WESTERN REGION

2011 Preliminary Course FINAL EXAMINATION

Mathematics Extension 1

General Instructions

- o Reading Time 5 minutes.
- o Working Time $1\frac{1}{2}$ hours.
- o Write using a blue or black pen.
- o Board Approved calculators may be used.
- o A table of standard integrals is provided at the back of this paper.
- o All necessary working should be shown for every question.
- o Begin each question on a fresh sheet of paper.

Total marks (60)

- o Attempt Questions 1-5.
- o All questions are of equal value.

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\cos ax \, dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$$

NOTE:
$$\ln x = \log_e x$$
, $x > 0$

Ques	stion 1	(12 Marks)	Use a Separate Sheet of paper	Marks	Questio	on 2 (12 Ma
a)			takes an angle of 60° to the positive x axis. ient of this tangent.	2	,	Georgina skis a notices a ski lif
b)	Facto	rise $(x+3)^3+(y)^3$	-4) ³	2		29°. After skii 320° with an a Find the height
c)	Find .	a and b if $\frac{\sqrt{7}-}{-2+3}$	$\frac{5}{a} = a + b\sqrt{7}$	2		(Hint: Use the
0)	I IIIG	-2+3	√7 - u + 0 √ ,		b)	Find the exact
d)	i)	Show that $\frac{x^3+}{}$	$\frac{2x^2 - 3}{x^3} = 1 + \frac{2}{x} - \frac{3}{x^3}$	1	c)	Find the genera
	ii)	Hence find lir	$\lim_{\infty} \frac{x^3 + 2x^2 - 3}{x^3}$	1	d)	Solve 6sin θ+
e)	Find 1		gree the acute angle between the lines	2		Write $\sec heta$ in
f)	Divid	le the interval P(-	4, 3) and O(8,7) in the ratio 3:4 externally.	2		

End of Question 1

Ques	stion 2 (12 Mar	ks) Use a Separate Sheet of paper	Marks
a)	notices a ski lift 29°. After skiin 320° with an an	ong a straight snow trail. At one point along the trail she station on a bearing of 047° with an angle of elevation g 350m along the trail the station is now on a bearing of egle of elevation of 19°. of the ski lift station correct to the nearest metre, osine rule)	of 3
b)	Find the exact va	alue of cos15° sin15°	2
c)	Find the general		2
	3	$\tan^2\theta - 1 = 0$	
d)	Solve $6\sin\theta + 8$	$\cos \theta = 4 \text{ for } 0^{\circ} \le \theta \le 360^{\circ}$	3
e)	Write $\sec \theta$ in to	erms of t where $t = \tan \frac{\theta}{2}$	2

End of Question 2

2011 Preliminary Final Examination

Question 3 (12 Marks)

Use a Separate Sheet of paper

Marks

a) Two chords AB and CD intersect at point P outside the circle. Prove that $\triangle APC \parallel \triangle DPB$

b) MN is the diameter of the circle below:

Find a, b, c giving reasons.

- c) Differentiate and simplify the following:
 - i) $(3x^2 + 2x)^{1}$

2

3

 $ii) \qquad \frac{2x^2}{\sqrt{(x^2-4)^2}}$

4

End of Question 3

Ques	tion 4	(12 Marks)	Use a Separate Sheet of paper	Marks
a)	Given	the parabola $x = 4t^2$	and $y = 8t$, find	
	i) ii) iii) iv)	the focus the directrix	ion of this parabola on the Cartesian axes, showing the directrix, vertex	1 1 1
b)	Find t	he equation of the no	ormal to the parabola $x^2 = 12y$ at the point $x = -2$.	2
c)	Find t	he remainder R(x) w	hen $P(x) = x^5 - 3x^3 + 2x$ is divided by $Q(x) = x^2 - 4$	2
d)	If α , β . Find:	β, γ are the roots of β	$3x^3 - 4x^2 + 7x - 11 = 0$	
	i)	$\alpha + \beta + \gamma$		1
	ii)	αβγ		1
	iii)	$(\alpha+1)(\beta+1)(\gamma+1)$		1

End of Question 4

Questi	on 5	(12 Marks)	Use a Se	parate Sheet of paper		Marks
a)	How n	nany arrangements	s of the letters	of the word Woolloomooloo	are possible?	1
b)	9 stude	ents are to sit arou	nd a circular t	able.		
	i) ii)	How many ways John and Casey row?		eated? gether. How many ways can tl	ney be seated	1 1
c)		nith wants to find if there are 17 boy		y ways 4 boys and 3 girls can in her class.	be arranged in	1
d)		•		at Westburg High School to se lts are listed below:	e what type	
		Type of Mobile	Phone	Number of Students		
		i-phone		3		
		Motorola	•	8		
		Nokia		10		
		Samsung		15		
	i) ii)		had two pho	chan one phone? nes each had a Motorola and a erson just had one Nokia phor		1
e)	Solve	$\frac{x-7}{x+4} < 3$				3
f)	Prove	by Mathematical I	nduction that:	$\sum_{r=1}^{n} r^3 = \frac{n^2}{4} (n+1)^2$		3

End of Examination

WESTERN REGION

2011 Preliminary Final EXAMINATION

Mathematics Extension 1

SOLUTIONS

Quest	Question 1 Preliminary Final Examination - Mathematics Extension 1					
Part	Solution	Marks	Comment			
a)	$\tan \theta = m$	2				
	$\tan 60^{\circ} = m$		1			
	_					
	30° 2					
	$\sqrt{3}$					
	60°					
	•		1			
1\	$m = \sqrt{3}$					
b)	$(x+3)^3 + (y-4)^3$	2				
	Using $(a+b)^3 = (a+b)(a^2 - ab + b^2)$		1			
	Let $a = (x+3)$					
	b = (y - 4)					
	$(x+3)^3+(y-4)^3$					
	$= [x+3+(y-4)][(x+3)^2-(x+3)(y-4)+(y-4)^2]$					
	$= (x+y-1)(x^2+6x+9-xy+4x-3y+12+y^2-8y+16)$		1			
	$= (x+y-1)(x^2+10x+y^2-11y-xy+37)$					
c)	$\frac{\sqrt{7}-5}{-2+3\sqrt{7}} \times \frac{-2-3\sqrt{7}}{-2-3\sqrt{7}}$	2				
	$=\frac{-2\sqrt{7}-21+10+15\sqrt{7}}{4-63}$		1			
	1 03					
	$=\frac{13\sqrt{7}-11}{-59}$					
	`─⊃У 11 12 / 7					
	$=\frac{11-15\sqrt{7}}{59}$					
	$= \frac{11 - 13\sqrt{7}}{59}$ $a = \frac{11}{59}, b = \frac{-13}{59}$		1			

Question 1 Preliminary Final Examination - Mathematics Extension 1				
Part	Solution	Marks	Comment	
d)	i) $\frac{x^3 + 2x^2 - 3}{x^3} = \frac{x^3}{x^3} + \frac{2x^2}{x^3} - \frac{3}{x^3}$ $= 1 + \frac{2}{x} - \frac{3}{x^3}$	1	1	
•	ii) $\lim_{x \to \infty} \frac{x^3 + 2x^2 - 3}{x^3}$ $= \lim_{x \to \infty} 1 + \frac{2}{x} - \frac{3}{x^3} \text{(since } \lim_{x \to \infty} \frac{1}{x} = 0\text{)}$	1		
			1	
е)		2	1 for gradients	
f)	$\left(\frac{mx_2 + nx_1}{m + n}, \frac{my_2 + ny_1}{m + n}\right)$	2	1	
	$= \left(\frac{3 \times 8 + -4 \times 4}{3 - 4}, \frac{3 \times 7 + -4 \times 3}{3 - 4}\right)$ $= (-40, -9)$	/12	1	
<u> </u>		/14		

Quest	Question 2 Preliminary Final Examination - Mathematics Extension 1					
Part	Solution	Marks	Comment			
a) .	Diagram at the end of the solutions	3	**************************************			
	$\tan 19^{9} = \frac{h}{x} \tan 29^{9} = \frac{h}{y}$					
	$x = \frac{h}{\tan^{10^{\circ}}} y = \frac{h}{\tan^{20^{\circ}}}$ $d^{2} = b^{2} + c^{2} - 2b\cos A$		1			
	$350^{2} = \left(\frac{h}{\tan 19^{\circ}}\right)^{2} + \left(\frac{h}{\tan 29^{\circ}}\right)^{2} - 2 \times \frac{h}{\tan 19^{\circ}} \times \frac{h}{\tan 29^{\circ}} \cos 87^{\circ}$		-			
	$350^{2} = \frac{(\tan 29^{\circ})^{2} h^{2} + (\tan 19^{\circ})^{2} h^{2} - 2h^{2} (\tan 19^{\circ}) (\tan 29^{\circ}) \cos 87^{\circ}}{(\tan 19^{\circ})^{2} (\tan 29^{\circ})^{2}}$		1			
	$350^{2}(\tan 19^{2})^{2}(\tan 29^{2})^{2} = \mathcal{H}\left[(\tan 29^{2})^{2} + (\tan 19^{2})^{2} - 2(\tan 19^{2})(\tan 29^{2})\cos 87^{2}\right]$ $350^{2}(\tan 19^{2})^{2}(\tan 29^{2})^{2}$	•				
	$h^2 = \frac{350^2 (\tan 19^2)^2 (\tan 29^2)^2}{\left[(\tan 29^2)^2 + (\tan 19^2)^2 - 2(\tan 19^2) (\tan 29^2) \cos 87^2 \right]}$					
	$h^2 = 10995.80$ h = 105m					
			1			
b)	$\sin 2x = 2\sin x \cos x$ $\cos 15^{\circ} \sin 15^{\circ}$	2				
	$=\frac{1}{2}2\sin 15^{\circ}\cos 15^{\circ}$		1			
	$= \frac{1}{2}\sin(2\times15)^{\circ}$ $= \frac{1}{2}\sin 30^{\circ}$					
	$= \frac{1}{2} \sin 30^{\circ}$ $= \frac{1}{2} \times \frac{1}{2}$					
	$\begin{array}{ccc} 2 & 2 \\ = \frac{1}{4} \end{array}$		1			

Quest	ion 2 Preliminary Final Examination - Mathematics Extension		2011
Part	Solution	Marks	Comment
c)	$3\tan^2\theta - 1 = 0$	2	
	$3\tan^2\theta=1$		
	$\tan^2\theta = \frac{1}{3}$		
	$\tan \theta = \pm \sqrt{\frac{1}{3}}$		
	$\tan\theta = \pm \frac{1}{\sqrt{3}}$		
	$\theta = 30^{\circ}$		1
	∴ general solution $\theta = 180n + 30^{\circ}$		1
d)	$6\sin\theta + 8\cos\theta = 4 \text{ for } 0^{\circ} \le \theta \le 360^{\circ}$	3	and the contract of the contract of the contract of
	$a\sin\theta + b\cos\theta = r\sin(\theta + \alpha)$		
	8 10 α 6		
	$r = \sqrt{6^2 + 8^2}$		
	r = 10		
	$\tan \alpha = \frac{8}{6}$		
	$\alpha = 53^{\circ}08'$		1
	$10\sin(\theta + 53^{\circ}08') = 4$		
	$\sin(\theta + 53^{\circ}08') = \frac{4}{10}$	-	
	$Let \ x = \sin(\theta + 53^{\circ}08')$		
	$\sin x = \frac{4}{10}$		1
	$x = 23^{\circ}35^{\circ}$		
	x = 23°35',180° - 23°35',360° + 23°35',540° - 23°35'		
	x = 23°35',156°25',383°35',516°25'	:	
	θ + 53°8' = 23°35',156°25',383°35',516°25'		
	$\theta = 103^{\circ}17',330^{\circ}27' \text{ as } 0 \le \theta \le 360^{\circ}$		1
			

Ques	tion 2	Preliminary Final Examination - Mathematics Extension 1	2011
Part	Solution	Marks	Comment
e)	$\sec \theta = \frac{1}{\cos \theta}$		
	$\cos\theta = \frac{1-}{1+}$	<u>r</u>	1
	$\sec \theta = \frac{1+i}{1-i}$	$\frac{t^2}{t^2}$	1
		/12	

.

Part Solution A B A B Comm A B A A B A A B A A B A A	Ques	tion 3	Preliminary Final Examination - Mathematics Extension 1		2011
$\angle BPD = \angle APC. (common)$ $\angle PBD = \angle PCA \ (angles \ subtended \ at \ the \ circumference \ by \ the \ same \ arc \ are \ equal)$ $\angle PDB = \angle PAC \ (angle \ sum \ \Delta = 180^\circ)$ $\therefore \Delta APC \ \ \Delta DPB \ (AAA) \ equal \ angular$ $b)$ K $AMKN = 90^\circ (\angle in \ semi - circle = 90^\circ)$ $c^\circ = 180 - 90 - 51$ $= 39^\circ (angle \ sum \ \Delta = 180^\circ)$ $a^\circ = 180 - 51$ $= 129^\circ (angle \ sum \ \Delta = 180^\circ)$ $a^\circ = 180 - 100 - 39$ $= 41^\circ (opp \ \angle's \ in \ cyclic \ quad = 180^\circ)$ 1	Part	Solution		Marks	Commer
$\angle BPD = \angle APC \ (common)$ $\angle PBD = \angle PCA \ (angles \ subtended \ at \ the \ circumference \ by \ the \ same \ arc \ are \ equal)$ $\angle PDB = \angle PAC \ (angle \ sum \ \Delta = 180^\circ)$ $\therefore \Delta APC \parallel \Delta DPB \ (AAA) \ equal \ angular$ $b)$ K $APC \parallel \Delta DPB \ (AAA) \ equal \ angular$ $L \ a^\circ \qquad b^\circ c^\circ$ $L \ a^\circ \qquad b^\circ c^\circ$ $C^\circ = 180 - 90 - 51$ $= 39^\circ (angle \ sum \ \Delta = 180^\circ)$ $a^\circ = 180 - 51$ $= 129^\circ (opp \ \angle's \ in \ cyclic \ quad \ = 180^\circ)$ $b^\circ = 180 - 100 - 39$ $= 41^\circ (opp \ \angle's \ in \ cyclic \ quad \ = 180^\circ)$	a)		A B	3	
b) $ \begin{array}{c} \angle PDB = \angle PAC \ (angle \ sum \ \Delta = 180^\circ) \\ \therefore \triangle APC \parallel \Delta DPB \ (AAA) \ equal \ angular \end{array} $ $ \begin{array}{c} L \\ a^\circ \\ b^\circ c^\circ \end{array} $ $ \begin{array}{c} L \\ a^\circ \\ b^\circ c^\circ \end{array} $ $ \begin{array}{c} L \\ a^\circ \\ b^\circ c^\circ \end{array} $ $ \begin{array}{c} L \\ a^\circ \\ b^\circ c^\circ \end{array} $ $ \begin{array}{c} L \\ a^\circ \\ b^\circ c^\circ \end{array} $ $ \begin{array}{c} L \\ a^\circ \\ b^\circ c^\circ \end{array} $ $ \begin{array}{c} L \\ a^\circ \\ b^\circ c^\circ \end{array} $ $ \begin{array}{c} L \\ a^\circ \\ b^\circ c^\circ \end{array} $ $ \begin{array}{c} L \\ a^\circ \\ b^\circ c^\circ \end{array} $ $ \begin{array}{c} L \\ a^\circ \\ b^\circ c^\circ \end{array} $ $ \begin{array}{c} L \\ a^\circ \\ b^\circ c^\circ \end{array} $ $ \begin{array}{c} L \\ a^\circ \\ b^\circ c^\circ \end{array} $ $ \begin{array}{c} L \\ a^\circ \\ b^\circ c^\circ \end{array} $ $ \begin{array}{c} L \\ a^\circ \\ b^\circ c^\circ \end{array} $ $ \begin{array}{c} L \\ a^\circ \\ b^\circ c^\circ \end{array} $ $ \begin{array}{c} L \\ a^\circ \\ b^\circ c^\circ \end{array} $ $ \begin{array}{c} L \\ a^\circ \\ b^\circ c^\circ \end{array} $ $ \begin{array}{c} L \\ a^\circ \\ b^\circ c^\circ \end{array} $ $ \begin{array}{c} L \\ a^\circ \\ b^\circ c^\circ \end{array} $ $ \begin{array}{c} L \\ a^\circ \\ b^\circ c^\circ \end{array} $ $ \begin{array}{c} L \\ a^\circ \\ b^\circ c^\circ \end{array} $ $ \begin{array}{c} L \\ a^\circ \\ b^\circ c^\circ \end{array} $ $ \begin{array}{c} L \\ a^\circ \\ b^\circ c^\circ \end{array} $ $ \begin{array}{c} L \\ a^\circ \\ b^\circ c^\circ \end{array} $ $ \begin{array}{c} L \\ a^\circ \\ b^\circ c^\circ \end{array} $ $ \begin{array}{c} L \\ a^\circ \\ b^\circ c^\circ \end{array} $ $ \begin{array}{c} L \\ a^\circ \\ b^\circ c^\circ \end{array} $ $ \begin{array}{c} L \\ a^\circ \\ b^\circ c^\circ \end{array} $ $ \begin{array}{c} L \\ a^\circ \\ b^\circ \\ c^\circ \end{array} $ $ \begin{array}{c} L \\ a^\circ \\ c^\circ $ $ \begin{array}{c} L \\ a^\circ \\ c^\circ \end{array} $ $ \begin{array}{c} L \\ a^\circ \\ c^\circ $ $ \begin{array}{c} L \\ a^\circ \\ c^\circ $ $ \begin{array}{c} L \\ a^\circ \\ c^\circ \end{array} $ $ \begin{array}{c} L \\ a^\circ \\ c^\circ $ $ \begin{array}{c} L \\ a^\circ \\ c^\circ \end{array} $ $ \begin{array}{c} L \\ a^\circ \\ c^\circ $ $ \begin{array}{c} L \\ a^\circ \\ c^\circ \end{array} $ $ \begin{array}{c} L \\ a^\circ \\ c^\circ $ $ \begin{array}{c} L \\ a^$		∠BPD = ∠	APC (common) APCA (angles subtended at the circumference by the same		1
$ \angle MKN = 90^{\circ} (\angle \text{ in semi-circle} = 90^{\circ}) $ $ c^{\circ} = 180 - 90 - 51 $ $ = 39^{\circ} (\text{angle sum } \Delta = 180^{\circ}) $ $ a^{\circ} = 180 - 51 $ $ = 129^{\circ} (\text{opp } \angle \text{'s in cyclic quad} = 180^{\circ}) $ $ b^{\circ} = 180 - 100 - 39 $ $ = 41^{\circ} (\text{opp } \angle \text{'s in cyclic quad} = 180^{\circ}) $ $ 1$		1	$\angle PAC$ (angle sum $\Delta = 180^{\circ}$) $\triangle DPB$ (AAA) equal angular		1
$c^{\circ} = 180 - 90 - 51$ $= 39^{\circ} (angle \ sum \ \Delta = 180^{\circ})$ $a^{\circ} = 180 - 51$ $= 129^{\circ} (opp \ \angle's \ in \ cyclic \ quad = 180^{\circ})$ $b^{\circ} = 180 - 100 - 39$ $= 41^{\circ} (opp \ \angle's \ in \ cyclic \ quad = 180^{\circ})$	b)	∠MKN =	L a° 51° N M	3	
		c°=180- =39°(ang a°=180- =129°(opp b°=180- =41°(opp	$90-51$ le sum $\Delta = 180^{\circ}$) 51 $p \angle$'s in cyclic quad = 180°) $100-39$ \angle 's in cyclic quad = 180°)		1 4

Quest	tion 3 Preliminary Final Examination - Mathematics Extension 1		2011
Part	Solution	Marks	Comment
c)	i) $\frac{d}{dx}(3x^2 + 2x)^{10}$ $= 10(6x + 2)(3x^2 + 2x)^9$ $= (60x + 20)(3x^2 + 2x)^9$	2	2 either of these lines acceptable
 c)	ii) $u = 2x^2 \qquad v = \sqrt{(x^2 - 4)} = (x^2 - 4)^{\frac{1}{2}}$	2	1 for quotient rule
	$u' = 4x v' = \frac{1}{2} \times 2x (x^2 - 4)^{-\frac{1}{2}} = \frac{x}{\sqrt{(x^2 - 4)}}$ $\frac{d}{dx} \frac{2x^2}{\sqrt{(x^2 - 4)}}$ $= \frac{vu' - uv'}{v^2}$		
	$= \frac{4x(x^2 - 4)^{\frac{1}{2}} - 2x^2 \times \frac{x}{\sqrt{(x^2 - 4)}}}{\left(\sqrt{(x^2 - 4)}\right)^2}$ $= \frac{4x(x^2 - 4)^{\frac{1}{2}} - \frac{2x^3}{\sqrt{(x^2 - 4)}}}{x^2 - 4}$. •	
	$= \frac{4x(x^2 - 4) - 2x^3}{\sqrt{(x^2 - 4)}} \times \frac{1}{x^2 - 4}$ $= \frac{4x^3 - 16x - 2x^3}{(x^2 - 4)^{\frac{3}{2}}}$		1
	$=\frac{2x^3 - 16x}{\sqrt{(x^2 - 4)^3}}$	11.0	
1		/12	

Quest	tion 4 Preliminary Final Examination - Mathematics Exte	ension 1	2011
Part	Solution	Marks	Comment
a)	$x = 4t^2$ (1) $y = 8t$ (2) i) $y = 8t$ $t = \frac{y}{8}$ (3) sub (3) into (1)	5	
	$x = 4 \times \left(\frac{y}{8}\right)^2$ $x = \frac{4y^2}{64}$		
	$x = \frac{y^2}{16} \text{ or } y^2 = 16x$ ii) $y^2 = 4ax$ $\therefore a = 4$ $focus = (a, 0)$ $= (4, 0)$ iii) Directrix		1
-	x = -a $x = -4$ iv) y $10 + y$ $5 + y$		2 if all parts shown 1 only if not labelled
·	-5 10 x		1 if correct but in wrong direction

	Quest	Question 4 Preliminary Final Examination - Mathematics Extension 1		2011
·	Part	Solution	Marks	Comment
·	b)	$x^2 = 12y$	2	
		$y = \frac{x^2}{12}$		
		$y' = \frac{2x}{12}$		
		$y' = \frac{x}{6}$		
		when $x = -2$		
		$y' = \frac{-2}{6}$		
		$y' = -\frac{1}{3}$		
		$m_1 m_2 = -1$ for normal		
		$-\frac{1}{3} \times m_2 = -1$		
		$m_2=3$		1
		when $x = -2$ $y = \frac{1}{3}$		
		$y - \frac{1}{3} = 3(x2)$		
		3y-1=9(x+2)		
4.000		3y-1=9x+18		1
		9x - 3y + 19 = 0		
	c)	$\frac{x^3 + x}{x^2 - 4 x^3 - 3x^3 + 2x}$	2	1 for division
		$x^5 - 4x^3$ $x^3 + 2x$		
		x^3-4x		
		6 <i>x</i>		
		R(x) = 6x		1 for answer

Ques	estion 4 Preliminary Final Examination - Mathematics Extension 1		2011	
Part	Solution	Marks	Comment	
d)	$3x^3 - 4x^2 + 7x - 11 = 0$ i) $x + b$	3		
	$\alpha + \beta + \gamma = -\frac{b}{a}$ $= -\frac{-4}{3}$			
	$=\frac{4}{3}$ ii)		1	
*	$\alpha\beta\gamma = -\frac{d}{a}$ $= -\frac{-11}{3}$	N. op 1988 on 19 18 19 19 19 19 19 19 19 19 19 19 19 19 19		
	$=\frac{11}{3}$		 1 - -	
	iii) $(\alpha+1)(\beta+1)(\gamma+1)$ $=(\alpha\beta+\alpha+\beta+1)(\gamma+1)$			
	$= \alpha\beta\gamma + \alpha\gamma + \beta\gamma + \gamma + \alpha\beta + \alpha + \beta + 1$ $= \alpha\beta\gamma + \alpha\gamma + \beta\gamma + \alpha\beta + \alpha + \beta + \gamma + 1$ $= -\frac{d}{a} + \frac{c}{a} + -\frac{b}{a} + 1$			
	$= \frac{1}{a} + $			
	$=\frac{25}{3}$ or $8\frac{1}{3}$	/12	1	
		/14		

Question 5 Preliminary Final Examination - Mathematics Extension 1			2011	
Part	Solution		Marks	Comment
a)	Arrangements of Woolloomooloo $= \frac{13!}{8! \times 3!}$ $= 25740$			1
b)	i) 8! = 40320 ii) John & Ca	0 ways usey sit together 7! × 2! = 10080 usey sit together 40320-10080 = 30240 ways	2	1
c)	$^{17}C_4 \times ^{13}C_3$		1	- 1
d)	, ,	4	2	1

Quest	ion 5 Preliminary Final Examination - Mathematics Extension 1		2011
Part	Solution	Marks	Comment
e)	$\frac{x-7}{x+4} < 3$ $(x+4)^2 \times \frac{x-7}{x+4} < 3(x+4)^2$ $(x+4)(x-7) < 3(x+4)^2$ $3(x+4)^2 - (x+4)(x-7) > 0$ $(x+4)[3(x+4) - (x-7)] > 0$ $(x+4)[3x+12-x+7] > 0$ $(x+4)(2x+19) > 0$	3	
-	x+4=0 $2x+19=0$		*
	$x = -42 x = -19$ $x \neq -4 x = -\frac{19}{2} = -9.5$ $Test$ $x = 0$ $x = -5 \times$ $x = -10$ $\therefore x < -9.5 or x > -4$		2 - 1 for each correct solution
			1 test and correct answer

Part Solution Step 1 - Prove true for $n = 1$ $1^3 = \frac{1^2}{4}(1+1)^2$ $1 = \frac{1}{4} \times 4$ $1 = 1$ $\therefore true for n = 1$ Step 2 - Assume true for $n = k$ $1^3 + 2^3 + 3^3 + \dots + k^3 = \frac{k^2}{4}(k+1)^2$ Step 3 - Prove true for $n = k+1$ $1^3 + 2^3 + 3^3 + \dots + k^3 + (k+1)^3 = \frac{(k+1)^2}{4}[(k+1)+1]^2$ $\frac{k^2}{4}(k+1)^2 + (k+1)^3 = \frac{(k+1)^2}{4}(k+2)^2$ LHS $= \frac{k^2}{4}(k+1)^2 + (k+1)^3$ $= (k+1)^2 \left[\frac{k^2}{4} + (k+1)\right]$ $= (k+1)^2 \left[\frac{k^2 + 4(k+1)}{4}\right]$ $= (k+1)^2 \left(\frac{k^2 + 4k + 4}{4}\right)$ $= \frac{(k+1)^2}{4}(k+2)^2$	Comment
$1^{3} = \frac{1^{2}}{4}(1+1)^{2}$ $1 = \frac{1}{4} \times 4$ $1 = 1$ $\therefore true for n = 1$ Step 2 - Assume true for $n = k$ $1^{3} + 2^{3} + 3^{3} + \dots + k^{3} = \frac{k^{2}}{4}(k+1)^{2}$ Step 3 - Prove true for $n = k+1$ $1^{3} + 2^{3} + 3^{3} + \dots + k^{3} + (k+1)^{3} = \frac{(k+1)^{2}}{4} [(k+1)+1]^{2}$ $\frac{k^{2}}{4}(k+1)^{2} + (k+1)^{3} = \frac{(k+1)^{2}}{4}(k+2)^{2}$ LHS $= \frac{k^{2}}{4}(k+1)^{2} + (k+1)^{3}$ $= (k+1)^{2} \left[\frac{k^{2}}{4} + (k+1)\right]$ $= (k+1)^{2} \left[\frac{k^{2} + 4(k+1)}{4}\right]$ $= (k+1)^{2} \left[\frac{k^{2} + 4(k+1)}{4}\right]$	Comment
$1 = \frac{1}{4} \times 4$ $1 = 1$ $\therefore true \ for \ n = 1$ Step 2 - Assume true for $n = k$ $1^{3} + 2^{3} + 3^{3} + \dots + k^{3} = \frac{k^{2}}{4}(k+1)^{2}$ Step 3 - Prove true for $n = k+1$ $1^{3} + 2^{3} + 3^{3} + \dots + k^{3} + (k+1)^{3} = \frac{(k+1)^{2}}{4} [(k+1)+1]^{2}$ $\frac{k^{2}}{4}(k+1)^{2} + (k+1)^{3} = \frac{(k+1)^{2}}{4}(k+2)^{2}$ LHS $= \frac{k^{2}}{4}(k+1)^{2} + (k+1)^{3}$ $= (k+1)^{2} \left[\frac{k^{2}}{4} + (k+1)\right]$ $= (k+1)^{2} \left[\frac{k^{2} + 4(k+1)}{4}\right]$ $= (k+1)^{2} \left(\frac{k^{2} + 4k + 4}{4}\right)$	
$1 = \frac{1}{4} \times 4$ $1 = 1$ $\therefore true \ for \ n = 1$ Step 2 - Assume true for $n = k$ $1^{3} + 2^{3} + 3^{3} + \dots + k^{3} = \frac{k^{2}}{4}(k+1)^{2}$ Step 3 - Prove true for $n = k+1$ $1^{3} + 2^{3} + 3^{3} + \dots + k^{3} + (k+1)^{3} = \frac{(k+1)^{2}}{4} [(k+1)+1]^{2}$ $\frac{k^{2}}{4}(k+1)^{2} + (k+1)^{3} = \frac{(k+1)^{2}}{4}(k+2)^{2}$ LHS $= \frac{k^{2}}{4}(k+1)^{2} + (k+1)^{3}$ $= (k+1)^{2} \left[\frac{k^{2}}{4} + (k+1)\right]$ $= (k+1)^{2} \left[\frac{k^{2} + 4(k+1)}{4}\right]$ $= (k+1)^{2} \left(\frac{k^{2} + 4k + 4}{4}\right)$	
1=1 $\therefore true \ for \ n=1$ Step 2 – Assume true for $n = k$ $1^3 + 2^3 + 3^3 + \dots + k^3 = \frac{k^2}{4}(k+1)^2$ Step 3 – Prove true for $n = k+1$ $1^3 + 2^3 + 3^3 + \dots + k^3 + (k+1)^3 = \frac{(k+1)^2}{4}[(k+1)+1]^2$ $\frac{k^2}{4}(k+1)^2 + (k+1)^3 = \frac{(k+1)^2}{4}(k+2)^2$ LHS $= \frac{k^2}{4}(k+1)^2 + (k+1)^3$ $= (k+1)^2 \left[\frac{k^2}{4} + (k+1)\right]$ $= (k+1)^2 \left[\frac{k^2 + 4(k+1)}{4}\right]$ $= (k+1)^2 \left(\frac{k^2 + 4k + 4}{4}\right)$	
Step 2 - Assume true for $n = k$ $1^{3} + 2^{3} + 3^{3} + \dots + k^{3} = \frac{k^{2}}{4}(k+1)^{2}$ Step 3 - Prove true for $n = k+1$ $1^{3} + 2^{3} + 3^{3} + \dots + k^{3} + (k+1)^{3} = \frac{(k+1)^{2}}{4}[(k+1)+1]^{2}$ $\frac{k^{2}}{4}(k+1)^{2} + (k+1)^{3} = \frac{(k+1)^{2}}{4}(k+2)^{2}$ LHS $= \frac{k^{2}}{4}(k+1)^{2} + (k+1)^{3}$ $= (k+1)^{2} \left[\frac{k^{2}}{4} + (k+1)\right]$ $= (k+1)^{2} \left[\frac{k^{2} + 4(k+1)}{4}\right]$ $= (k+1)^{2} \left(\frac{k^{2} + 4k + 4}{4}\right)$	
Step 2 – Assume true for $n = k$ $1^3 + 2^3 + 3^3 + \dots + k^3 = \frac{k^2}{4}(k+1)^2$ Step 3 – Prove true for $n = k+1$ $1^3 + 2^3 + 3^3 + \dots + k^3 + (k+1)^3 = \frac{(k+1)^2}{4}[(k+1)+1]^2$ $\frac{k^2}{4}(k+1)^2 + (k+1)^3 = \frac{(k+1)^2}{4}(k+2)^2$ LHS $= \frac{k^2}{4}(k+1)^2 + (k+1)^3$ $= (k+1)^2 \left[\frac{k^2}{4} + (k+1)\right]$ $= (k+1)^2 \left[\frac{k^2 + 4(k+1)}{4}\right]$ $= (k+1)^2 \left(\frac{k^2 + 4k + 4}{4}\right)$	
$1^{3} + 2^{3} + 3^{3} + \dots + k^{3} = \frac{k^{2}}{4}(k+1)^{2}$ Step 3 – Prove true for $n = k+1$ $1^{3} + 2^{3} + 3^{3} + \dots + k^{3} + (k+1)^{3} = \frac{(k+1)^{2}}{4}[(k+1)+1]^{2}$ $\frac{k^{2}}{4}(k+1)^{2} + (k+1)^{3} = \frac{(k+1)^{2}}{4}(k+2)^{2}$ LHS $= \frac{k^{2}}{4}(k+1)^{2} + (k+1)^{3}$ $= (k+1)^{2} \left[\frac{k^{2}}{4} + (k+1)\right]$ $= (k+1)^{2} \left[\frac{k^{2} + 4(k+1)}{4}\right]$ $= (k+1)^{2} \left(\frac{k^{2} + 4k + 4}{4}\right)$	1
Step 3 – Prove true for $n = k+1$ $1^{3} + 2^{3} + 3^{3} + \dots + k^{3} + (k+1)^{3} = \frac{(k+1)^{2}}{4} [(k+1)+1]^{2}$ $\frac{k^{2}}{4} (k+1)^{2} + (k+1)^{3} = \frac{(k+1)^{2}}{4} (k+2)^{2}$ LHS $= \frac{k^{2}}{4} (k+1)^{2} + (k+1)^{3}$ $= (k+1)^{2} \left[\frac{k^{2}}{4} + (k+1) \right]$ $= (k+1)^{2} \left[\frac{k^{2} + 4(k+1)}{4} \right]$ $= (k+1)^{2} \left(\frac{k^{2} + 4k + 4}{4} \right)$	
$1^{3} + 2^{3} + 3^{3} + \dots + k^{3} + (k+1)^{3} = \frac{(k+1)^{2}}{4} [(k+1)+1]^{2}$ $\frac{k^{2}}{4} (k+1)^{2} + (k+1)^{3} = \frac{(k+1)^{2}}{4} (k+2)^{2}$ LHS $= \frac{k^{2}}{4} (k+1)^{2} + (k+1)^{3}$ $= (k+1)^{2} \left[\frac{k^{2}}{4} + (k+1) \right]$ $= (k+1)^{2} \left[\frac{k^{2} + 4(k+1)}{4} \right]$ $= (k+1)^{2} \left(\frac{k^{2} + 4k + 4}{4} \right)$	
$1^{3} + 2^{3} + 3^{3} + \dots + k^{3} + (k+1)^{3} = \frac{(k+1)^{2}}{4} [(k+1)+1]^{2}$ $\frac{k^{2}}{4} (k+1)^{2} + (k+1)^{3} = \frac{(k+1)^{2}}{4} (k+2)^{2}$ LHS $= \frac{k^{2}}{4} (k+1)^{2} + (k+1)^{3}$ $= (k+1)^{2} \left[\frac{k^{2}}{4} + (k+1) \right]$ $= (k+1)^{2} \left[\frac{k^{2} + 4(k+1)}{4} \right]$ $= (k+1)^{2} \left(\frac{k^{2} + 4k + 4}{4} \right)$	
$\frac{k^2}{4}(k+1)^2 + (k+1)^3 = \frac{(k+1)^2}{4}(k+2)^2$ LHS $= \frac{k^2}{4}(k+1)^2 + (k+1)^3$ $= (k+1)^2 \left[\frac{k^2}{4} + (k+1) \right]$ $= (k+1)^2 \left[\frac{k^2 + 4(k+1)}{4} \right]$ $= (k+1)^2 \left(\frac{k^2 + 4k + 4}{4} \right)$	
LHS $= \frac{k^2}{4} (k+1)^2 + (k+1)^3$ $= (k+1)^2 \left[\frac{k^2}{4} + (k+1) \right]$ $= (k+1)^2 \left[\frac{k^2 + 4(k+1)}{4} \right]$ $= (k+1)^2 \left(\frac{k^2 + 4k + 4}{4} \right)$	
$= \frac{k^2}{4} (k+1)^2 + (k+1)^3$ $= (k+1)^2 \left[\frac{k^2}{4} + (k+1) \right]$ $= (k+1)^2 \left[\frac{k^2 + 4(k+1)}{4} \right]$ $= (k+1)^2 \left(\frac{k^2 + 4k + 4}{4} \right)$	1
$= (k+1)^{2} \left[\frac{k^{2}}{4} + (k+1) \right]$ $= (k+1)^{2} \left[\frac{k^{2} + 4(k+1)}{4} \right]$ $= (k+1)^{2} \left(\frac{k^{2} + 4k + 4}{4} \right)$	
$= (k+1)^{2} \left[\frac{k^{2} + 4(k+1)}{4} \right]$ $= (k+1)^{2} \left(\frac{k^{2} + 4k + 4}{4} \right)$	
$= (k+1)^2 \left(\frac{k^2 + 4k + 4}{4} \right)^{-1}$	
, ,	
$=\frac{(k+1)^2}{(k+2)^2}$	
4 ' '	1
= RHS	
\therefore if the formula is true for $n = k$, then it is true for $n = k + 1$	
We know the formula is true for $n=1$, so it must be true for	
n=2. If it is true for $n=2$ then it must be true for $n=3$ and so on.	
∴ it is true for any positive integer n	
/12	77

Question 2 (a) diagram

