ii) If DE:FC=5:2, FE=3.2 cm and CE=2.4 cm find the length of AB
- (b) Find the values of w, x, y and z, giving reasons.

Question 2 continues on page 4

3

Question 2 continued.

Marks

(c) The point O is the centre of the circle. TU is a tangent to the circle, contacting the circle at P.

- i) Show that $\angle ROP = 2\angle RPT$
- ii) Show that $\angle RPT$ and $\angle QPU$ are complementary.
- iii) Show that $RP \parallel SQ$.

End of Question 2

Questi	ion 3	(12 Marks) Us	se a Separate Sheet of paper	Marks
(a)	Write	$\sin \theta + \cos \theta$ in terms of t	where $t = \tan \frac{\theta}{2}$.	1
(b)	midpo midpo i) ii)	int of the diagonal BD on int of the edge GF. Calculate the length of the line MH. Find the size of ∠MHF to the nearest minute.	s of length 12 cm. M is the the face ABCD and N is the	4
-	iii)	Find the size of $\angle MHN$ to the nearest minute.	F N	

Final Examination

(c) Show that
$$\sin(2x+30^\circ) = \sqrt{3} \sin x \cos x + \cos^2 x - \frac{1}{2}$$
.

(d) Solve
$$\sin x \cos x = \frac{1}{2\sqrt{2}}$$
 for $0^{\circ} \le x \le 360^{\circ}$

(e) i) Express
$$\sqrt{2} \sin x + \cos x$$
 in the form $r \sin(x+\alpha)$.

Preliminary Course 2008

ii) Hence or otherwise, solve $\sqrt{2} \sin x + \cos x = 1$ for $0^{\circ} \le x \le 360^{\circ}$, giving your answer to the nearest minute.

End of Question 3

<u>Prelimin</u>	ary Cou	rse 2008	Final Examination	Mathematics – Ex	tension 1
Questi	on 4	(12 Marks)	Use a Separate Sheet o	of paper	Marks
(a)		he centre and rac $x + y^2 - 12y + 27$	dius of the circle with equation $7 = 0$	1	2
(b)		the parabola x^2 . P, the focus S a	$x^2-12y+2x+25=0$, clearly solution the directrix.	howing the	3
(c)	For th	e parabola define	ed by the equations $x = 6t$, $y = 6t$	$=3t^2$;	3
	i)	Give the Cartes	sian Equation of the parabola.		
	ii)	Find the equation the point where	on of the focal chord which page $t=3$.	asses through	<u></u>
	iii)	Find the equation where $t = 3$.	on of the tangent to the parabo	ola at the point	
(d)	it's di		ne locus of a point P which mo point A(2, -3) is twice it's dista		2
(e)		he Cartesian equ ons below.	ation of the curve which has the	he parametric	2
	x = 3p	p-2			
	y = 2	$-3p^{3}$			

End of Question 4

Preliminary Course 2008 Final Examination Mathematics - Extension 1 Question 5 (12 Marks) Use a Separate Sheet of paper Marks Differentiate the following. (You do not need to simplify your answers after finding the derivative.) $\left(x^2 - 2x\right)\sqrt{x^3 - 2x^2}$ The polynomial $P(x) = 2x^4 - ax^2 + bx - 1$ is exactly divisible 3 by (x+1), and has a remainder of -3 on division by (x-2). Find the values of a and b. 3 i) Show that x-3 is a factor of $f(x) = x^3 + 3x^2 - 9x - 27$. ii) Find the intercepts that the graph of y = f(x) makes with the x If α , β , and γ are the roots of the equation $x^3 - 3x + 1 = 0$, find: $\alpha\beta + \beta\gamma + \gamma\alpha$ $\alpha^2 + \beta^2 + \gamma^2$

End of Examination

WESTERN REGION

2008 Preliminary Final EXAMINATION

Mathematics

Extension 1

SOLUTIONS

Ques	tion 1	Preliminary Examination - Extension 1	2008	
Part	Solution		Marks	Comment
(a)	$9x^{2}-12x$ $0 \le 18x^{2}$ $0 \le 3x^{2}-1$ $0 \le 3x^{2}-1$ $0 \le 3x(x)$	$\frac{3x}{3x-4} \le 3(3x-4)^2$ $\le 27x^2 - 72x + 48$ $-60x + 48$ $10x + 8$ $6x - 4x + 8$ $-2) - 4(x-2)$	3	1 for quadratic inequation or equivalent method 1 for working
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$0 \le \left(3x - \frac{4}{3}\right)$	$4)(x-2) \qquad \text{but } x \neq \frac{4}{3}$ $x \ge 2$		1 for solution
(b)		of arranging 6 people = 6! = 720	1	
	Ways Ways	of arranging 5 groups = $5! = 120$ of arranging a group of $2 = 2! = 2$ of arranging 6 groups with 2 people gether = $5! \times 2! = 240$	1	
) = v	with two who refuse to be together ways of arranging $6 -$ ways with two together $720 - 240 = 480$	1	
(c)		arrangements	2	1 for partial
	4 Labour	& 1 Liberal = ${}^{8}C_{4} \times {}^{4}C_{1} = 70 \times 4 = 280$		arrangements
	l .	and 2 Liberal = ${}^{8}C_{3} \times {}^{4}C_{2} = 56 \times 6 = 336$ ngements = $280 + 336 = 616$		2 for correct result

Quest	tion 1	Preliminary	Examination - Extension 1	2008	
Part	Solution			Marks	Comment
(d)	x+2y=		x-3y=0	2	1 mark for
	2y = -x		3y = x		gradients
	$2y = -x$ $y = -\frac{1}{2}x$		$y = \frac{1}{3}x$		1 for angle
	$m_1 = -\frac{1}{2}$		$m_2 = \frac{1}{3}$		
	$\tan \theta = \frac{1}{1}$,		
	$= \left \frac{\left(\frac{-1}{2} \right)}{1 + \left(\frac{-1}{2} \right)} \right $	$\frac{-\left(\frac{1}{3}\right)}{\left(\frac{1}{3}\right)}$	$\tan \theta = 1$ $\theta = 45^{\circ}$		
	1+ 2	【3】			a til alvette til aksent men i aksent
	$= \left \frac{-5}{6} \right = 1$	1			
(e)	$x = \frac{mx_2}{m}$	$\frac{-nx_1}{-n}$	$y = \frac{my_2 - ny_1}{m - n}$	2	1 for each coordinate
	$=\frac{4(-1)}{4}$	$\frac{-3(-3)}{-3}$	$=\frac{4(-4)-3(-7)}{4-3}$	-	
	= 5 The point	t is (5, 5)	= 5		

Ques	stion 2 Preliminary Examination - Extension 1 2	800	
Par	Solution	Mark	Commen
t		S	t
(a)	i) In $\triangle ABC$ and $\triangle DBE$ $\angle ACB = \angle DEB = 90^{\circ}$ (given) $\angle ABC = \angle DBE$ (common angle) $\angle BAC = \angle BDE$ (angle sum \triangle) $\therefore \triangle ABC \parallel \triangle DBE$ (corresponding angles equal) In $\triangle ABC$ and $\triangle FCE$ $\angle ACB = \angle FCE = 90^{\circ}$ (given) $\angle ABC = \angle FCC$ (corresponding angles on \\ lines) $\angle BAC = \angle EFC$ (angle sum \triangle) $\therefore \triangle ABC \parallel \triangle FCE$ (corresponding angles equal)	2	I mark for each similarity proof (requires at least 2 angles equal and reasons)
	···—···		
	ii) $DE : FC = 5 : 2$ $\frac{DE}{FC} = \frac{5}{2} = \frac{EB}{2.4}$ $EB = \frac{5}{2} \times 2.4$ $EB = 6$ $CB = EB + CE$ $= 6 + 2.4$ $= 8.4$ $CB = \frac{8.4}{2.4} = \frac{7}{2}$ $\frac{AB}{3.2} = \frac{7}{2}$ $AB = \frac{7}{2} \times 3.2$ $= 11.2 \text{ cm}$	2	Different pairings of sides are possible to achieve this. Give 1 for a reasonable attempt involving similarity
(b)	W = 50° Angles on same arc PQ $\angle STP = 70^\circ \text{ (vert opp)}$ $\angle SPT = 60^\circ \text{ (angle sum } \Delta PST \text{)}$ $z = \angle SPT = 60^\circ \text{ (angles on same arc } SR$ $x = 2 \times 60^\circ = 120^\circ$ $\text{(angle at centre twice } \angle SPT \text{)}$ $y = (180 \cdot 120) + 2 \text{ (isos } \Delta \text{ OSR)}$ $y = 30^\circ$	4	1 for each pronumeral
(c)	i) $\angle RPT = \angle RQP \text{ (angle between tang \& chord)}$ $\angle ROP = 2\angle RQP \text{ (angle at centre twice angle at circ)}$ $\therefore \angle ROP = 2\angle RPT$	1	

Г	Oues	stion 2 Preliminary Examination - Extension 1 2	2008		· 		
	Par	Solution	Mark	Commen			
	t		S	t		Ques	stion 3 Preliminary Examination - Extension 1 2008
		ii)	1			Part	Solution Marks
		$\angle RPT = 90^{\circ}$ (Angle in a semicircle)				(a)	$2t 1-t^2$
		$\angle RPT + \angle QPU + \angle RPT = 180^{\circ}$ (Straight line)					$\sin \theta + \cos \theta = \frac{2t}{1+t^2} + \frac{1-t^2}{1+t^2}$
		$\angle RPT + \angle QPU + 90^{\circ} = 180^{\circ}$					$=\frac{1+2t-t^2}{2}$
		$\angle RPT + \angle QPU = 90^{\circ}$					$1+t^2$
		$\angle RPT$ and $\angle QPU$ are complementary.			* a, , **	(b)	i) 1
			1				$BD^2 = 12^2 + 12^2$
		iii)	2				$BD = \sqrt{288} = 12\sqrt{2}$
		$\angle PRQ = \angle PSQ$ (Angles on same arc)					$MD = 6\sqrt{2}$
		$\angle PRQ = \angle RPS$ (Base angles in isos $\triangle ROP$)					
-		$\therefore \angle PSQ = \angle RPS \text{ (both equal } \angle PRQ)$					$MH^2 = \left(6\sqrt{2}\right)^2 + 12^2$
		$RP \parallel SQ$ (equal alternate angles)					$MH = \sqrt{216} = 6\sqrt{6}$
			1				

Quest	Question 3 Preliminary Examination - Extension 1 2008								
Part	Solution	Marks	Comment						
(a)	$\sin \theta + \cos \theta = \frac{2t}{1+t^2} + \frac{1-t^2}{1+t^2}$ $= \frac{1+2t-t^2}{1+t^2}$	1							
(b)	i)	1							
	$BD^{2} = 12^{2} + 12^{2}$ $BD = \sqrt{288} = 12\sqrt{2}$ $MD = 6\sqrt{2}$ $MH^{2} = (6\sqrt{2})^{2} + 12^{2}$ $MH = \sqrt{216} = 6\sqrt{6}$								
	н								
	ii) Using triangle MLH $\tan \angle MHL = \frac{12}{6\sqrt{2}} = \frac{2}{\sqrt{2}}$ $\angle MHL = 54^{\circ}44'$	1							
	iii) In \triangle HGN and \triangle MNL $HN^2 = MN^2 = 12^2 + 6^2$ $HN = MN = \sqrt{180} = 6\sqrt{5}$	2							
	In $\triangle MHN$ $\cos \angle MHN = \frac{(6\sqrt{6})^2 + (6\sqrt{5})^2 - (6\sqrt{5})^2}{2(6\sqrt{6})(6\sqrt{5})}$								
	= 0.5477 ∠ <i>MHN</i> = 56°47'	-							
(c)	$\sin x \cos x = \frac{1}{2\sqrt{2}}$	3	1 for sin2x equation						
	$2\sin x \cos x = \frac{1}{\sqrt{2}}$		$ \begin{array}{c} 1 \text{ for} \\ 2x = 45^{\circ} \end{array} $						
	$\sin 2x = \frac{1}{\sqrt{2}}$ Acute value $2x = 45^{\circ}$ For $0 \le 2x \le 720$		1 for all 4 solutions.						
	2x = 45°,135°,405°,495°								
	$x = 22.5^{\circ}, 67.5^{\circ}, 202.5^{\circ}, 247.5^{\circ},$	<u> </u>							

Ques	tion 3 Preliminary Examination - Extension 1	2008		
Part	Solution	Marks	Comment	
(d)	i) $\sqrt{2}\sin x + \cos x$ $\tan^{-1} \alpha = \frac{1}{\sqrt{2}} \text{and} r = \sqrt{\sqrt{2}^2 + 1^2}$	2	1 for value of r 1 for α	
	$\alpha = 35^{\circ}16' \qquad r = \sqrt{3}$ $\sqrt{2}\sin x + \cos x = \sqrt{3}\sin(x + 35^{\circ}16')$		1.6	
	$ ii\rangle \sqrt{2}\sin x + \cos x = 1 \sqrt{3}\sin(x + 35^{\circ}16^{\circ}) = 1$	2	1 for solution acute value only	
	$\sin(x+35^{\circ}16') = \frac{1}{\sqrt{3}} (\text{In 1st and 2nd quadrants})$ Acute value for $(x+35^{\circ}16') = 35^{\circ}16'$ For $35^{\circ}16' \le x+35^{\circ}16' \le 395^{\circ}16'$		2 for final set of solutions Or deduct 1 if missing a value.	
	$(x+35^{\circ}16') = 35^{\circ}16', 180^{\circ} - 35^{\circ}16', 360^{\circ} + 35^{\circ}16'$ $x=0^{\circ}, 109^{\circ}28', 360^{\circ}$			

Que	estion 4 Preliminary Examination - Extension 1	8008	
Par	Solution	Marks	Comment
(a)	$x^{2} + 8x + y^{2} - 12y + 27 = 0$ $x^{2} + 8x + 16 + y^{2} - 12y + 36 = -27 + 16 + 36$ $(x+4)^{2} + (y-6)^{2} = 25$ Centre (-4, 6), radius 5	2	1 for rearranging equation 1 for radius and centre
(b)	$x^{2}-12y+2x+25=0$ $x^{2}+2x+1=12y-24$ $(x+1)^{2}=4.3.(y-2)$ Vertex at (-1, 2) focal length 3	3	1 each for correct placement of focus, directrix and vertex.
. ,	y 15 10 Focus S (-1,5) Vertex 15 P(-1,2)		direction of parabola incorrect.
(c)	i) $x = 6t$, $y = 3t^2$ $a = 3$	1	
	Cartesian equation $x^2 = 4ay$ $x^2 = 12y$		
	ii) Where $t = 3$ $x = 18$ $y = 27$ Focus $(0, 3)$ Gradient = $\frac{27 - 3}{18 - 0} = \frac{24}{18} = \frac{4}{3}$ Equation $y = \frac{4}{3}x + 3$	1	Any form of equation okay.
	4x - 3y + 9 = 0		

Que	stion 4 Preliminary Examination - Extension 1 2	800	
Part	Solution	Marks	Comment
(d)	iii) $x^{2} = 12y$ $y = \frac{x^{2}}{12}$ $\frac{dy}{dx} = \frac{2x}{12} = \frac{x}{6}$ At $(18, 27) \frac{dy}{dx} = \frac{18}{6} = 3$ Equation $y - 27 = 3(x - 18)$ $y - 27 = 3x - 54$ $y = 3x - 27$ $P(x, y) A(2, -3) B(-4, 12).$ $AP = 2PB$ $\sqrt{(x - 2)^{2} + (y + 3)^{2}} = 2\sqrt{(x + 4)^{2} + (y - 12)^{2}}$ $(x - 2)^{2} + (y + 3)^{2} = 4\left[(x + 4)^{2} + (y - 12)^{2}\right]$ $x^{2} - 4x + 4 + y^{2} + 6y + 9 = 4\left[x^{2} + 8x + 16 + y^{2} - 24y + 144\right]$ $x^{2} - 4x + 4 + y^{2} + 6y + 9 = 4x^{2} + 32x + 64 + 4y^{2} - 96y + 576$ $3x^{2} + 36x + 3y^{2} - 102y + 627 = 0$ $x^{2} + 12x + y^{2} - 34 + 209 = 0$	2	Accept any version of equation
(e)	$x = 3p - 2$ $x + 2 = 3p$ $\frac{x + 2}{3} = p$ $3p^{3} = 2 - y$ $\left(\frac{x + 2}{3}\right)^{3} = p^{3}$ $\frac{2 - y}{3} = \left(\frac{x + 2}{3}\right)^{3}$ $\frac{2 - y}{3} = \frac{(x + 2)^{3}}{27}$ $18 - 9y = (x + 2)^{3}$	2	Other expanded forms of equation are okay, as are all those shown for 2 marks. 1 mark for any partial solution that shows the right idea

Quest	tion 5	2008		
Part	Solution		Marks	Comment
(a)	The following	$(x^3 - 2x^2)^{\frac{1}{2}}$ $(x^3 - 2x^2)^{\frac{1}{2}}(3x^2 - 4x) + (x^3 - 2x^2)^{\frac{1}{2}}(2x - 2)$ g is not required but provided in case students give this answer. $\frac{(x^2 - 4x)}{2x^2} + (2x - 2)\sqrt{x^3 - 2x^2}$	1	Mark for completing the differentiation, no extra for simplifying
	L-	$\frac{\left(x^{4}-2x^{2}\right)^{\frac{1}{3}}}{\left(x^{3}-2x^{2}\right)^{\frac{1}{3}}} = \frac{d}{dx} \left[\frac{x^{\frac{4}{3}}}{\left(x^{3}-2x^{2}\right)^{\frac{1}{3}}} \right]$ $= \frac{(x^{2})^{\frac{1}{3}} \cdot \frac{4}{3}x^{\frac{1}{3}} - x^{\frac{4}{3}} \cdot \frac{1}{3}\left(x^{3}-2x^{2}\right)^{\frac{2}{3}} \left(3x^{2}-4x\right)}{\left(x^{3}-2x^{2}\right)^{\frac{2}{3}}}$	2	2 for use of both quotient and chain rules correctly. Deduct 1 if simple errors made on the way.
(b)	P(-1) = 1-a-b = 1 $P(2) = 2$ $34-4a+$	$(2)^{4} - a(2)^{2} + b(2) - 1 = -3$ $2b = 0 \qquad \dots (1)$ $2b = 0 \qquad \dots \dots (2)$ $0 \qquad \dots \dots (1) + (2)$ $= 0$	3	I for substitution and I each for solving simultaneously to give each value.

	1.	1	
(c)	(i)	1	
ŀ	$f(3) = (3)^3 + 3(3)^2 - 9(3) - 27$	ĺ	
	= 27 + 27 - 27 - 27 = 0		
	$\therefore x-3$ is a factor of $f(x)$		
	ii)	2	2 for finding
	$x^2 + 6x + 9$		full set of intercepts.
	$\begin{cases} x^2 + 6x + 9 \\ x - 3)x^3 + 3x^2 - 9x - 27 \end{cases}$		-
	x^3-3x^2		1 if one root only found.
	$6x^2 - 9x$		
	$6x^2 - 18x$		
	9x-27		
	9x-27		
	Or by using the factor theorem and testing other values.		
	$x^2 + 6x + 9 = (x+3)^2$		
	$f(x) = (x-3)(x+3)^2$		
	Intercepts with x axis $x = 3$ and double root at $x = -3$		
(d)	$x^3 - 3x + 1 = 0$	1	
	i) $\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a} = -3$		
*	ii)	1	
	$\alpha + \beta + \gamma = \frac{-b}{a} = 0$		
	$\alpha^{2} + \beta^{2} + \gamma^{2} = (\alpha + \beta + \gamma)^{2} - 2(\alpha\beta + \beta\gamma + \gamma\alpha)$		
	$=0^2-2(-3)$		
	= 6 iii)		
	iii)	1	
	$\alpha\beta\gamma = \frac{-d}{a} = -1$		
	$1 1 1 \alpha\beta + \beta\gamma + \gamma\alpha$		
	$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\alpha\beta + \beta\gamma + \gamma\alpha}{\alpha\beta\gamma}$		
	$=\frac{-3}{-1}$		
	<u> </u>		
	=3	l	