WESTERN REGION

2008 Preliminary Course FINAL EXAMINATION

Mathematics

General Instructions

- o Reading Time 5 minutes.
- o Working Time 2 hours.
- o Write using a black or blue pen.
- o Board Approved calculators may be used.
- o A table of standard integrals is provided at the back of this paper.
- o All necessary working should be shown for every question.
- o Begin each question on a fresh sheet of paper.

Total marks (84)

- o Attempt Questions 1-7.
- o All questions are of equal value.

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx \qquad = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$$

NOTE:
$$\ln x = \log_a x$$
, $x > 0$

<u>Preliminar</u>	y Course 2008	Final Examination		Mathematics
Question	1 (12 Marks)	Use a Separate Sheet of par	per	Marks
a) If	$S = \frac{a}{1-r} \text{ find } s \text{ when } a$	$a=7, r=\frac{1}{3}.$		1
b) E	xpress the decimal 0.357	as a fraction in simplest form	ı.	1
	how that $\frac{3\sqrt{2} - 2\sqrt{3}}{3\sqrt{2} + 2\sqrt{3}}$ can and find a and b .	be expressed in the form $a + b$	√6	2
d) S	implify $\frac{ x+3 }{x^2-9}$ for $x \neq \pm 3$. :	2
e) Fa	actorise the following exp	pressions fully:		
i) ii)		y^2		1
f) S	implify $\frac{m^3 + m^2}{x^2 - x} \div \frac{m + 1}{x - x^3}$	as a single fraction in simplest	form.	1
i)	2			
ii	$3x^2 - x - 3 = 0$			2

End of Question 1.

Prelim	inary Co	urse 2008	Final Examination		Mathematics
Quest	tion 2	(12 Marks)	Use a Separate Sheet	of paper	Marks
a)	Expla functi		is neither an odd function r	nor an even	1
b)	If $f()$	$x) = 5x - x^2, \text{ find}$	$\frac{f(x+h)-f(x)}{h}$		2
c)	each.		e following, stating the dome		2
	ii) iii)	$x^{2} + y^{2} = 25$ $3(x+2) - y = 0$			2 2
d)		taneously: $(x+1)^2 + y^2 \le 4$	number plane where the follo	owing hold	3
	and	$y \le 2^x$ $y \ge 0$			

End of Question 2.

Question 3 continues on page 5

to the nearest degree?

Que	stion 3	(continued)	Marks
c)	Find	the exact value of tan(-150°).	1 :
d)	i)	Solve $2\cos\theta = -1$ for $0^{\circ} \le \theta \le 360^{\circ}$.	2
	ii)	Prove $(1-\cos\theta)(1+\sec\theta) = \sin\theta\tan\theta$.	2
		End of Question 3.	

Final Examination

Preliminary Course 2008

Hence or otherwise, find the bearing of Car B from Car A

<u>Preliminary</u>	Course 2008 Final Examination	Mathematics
Question	4 (12 Marks) Use a Separate Sheet of paper	Marks
The points	A(3,4), B(1,-6) and C(-5,2) are the vertices of a triangle.	
a)	Find the mid-point P of AB .	1
b)	Show that the equation of the line k joining A to C is $x-4y+13=0$	• 2
c) _,	Find the equation of the line l through P parallel to BC .	
d)	Find the point of intersection Q of the lines k and l .	2
e)	Show that Q is the mid-point of AC .	1
f)	Show that $PQ = \frac{1}{2}BC$	2
g)	Find the perpendicular distance from B to AC.	2

End of Question 4.

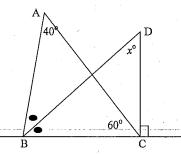
Preliminary Course 2008

Final Examination

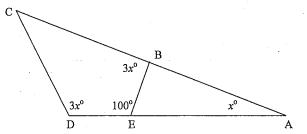
Mathematics

Question 5 (12 Marks)

Use a Separate Sheet of paper


Marks

1


2

3

In the figure, BD bisects $\angle ABC$, DC is perpendicular to BC, $\angle ACB = 60^{\circ} \angle BAC = 40^{\circ} \angle BDC = x^{\circ}$.

- i) Draw a neat sketch of the diagram.
- ii) Calculate x giving reasons for each step in your calculation.
- As shown in the figure, the points B and E lie on AC and DA respectively of ΔACD .

Use the information shown on the figure to find the value of x and hence find $\angle ACD$ in degrees. Give reasons for your answers.

Question 5 continues on page 9

Preliminary Course 2008		ourse 2008 Final Examination	Mathematics	
Que	stion 5	(continued)		Marks
c)	i)	Find the sum of the interior angles of a regular 11 sided polygon.		2
	ii)	How large is each exterior angle to the nearest minute?		1

In the figure below $\triangle ABC$ is isosceles where AB = AC.

If XB = YC, prove that $\triangle BCY \equiv \triangle BCX$ and hence that XC = YB.

End of Question 5.

<u>Prelimi</u>	nary Co	urse 2008	Final Examination		Mathen	natics
Quest	ion 6	(12 Marks)	Use a Separate S.	heet of paper		Mark
a)	Expre	2x + 2x - 3 in t	the form $A(x+1)^2 + B(x+1)^2$	(x+1)+C.		2
b)	Solve	$9^x - 10(3^x) + 9 = 0$).			2
c)	Find v	values of k for which	$ch x^2 + kx + 16 is positi$	ve definite.		2
d)	For th	the equation $2x^2 + x$	$c-3=0$ with roots α a	and β , find the val	ue	
NY INDRESEMBLE DESCRIPTION	i)	$\alpha + \beta$				1
	ii)	$\alpha \beta$				1
	iii)	$\frac{1}{\alpha} + \frac{1}{\beta}$				1
e)	For th	e parabola defined	1 by $x^2 + 4x - 8y + 12 =$	= 0, find the:		
	i)	Coordinates of th	he vertex.			1
	ii)	Coordinates of the	he focus.			1
	iii)	Equation of the o	directrix.			. 1

End of Question 6.

Preliminary	Course	2008
•		

Ques	tion 7	(12 Marks)	Use a Separate Sheet of paper		Marks
a)			he following: (You do not need to simplify ling the derivative.)		
	i)	$-4x^5 - 4x^3 + 11$,	1
	ii)	$\sqrt[5]{x^2}$			1
	iii)	$\frac{1}{x+3}$			1
b)	i)	Find $f'(2)$ for $f'(3)$	$f(x) = \left(3x^2 - 5x\right)^5.$		2
	ii)	If $y = \frac{2}{(x+1)^3}$ fi	$\frac{dy}{dx}$.		1
	iii)	Given $y = \frac{x^2 - 1}{x^2 + 1}$	$\frac{1}{1}$ find y' .		2

iv) Find
$$g'(x)$$
 if $g(x) = (x+2)^3(x-1)^4$.
Find the gradient of the curve $y = \frac{x}{x^2+1}$ at the origin and hence find the equation of the tangent to this curve at the origin.

End of Examination.

WESTERN REGION

2008 Preliminary Final EXAMINATION

Mathematics

SOLUTIONS

Part	Solution		uestion 1 Preliminary HSC Examination- Mathematics				
	Solution			Marks	Comment		
(a)	$S = \frac{a}{1-r}$	1		1			
	$S = \frac{7}{1 - \frac{1}{3}}$						
	$S = 10\frac{1}{2}$						
(b)	Let $x = 0.3$	<u>5</u> 7	Let $x = 0.357$	1			
	100x = 35.	757 -	10x = 3.57				
	x = 0.3	5 7	1000x = 357.57				
	-99x = 35.	4	990x = 354				
	$x = \frac{354}{990}$		$x = \frac{354}{990}$				
(1)	$x = \frac{59}{165}$		$x = \frac{59}{165}$				
(c)	$=\frac{(3\sqrt{2}-2)}{18-1}$	$\frac{3\sqrt{2} - 2\sqrt{3}}{3\sqrt{2} - 2\sqrt{3}}$ $\frac{\sqrt{3})^2}{2}$		2			
	$= \frac{18 - 6\sqrt{6}}{6}$ $= \frac{30 - 12}{6}$				1 for multiplying correctly.		
	$=\frac{\cancel{6}(5-2)}{\cancel{6}}$	<u>/6)</u>			1 for finding a and b		
	$=5-2\sqrt{6}$	11. 0					
	$\therefore a = 5$ and	1 <i>D</i> = −∠					
		W			1.		

Quest	ion 1 Preliminary HSC Examination- Mathematics	2008	
Part	Solution	Marks	Comment
(d)	$\frac{ x+3 }{x^2-9} = \frac{(x \cancel{*} 3)}{(x \cancel{*} 3)(x-3)} \text{ if } x+3>0 \text{or } \frac{-(x \cancel{*} 3)}{(x \cancel{*} 3)(x-3)} \text{ if } x+3<0$ $= \frac{1}{x-3} \text{ if } x>-3 \qquad = \frac{-1}{x-3} \text{ if } x<-3$	2	Only 1 if both cases not considered 2 marks for full solution
(e)	i) $8-27d^3$ = $(2-3d)(4+6d+9d^2)$ ii)	1	
	$mx^{2} + my^{2} - nx^{2} - ny^{2}$ $= m(x^{2} + y^{2}) - n(x^{2} + y^{2})$ $= (x^{2} + y^{2})(m - n)$	1	
(f)	$\frac{m^{3} + m^{2}}{x^{2} - x} \div \frac{m+1}{x - x^{3}}$ $= \frac{m^{2}(m+1)}{x(x-1)} \times \frac{-x(x^{2} - 1)}{m+1}$ $= \frac{m^{2}(m \times 1)}{x(x-1)} \times \frac{-x(x+1)(x-1)}{m \times 1}$ $= -m^{2}(x+1)$	1	

Quest	Question 1 Preliminary HSC Examination- Mathematics		2008	
Part	Solution		Marks	Comment
(g)	i)	-	1	
	$\frac{3x-2}{2}-5$	= 4		
	$\frac{3x-2}{2} = 9$			
	3x-2=18			
	3x = 20			
	$x = \frac{20}{3}$		-	
	ii) $3x^2 - x - 3$	=0	2	
***************************************	=1±√	$\frac{(-1)^2 - 4 \times 3 \times -3}{2 \times 3}$	The second secon	1 for sub in formula
	$=\frac{1\pm\sqrt{1+3}}{6}$	<u>36</u>		1 for
i	$=\frac{1\pm\sqrt{37}}{6}$			simplifying

Question 2 Preliminary HSC Examination- Math		Preliminary HSC Examination- Mathematics	2008	
Part	Solution		Marks	Comment
(a)	$f(x) = 3^x$ $f(-x) = 3$		1	
	f(-x) = 3)_x		
	$=\frac{1}{3^x}$			
	$\neq f(x)$ or	-f(x)		
	∴ the fun	ction is neither.		
(b)	f(x) = 5	$x-x^2$	2	
		$=5(x+h)-(x+h)^2$		1
	$=\frac{5x+5h}{}$	$\frac{1-x^2-2xh-h^2-5x+x^2}{h}$. :	
	$=\frac{\cancel{h}(5-2)}{\cancel{h}}$	<u>x-h)</u>	Armonic North distance (% %	- M. M M M M M M M
	=5-2x-	h		1

Ques	tion 2 Preliminary HSC Examination- Mathematics	2008	
Part	Solution	Marks	Comment
(c)	1) 10 10 10 10 10 10 10 10 10 10 10 10 10	2	1 for graph 1 for domain and range, if either wrong, no mark.
•	Domain: All real x ; $x \neq 0$ Range: All real y ; $y \neq 0$ ii)		
	Domain: $-5 \le x \le 5$	2	1 for graph 1 for domain and range, if either wrong, no mark.
	Range: $-5 \le y \le 5$ iii) Domain: All real x Range: All real y	2	1 for graph 1 for domain and range, if either wrong, no mark.

		Preliminary HSC Examination- Mathematics	2008	
Part	Solution		Marks	Comment
(d)	4	y 4 -2 2 4 x	3	2 for correct graphs 1 for correct region shaded
		4		

Ques	ion 3 Preliminary HSC Examination- Mathematics	2008	
Part	Solution	Marks	Comment
(a)	i) P_1 2000m P_2 15^0 165^0 10^0 h m R	1	
-	ii) $ \frac{P_2T}{\sin 165^\circ} = \frac{2000}{\sin 5^\circ} $ $ P_2T = \frac{2000 \times \sin 165^\circ}{\sin 5^\circ} = 5939.2 $ $ \sin 10^\circ = \frac{h}{P_2T} $ $ h = P_2T \sin 10^\circ $ $ h = \begin{bmatrix} 2000 \times \sin 165^\circ \\ 2000 \times \sin 165^\circ \end{bmatrix} \times \sin 10^\circ \approx 5939.2 \times \sin 10^\circ $	2	1 for finding P_2T (or P_1T) 1 for finding height using either P_1T or
	$h = \left[\frac{2000 \times \sin 165^{\circ}}{\sin 5^{\circ}}\right] \times \sin 10^{\circ} \approx 5939.2 \times \sin 10^{\circ}$ $h = 1031 \text{m}$		P_2T . Don't take a
			mark off for any
			rounding.

Ques	Question 3 Preliminary HSC Examination- Mathematics		2008	
Part	Solution		Marks	Comment
(b)	i)	I 6.3 km Car A 4.2 km Car B	1	
	1 '	$a^{2} + b^{2} - 2bc \cos A$ $3^{2} + 4.2^{2} - 2 \times 6.3 \times 4.2 \cos 72^{\circ}$	1	
	$\frac{\sin \theta}{\sin \theta} = \frac{\sin \theta}{\sin \theta}$	$\frac{4}{b} = \frac{\sin B}{b}$	2	
	$\theta = 38^{\circ}3$ $\theta = 39^{\circ}$	7'	-	1 for finding angle
٠	∴ 270°-	39° = 231°		
	∴ Bearin	g of Car B from Car A is 231°T		1 for bearing
(c)	tan(-150	$(2)^{\circ} = \tan 210^{\circ}$ = $\tan 30^{\circ}$	1	
		$=\frac{1}{\sqrt{3}}$		

Question 3	Question 3 Preliminary HSC Examination- Mathematics 2		
Part Solu	ntion ·	Marks	Comment
1	$\cos \theta = -1 \qquad 0^{\circ} \le \theta \le 360^{\circ}$ $\theta = \frac{-1}{2}$	2	1 for acute value
1 1	$60^{\circ} = \frac{1}{2}$ and $\cos \theta$ is negative in quad 2 & 3 =180° -60°=120°		1 for solution
1 1	180°+60°=240°		
∴θ	=120°,240°		
ii) ($(1 + \cos \theta)(1 + \sec \theta) = \sin \theta \tan \theta$	2	
	$+\sec\theta - \cos\theta - \cos\theta \sec\theta$		1 for
=1-	$+\sec\theta - \cos\theta - \cos\theta \times \frac{1}{\cos\theta}$,	expansion
= 1/	$+\sec\theta-\cos\theta-1$		
I I	$\frac{1}{\cos \theta} - \cos \theta$		1.6
$=\frac{1}{2}$	$-\cos^2\theta$ $\cos\theta$		1 for proof using any
_ <u>si</u>	$\sin^2 \theta$		method.
c	$\cos heta$		
= si	$n\theta \times \frac{\sin \theta}{\cos \theta}$		
	$n\theta$ $\tan\theta$		
=R	HS		
	· .		

Quest	tion 4 Preliminary HSC Examination- Mathematics	2008			
Part	Solution	Marks	Comment	,	
(a)	Midpt = $\left(\frac{3+1}{2}, \frac{4+-6}{2}\right)$ P = (2,-1)	1	·		
(b)	Equation AC	2			
	$m = (\frac{2-4}{-5-3})$ $m = \frac{-2}{-8}$			- -	
	$m = \frac{1}{4}$ $m = \frac{1}{4} \& \text{ pt } A(3,4)$ $y - y_1 = m(x - x_1)$ $y - 4 = \frac{1}{4}(x - 3)$		1 for gradient		- -
	4y - 16 = x - 3 $x - 4y + 13 = 0$		1 for equation		
(c)	$m_{BC} = (\frac{26}{-5 - 1})$ $m = \frac{8}{-6}$ $m_{BC} = -\frac{4}{3}$ $m_{BC} = -\frac{4}{3}$	2			
	$m_1 = m_2$ lines parallel $m_1 = -\frac{4}{3}$ & pt $P(2,-1)$ $y - y_1 = m(x - x_1)$		1 for gradient of parallel lines		
	$y1 = -\frac{4}{3}(x-2)$ $3y+3 = -4x+8$ $4x+3y-5=0$		1 for equation		

	tion 4 Preliminary HSC Examination- Mathematics	2008	
Part	Solution	Marks	Comment
(d)	Equation _k : $x-4y+13=0$	2	
	Equation ₁ : $4x+3y-5=0$		
	x = 4y - 13 from (1)		
	sub into (2)		,
	4(4y-13)+3y-5=0		-
	16y - 52 + 3y - 5 = 0		
	19y - 57 = 0		
	19y = 57		
	<i>y</i> = 3		
	sub into (2)		
	$-4x+3\times3-5=0$		
	4x + 9 - 5 = 0		
	4x + 4 = 0		
	4x = -4		
	x = -1		1 for x and 1
	$\therefore Q = (-1,3)$		for y
(e)	$Midpt_{AC}\left(\frac{3+-5}{2},\frac{4+2}{2}\right)$	1	
(0)	2 , 2)		
	$=\left(\frac{-2}{2},\frac{6}{2}\right)$		'
	(/		
	$Midpt_{AC} = (-1,3) = Q$		
(f)	$PQ = \frac{1}{2}BC$		
(*)	2	2	
	$d_{PQ} = \sqrt{(31)^2 + (-1-2)^2}$		1 for each
	$=\sqrt{16+9}$		distance PQ and BC.
	= 5units		
	$d_{BC} = \sqrt{(2 - 6)^2 + (-5 - 1)^2}$		
	$=\sqrt{64+36}$		
	=10units		
	$\therefore PQ = \frac{1}{2} \times BC$		1.
	$5 = \frac{1}{2} \times 10$		
	2 2 2		

Ques	tion 4	Preliminary HSC Examination- Mathematics	2008		
Part	Solution		Marks	Comment	
(g)	$d = \begin{vmatrix} ax_1 \\ \sqrt{a} \end{vmatrix}$ $= \begin{vmatrix} 1(1) \\ \end{vmatrix}$	$\frac{ +by_1+c }{ +by_1+c }$ $\frac{ +by_1+c }{ +by_1+c }$	2	1 for sub in formula	
	$= \begin{vmatrix} 38\\ \sqrt{17} \\ = \frac{38}{\sqrt{17}} \end{vmatrix}$	/1 +(-4) 		1 for answer, no need to rationalise of simplify.	

Ques	Question 5 Preliminary HSC Examination- Mathematics 2008					
Part	Solution	Mark	Comment			
		S				
(a)	i)	1				
	A D					
	x°					
	60°					
	В С					
	ii)					
	$\angle DCA = 30^{\circ} \ (\angle \text{ angle sum straight line} = 180^{\circ})$	2	1 for angle			
	$\angle ABC = 180^{\circ} - 100^{\circ} = 80^{\circ} \ (\angle \text{ angle sum } \Delta = 180^{\circ})$					
	$\therefore \angle DBC = 40^{\circ}$ (given equal angles)		1 for			
-	$x = 180^{\circ} - 90^{\circ} - 40^{\circ} (\angle \text{ angle sum } \triangle BDC = 180^{\circ})$		reasons			
	$x = 50^{\circ}$					
(b)	$\angle DCA = 360^{\circ} - [6x + 100] \ (\angle \text{sum quad} = 360^{\circ})$	3	1 for any			
	$\angle DCA = 180 - [4x] \ (\angle \text{sum } \triangle ACD = 180^{\circ})$	* .	appropriat e working			
	$360^{\circ} - 6x - 100^{\circ} = 180^{\circ} - 4x$.,,,,,,,,,,,,,,			
	$260^{\circ} - 6x = 180^{\circ} - 4x$					
	$80^{\circ} = 2x$					
	$x = 40^{\circ}$		1 for x			
	If $x = 40^{\circ}$					
	$\angle ACD = 180^{\circ} - (4 \times 40^{\circ})$ from above					
	∴ ∠ACD = 20°		1 for			
			∠ACD			
(c)	$i) S = (2n-4) \times 90$	2	1			
	$=2\times11-4\times90$					
	=1620°		1			
	ii) Sum of exterior angles = 360°	1				
	360°÷11					
	= 32°44					

Ques	tion 5	2008		
Part	Solution		Mark	Comment
İ			S	
(d)	BC is con $\Delta BCY \equiv a$	$\angle ACB$ (base \angle 's isosceles Δ =)	3	1 for correct data for congruence 1 for congruence reason 1 for hence conclusion

Quest		200	
Part	Solution	Marks	Comment
(a)	$A(x+1)^2 B(x+1) + C$	2	
	$=Ax^2+2Ax+A+Bx+B+C$		
	$=Ax^2 + x(2A+B) + A + B + C$		1 for
	equating coefficients		expansion
	∴ <i>A</i> = 5		
	2A + B = 2		
	10 + B = 2		
	$\therefore B = -8$		·
	A+B+C=-3		
	5 - 8 + C = -3		1 for correct
	$\therefore C = 0$		A, B, C
	$\therefore 5x^2 + 2x - 3 = 5(x+1)^2 - 8(x+1)$		
(b)	Let $m = 3^x$	2	1 for solving after sub
	$\therefore m^2 - 10m + 9 = 0$		arter sub
	(m-9)(m-1)=0		
	$3^x = 9 \text{ or } 3^x = 1$		1 for answers
	x = 2 or 0		
(c)	i) $x^2 + kx + 16$	2	-
	Δ <0		
	$b^2 - 4ac < 0$		
	$k^2 - 4 \times 1 \times 16 < 0$		1.6 4.0
	$k^2 - 64 < 0$		1 for $\Delta < 0$
	(k-8)(k+8)<0		1 for <i>k</i>
	-8 < k < 8		

Questic	on 6 Preliminary HSC Examination- Mathematics	200	8
Part S	Solution	Marks	Comment
(d) i	$\alpha + \beta = \frac{-b}{a}$	1	
	$=\frac{-1}{2}$		
i	ii) $\alpha\beta = \frac{c}{a}$	1	4.0
	$=\frac{-3}{2}$		
1	iii) $\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha\beta}{\alpha + \beta}$	1	
	$-\frac{1}{2}$		
	$=\frac{-\frac{2}{3}}{\frac{2}{2}}$	E AND THE PERSON NAMED IN	
	$=\frac{1}{3}$		
(e)	$x^2 + 4x + 4 = 8y - 12 + 4$ (Completing the square)		
	$(x+2)^2 = 8(y-1)$		
	parabola in the form $(x-h)^2 = 4a(y-k)$		
	h = -2, k = 1 & a = 2		
. :	i) $Vertex = (-2,1)$	1	
:	ii) Focus = $(-2,3)$	1	
	iii) Directrix y=-1	1	

Question 7 Preliminary HSC Examination- Mathematics			2008
Part	Solution	Marks	Comment
(a)	i) $\frac{d}{dx} \left(-4x^5 - 4x^3 + 11 \right)$ = $-20x^4 - 12x^2$	1	
	$= -20x^4 - 12x^2$		-
	ii) $\frac{d}{dx}\left(x^{\frac{2}{5}}\right)$. 1	
	$= \frac{2}{5}x^{\frac{3}{5}} \text{ or } \frac{2}{5\sqrt[5]{x^3}}$		
	iii) $\frac{d}{dx} \left(\frac{1}{x+3} \right) = (x+3)^{-1}$	1	
	$=-(x+3)^{-2}$ or $\frac{-1}{(x+3)^2}$		

Ques	2008			
Part	Solution		Marks	Comment
(b)	i)		2	1 for f'(x)
	f(x) = (3x)	•		
	f'(x) = 5(6	$(5x-5)(3x^2-5x)^4$		
	= (30	$(3x-25)(3x^2-5x)^4$		1 for f'(2)
	f'(2) = (30)	$0 \times 2 - 25)(3 \times 2^2 - 5 \times 2)^4$		4
	= 56	0		
	ii)		1	
	$y = \frac{2}{(x+1)^2}$			
	$\frac{d}{dx}(2(x+1))$	$(x+1)^{-3} = -6(x+1)^{-4}$ or $\frac{-6}{(x+1)^4}$		
	ax	(x+1)		
	iii)			
	$y = \frac{x^2 - 1}{x^2 + 1}$			
-	1 ~ 11	2 .	2	1 for correct du
	$u = x^2 - 1$ $du = 2x$			and dv
	Į.			1.0
	$y' = \frac{2x(x^2)}{x^2}$	$\frac{(x^2+1)^2-2x(x^2-1)}{(x^2+1)^2}$		1 for correct
		(··· · -)		quotient
	$=\frac{2x^3+2x}{(x^2)^2}$	$\frac{2x + 2x}{(x+1)^2}$	·	rule or equivalent.
	$=\frac{4x}{\left(x^2+1\right)^2}$			No need to
				simplify.
	iv)	$(x-1)^3(x-1)^4$		1 for
	101,	$v = (x-1)^4$	2	correct du and dv
		$(x-1)^{2}$ +2) ² $dv = 4(x-1)^{3}$		
1		$(x+2)^2(x-1)^4 + 4(x-1)^3(x+2)^3$		1 for correct
	101,	$(x+2)^2 [3(x-1)+4(x+2)]$		product
	1	$(x+2)^2(7x+5)$		rule.
	_ (, _ 1) (.	(12)		No need to
				simplify
		,		L

Ques	2008			
Part	Solution		Marks	Comment
(c)	$y = \frac{x}{x^2 + 1}$		2	
	u=x $v=$			
	du = 1	dv = 2x		
	$y' = \frac{x^2 + 1}{(x^2 + 1)^2}$	$\frac{-2x^2}{-1)^2}$		
	$=\frac{1-x^2}{(x^2+1)^2}$			1 for derivative
	when $x = 0$	y'=1		
	$\therefore m = 1 \text{ pt}($	0,0)		
	$y-y_1=m($	$(x-x_i)$		
	y-0=1(x	-0)		1 for
	$\therefore y = x \text{ is } 1$	the tangent to the curve $y = \frac{x}{x^2 + 1}$ at the origin		equation