WESTERN REGION

2011 Preliminary Course FINAL EXAMINATION

Mathematics

General Instructions

- o Reading Time 5 minutes.
- o Working Time 2 hours.
- o Write using a blue or black pen.
- o Board Approved calculators may be used.
- o A table of standard integrals is provided at the back of this paper.
- o All necessary working should be shown for every question.
- o Begin each question on a fresh sheet of paper.

Total marks (84)

- o Attempt Questions 1-7.
- o All questions are of equal value.

STANDARD INTEGRALS
$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$$

NOTE:
$$\ln x = \log_e x$$
, $x > 0$

Question 1 (12 Marks)	Use a Separate Sheet of paper	Marks	
a) Find the value of $5\pi \sqrt{\frac{a}{g}}$ is significant figures.	if $a = 2.75$ and $g = 9.8$ correct to 2	1	
b) If $a = 2.7 \times 10^5$ write $\frac{1}{a}$ i	in scientific notation.	1	
c) Evaluate $\frac{ x-6 }{ x -6}$ when x	= -2.	1	
d) Simplify as a single fraction	n with a rational denominator $\frac{1}{\sqrt{3}} + \frac{1}{3 + \sqrt{3}}$.	2	
e) Factorise $6a^3 - 48$.		2	
f) Solve i. $x - \frac{2x - 4}{3}$	= 0	1	
ii. $2x = 7 - \frac{5}{x}$		2	
g) Solve simultaneously $x = 3x - 3$	x - y = 2 $+ 2y = 1$	2	
	End of Question 1		

Ques	tion 2	(12 Marks)	Use a Separate Sheet of paper	Marks
a)	State	the domain of $y = \frac{1}{(x - x)^2}$	$\frac{1}{3)(1-x)}$	1
b)	i. ii. iii.	th of the following equal $y = 3^{x}$ $f(x) = 1 - x^{2}$ $y = \frac{-2}{x}$ $x^{2} + y^{2} = 1$	tions would not represent a function?	1
c)	A fun	ction is defined by		
		-1	<i>x</i> ≤ −2	
		$f(x) = \begin{cases} 2x \end{cases}$	$x \le -2$ $-2 < x < 0$ $x \ge 0$	
		3-x	$x \ge 0$	
	Find t	the value of $f(-3) + f($	$\left(\frac{1}{2}\right) + 2f(4)$	2
d)	Sketcl	h and state the range of	y = 2x - 1.	2
e) ,	Evalu	tate $\lim_{x \to 2} \frac{4 - x^2}{x - 2}$		2
f)	Is the	function $f(x) = 2x^3 - x$	even, odd or neither? (give reasons)	. 2
g)	Sketc	h the region defined by	the inequalities	2
		$y \ge -\sqrt{4 - x^2} and$ $y < 0$		

End of Question 2

Find the exact value of sec 225°.

Marks

2

2

Question 3	(12 Marks)	Use a Separate Sheet of paper	Marks
a) If s	$\sin \theta = 0.251$ evaluate	$\sin(180^{\circ} + \theta)$.	1

- c) Prove that $\frac{\cot \theta \cos \theta}{\cot \theta + \cot \theta} = \frac{\cos \theta}{1 + \sin \theta}$.
- i) From a point A, Peter finds that the angle of elevation of the top, T, of a cliff BT is 11°. After walking 275 metres directly towards the cliff to the point Y, he finds that the angle of elevation is 19°.

i. Calculate the length TY (nearest metre).ii Find the height of the cliff BT (nearest metre).

Question 3 continued on page 5

Question 3 (continued)

A regular hexagon is drawn inside a circle, with centre O so that its vertices lie on the circumference. The circle has radius 1cm.

- i. Prove that $\triangle LMO$ is equilateral.
- ii. Find the area of \triangle LMO and hence find the area of the hexagon (exact form).

End of Question 3

2011 Preliminary Final Examination

Mathematics

Question 4 (12 Marks)

Use a Separate Sheet of paper

Marks

3

In the diagram LM is parallel NP, XP=YP, $\angle PYQ = 132^{\circ}$ and $\angle PXM = b^{\circ}$. Copy the diagram onto your answer sheet.

Find the value of b° , giving complete reasons.

b)

The diagram shows \triangle ABC. BC || DE, AB=8cm, AE=9cm and EC=3cm.

- Prove that $\triangle ABC \parallel \triangle ADE$.
- Find the length of DB.

2

Question 4 continued on page 7

Question 4 (continued)

Marks

c)

In the diagram AB=AC and $\angle BAD = \angle CAE$.

Prove that $\Delta ABD \equiv \Delta ACE$.

ii. Prove that $\triangle ABE \cong \triangle ACD$. 2

3

End of Question 4

a) b)

uestion 5	(12 Marks) Use a Separate Sheet of paper	Marks	
The	line $2x + ky = 7$ passes through the point (2, -1). Find the	e value of k .	
		OT TO SCALE × →)	
i.	Find the midpoints of AC and BD.	2	
ii.	Show that AC and BD are perpendicular.	2	
iii.	What type of quadrilateral is ABCD? Justify your answ	wer. 1	
iv.	Find the length of AC and BD.	2	
v.	Find the area of ABCD.	1	
vi.	Find the equation of AD.	2	
vii.	What angle does BD make with the positive direction (nearest degree)	of the x axis?	

End of Question 5

Que	stion 6 (12 Marks) Use a Separate Sheet of paper	Marks
a)	Find the values of y for which $12 + 4y - y^2 > 0$	2
b)	Find the value of k for which the quadratic equation $3x^2 + 2x + k = 0$ has real roots.	1
c)	One of the roots of $x^2 - (m+1)x + 2m + 2 = 0$ is twice the other. Find the roots.	3
d)	A is the point $(8, 0)$ and O is the origin. If the variable point $P(x, y)$ moves	•.
	i. prove that the locus of P is $x^2 + y^2 - 18x + 72 = 0$ ii. show that P moves in a circle and find its centre and radius.	2 2
e)	The focus of a parabola is $(4, 1)$ and its directrix is $y = -3$. Find the equation of the parabola.	2
s.ę	End of Question 6	·

Question 7 (12 Marks) Use a Separate Sheet of paper Marks

a) Differentiate

i. $\frac{2x^3}{\sqrt{x}}$ ii. $\frac{3}{\sqrt{2x-1}}$ 2

b) If $y = \frac{2x}{(4x+3)^2}$, find $\frac{dy}{dx}$.

3

c) If $f(x) = 5x^2(3x-1)^4$, find f'(2).

3

d) Find the point on the curve $y = x^2 + 5x + 4$ where the tangent is perpendicular to $y = \frac{x}{5}$.

End of Examination

WESTERN REGION

2011 Preliminary Final EXAMINATION

Mathematics

SOLUTIONS

Quest	ion 1 Preliminary Final Examination - Mathem	2011	
Part	Solution M		Comment
a)	5 2.75	1	For correct
	$5\pi \sqrt{\frac{2.75}{9.8}} = 8.32 = 8.3 \ (2 \ sign fig)$		answer.
b)	$\frac{1}{2.7 \times 10^5} = 0.000003703 = 3.703 \times 10^{-6}$	1	For correct
		ļ	answer in SN
(c)	$\frac{ -2-6 }{ -2 -6} = \frac{8}{-4} = -2$	1	For correct answer.
d)	$\frac{1}{\sqrt{3}}$, $\frac{\sqrt{3}}{\sqrt{3}}$	2	WALST 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
	$\frac{1}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} + \frac{1}{3 + \sqrt{3}} \times \frac{3 - \sqrt{3}}{3 - \sqrt{3}}$		
	$=\frac{\sqrt{3}}{2}+\frac{3-\sqrt{3}}{6}$		1 for rationalising.
	$=\frac{3}{3}+\frac{1}{6}$		rationansing.
	$=\frac{2\sqrt{3}+3-\sqrt{3}}{6}$		
	U		1 for single
	$=\frac{\sqrt{3}+3}{6}$		fraction.
e)	$6(a^3 - 8) = 6(a - 2)(a^2 + 2a + 4)$	2	1 for common
	6(a-8) = 6(a-2)(a+2a+4)	1	factor
			1 for cubic
f) i.	2, 2, 4	1	factorisation For correct
1) 1.	$\frac{3x}{3} - \frac{2x-4}{3} = 0$	1	answer.
	3x - 2x + 4 = 0		
	x = -4		
f) ii.	$2r^2 = 7r - 5$	2	1 for quadratic
,	$2x^{2} - 7x + 5 = 0$		equation
	2x - /x + 5 = 0 $(2x - 5)(x - 1) = 0$		
			1 for solving
	$x = \frac{5}{2}$, 1		1 101 SOLVING
g)	$x - y = 2 \oplus \times 2$	2	1 for each value
	3x + 2y = 1 ②		
	$2x - 2y = 4 \ \Im$		1
	5x = 5		
	x = 1		
	1-y=2 y=-1 (1, -1)		
	y1 (1, -1)	/12	
L		1114	<u> </u>

Quest	stion 2 Preliminary Final Examination - Mathematics			2011
Part	Solution		Marks	Comment
a)		x , except $x \neq 3$ or 1	1	
b)	iv. $x^2 +$	$y^2 = 1$	1	
c)	1	$+f\left(\frac{1}{2}\right)+2f(4)$	2	1 for correct substitution
	1	$\left(3-\frac{1}{2}\right)+2(3-4)$:	1 for answer
	= -1 + 2	$\frac{1}{2}$ – 2		
	$=-\frac{1}{2}$			
d)		y	2	1 for correct diagram
	<u>* ↓</u>			1 for correct
e)	Range:)	$\frac{r \ge -1}{(2-x)(2+x)}$ $\frac{(2-x)(2+x)}{x-2}$	2	range 1 for correct
	i .			factorising
	$=\lim_{x\to 2}$	$\frac{-\left(x-2\right)\left(2+x\right)}{x-2}$		
		-(x-2)		1 for answer
	= -4			1 101 0112 M.C.1
f)	f(-x) =	$= 2x^{3} - x$ $= 2(-x)^{3} - (-x)$	2	1 for $f(-x)$
		$= -2x^3 + x$		
		$=-(2x^3-x)$		1 for reason
	f(-x) =	= -f(x) : odd function		

Question 2		stion 2 Preliminary Final Examination - Mathematics		2011
Part			Marks	Comment
g)`		y 	2	1 for semi circle
				1 for correct region
			/12	

Quest	Question 3 Preliminary Final Examination - Mathematics		2011	
Part	Solution		Marks	Comment
a)	sin(180°	$\theta^2 + \theta = -\sin \theta = -0.251$	1	
b)	sec 585°	$e^{\circ} = \sec 225^{\circ} = -\sec 45^{\circ} = -\sqrt{2}$	1	
c)	LHS= .	$\frac{\frac{\cos \theta}{\sin \theta} \times \cos \theta}{\frac{\cos \theta}{\sin \theta} + \frac{\cos \theta \sin \theta}{\sin \theta}}$	3	1 for definitions 1 for simplifying
	=	$\frac{\cos^2 \theta}{\sin \theta} \times \frac{\sin \theta}{\cos \theta (1 + \sin \theta)}$ $\frac{\cos \theta}{1 + \sin \theta}$ <i>RHS</i>		fractions 1 for simplifying
d)	A←	11° 161° 19° 275m Y B		
i.		$= \frac{275}{\sin 8^{\circ}}$ $= \frac{275\sin 11^{\circ}}{\sin 8^{\circ}}$ $= 377 m (nearest m)$	2	1 for using The Sine rule correctly 1 for answer
ii.	1	$= \frac{BT}{YT}$ $= YT \times \sin 19^{\circ}$ $= 122.7 = 123 \ m \ (nearest \ m)$	1	

	Ques	ion 3 Preliminary Final Examination - Mathema	tics	2011
	Part	Solution	Marks	Comment
	e) i.	$\angle MOL = 60^{\circ} (revolution) \div 6$ $LM^{2} = 1^{2} + 1^{2} - 2 \times 1 \times 1 \times \cos 60^{\circ}$ $LM^{2} = 2 - 2 \times \frac{1}{2}$ $LM = 1$ $OL = MO = 1 (radii) \therefore \Delta LMO \text{ is equilateral}$ $A\Delta = \frac{1}{2} \times 1 \times 1 \times \sin 60^{\circ}$	2	1 for angle and cosine rule or alternate geometry solution 1 for equal sides
· · · · · · · · · · · · · · · · · · ·		$A\Delta = \frac{1}{2} \times \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{4} cm^{2}$ $\therefore A \text{ hexagon} = 6 \times \frac{\sqrt{3}}{4} = \frac{3\sqrt{3}}{2} cm^{2}$		1 for area of triangle 1 for area of hexagon
			/12	

Quest	ion 4	Preliminary Final Examination - Mathematics		2011
Part	Solution		Marks	Comment
a)	∠ XYP =	$180^{\circ} - 132^{\circ} = 48^{\circ} (straight \angle)$	3	1
	$\angle MXY =$	132° (corr angles NP LM)		1
	∠ <i>YXP</i> =	48° (base ∠ isosceles Δ YXP)		•
	b° =	$132^{\circ} - 48^{\circ} = 84^{\circ}$		1
b) i	$\angle A$ is con	mmon	2	1 for part
	$\angle AED =$	$\angle ABC$ (corr $\angle s$, BC DE)		proof
	$\angle AED =$	$\angle ACB (\angle sum \Delta)$		
	$\Delta ABC \parallel \mid A$	∆ ADE (equiangular)		
ii	$\frac{AD}{8} = \frac{9}{12}$	(corr sides in same ratio)	2	1
	$AD = \frac{72}{12}$	=6cm		1.0
	BD = 8-			1 for answer
c) i	∠ BAD	$= \angle CAE$ (given)	2	1 for part
	AB	= AC (given)		proof
	$\angle ABD$	$= \angle ACE (base \angle isoscles \triangle ABC)$		
	∴ ∆ABC	$I \equiv \Delta ACE (AAS)$		
ii				
		AB = AC (given)	3	
		AD = AE (corr sides of congruent Δ s above)		1
		$BAE = \angle BAD + \angle DAE$		
	∠	$CAD = \angle CAE + \angle DAE$		1
	since ∠	$BAD = \angle CAE (given)$		
	∴ ∠	$BAE = \angle CAD$		1.
	Δ	$ABE \equiv \Delta ACD (SAS)$		or alternate
				methods
			/12	

Question 5 Preliminary Final Examination - Mathematics 2011					
Part	Solution	Marks	Comment		
a)	2(2) + k(-1) = 7	1	1 for k		
	$-\mathbf{k} = 3$				
b) i.	$\mathbf{k} = -3$	2	1 for each		
0) 1.	AC: $x = \frac{1+3}{2}$ $y = \frac{-1+5}{2}$ BD: $x = \frac{8-4}{2}$ $y = \frac{0+4}{2}$	2	midpoint		
	$x=2 \qquad y=2 \qquad x=2 \qquad y=2$		·		
			•		
ii.	1-5 4-0				
	$m_{\rm AC} = \frac{-1-5}{1-3}$ $m_{\rm BD} = \frac{4-0}{-4-8}$	2	1 for		
	$m_{\rm AC} = 3 \qquad m_{\rm BD} = -\frac{1}{3}$		gradients 1 for		
	$m_{AC} \times m_{BD} = 3 \times -\frac{1}{2} = -1$.: AC \perp BD		showing		
	$m_{AC} \times m_{BD} = 3 \times -\frac{1}{3} = 1 \dots AC \perp BD$		perpendicular		
iii.	ABCD is a rhombus because diagonals AC and BD	1	1 for reason		
111.	bisect each other at Right Angles.	1	1 101 1Cason		
iv.	$d_{AC} = \sqrt{(1-3)^2 + (-1-5)^2}$ $d_{BD} = \sqrt{(-4-8)^2 + (4-0)^2}$	2.	1 for each		
	$a_{AC} = \sqrt{(1-3)} + (-1-5)$ $a_{BD} = \sqrt{(-4-8)} + (4-0)$ $d_{AC} = \sqrt{4+36}$ $d_{BD} = \sqrt{144+16}$		distance		
	$a_{AC} = \sqrt{44 + 30}$ $a_{BD} = \sqrt{144 + 10}$ $a_{AC} = \sqrt{40}$ $a_{BD} = \sqrt{160}$.				
	$d_{AC} = 2\sqrt{10}$ $d_{BD} = \sqrt{100}$ $d_{BD} = 4\sqrt{10}$				
•	uac 2410 ubb 4410				
ν.	$d_{AC} = \sqrt{44 + 30}$ $d_{BD} = \sqrt{144 + 10}$ $d_{BD} = \sqrt{160}$ $d_{BD} = \sqrt{160}$ $d_{BD} = 4\sqrt{10}$	1	1 for area		
	$A = \frac{1}{2} \times 2\sqrt{10} \times 4\sqrt{10}$	1	1 101 11101		
	$A = \frac{1}{2} \times 2\sqrt{10} \times 4\sqrt{10}$				
	$A = 40 \text{ units}^{2}$ $m_{AD} = \frac{0+1}{8-1} = \frac{1}{7}$				
	m = 0 + 1 = 1				
vi.		2	1 for gradient		
	equation of AD				
	$y - 0 = \frac{1}{7}(x - 8)$		1 for		
	7y = x - 8 $x - 7y - 8 = 0$		equation		
	x - y - 8 = 0				
	$\tan\theta = -\frac{1}{3}$	1	1 for angle		
vii.	$\theta = (180 - 18^{\circ}26')$	*	. Ioi aligio		
	$\theta = (180 - 18 \ 20)$ $\theta = 161^{\circ}34'$				
	$\theta = 162^{\circ}$ (nearest degree)				
		/12			

Quest	2011		
Part	Solution	Marks	Comment
a)	$12 + 4y - y^2 > 0$	2	1 for test
	(6-y)(2+y) > 0		1 for correct
	test y = 0 (true)		solution
	$-2 < y < 6$ $b^2 - 4ac \ge 0$		
b)		1	
	$2^2 - 4 \times 3 \times \mathbf{k} \ge 0$		
	$4 - 12\mathbf{k} \ge 0$,
	$-12\mathbf{k} \ge -4$		
	$\mathbf{k} \le \frac{1}{3}$		
c)	$\alpha + 2\alpha = m + 1 \qquad 2\alpha^2 = 2m + 2$	-3	1 for
	$3\alpha = m+1 \qquad \qquad \alpha^2 = m+1$	ļ	definitions
	$\alpha = \frac{m+1}{3} \qquad \left(\frac{m+1}{3}\right)^2 = m+1$		
	$m^2 + 2m + 1 = 9m + 9$		
	$m^2 - 7m - 8 = 0$		1 for
	(m-8)(m+1)=0		quadratic equation can
	m = 8, -1 (not a solution: gvies 0, 0)		find a first
-	$\alpha = \frac{8+1}{3} = 3$		
	roots are 3 and 6		1 for roots
d) i	$PO^2 = (3PA)^2$	2.	1 for
	$x^2 + y^2 = 9[(x - 8)^2 + y^2]$		distances
	$x^2 + y^2 = 9(x^2 - 16x + 64 + y^2)$		squared
	$x^2 + y^2 = 9x^2 - 144x + 576 + 9y^2$		1 for
	$8x^2 + 8y^2 - 144x + 576 = 0$		simplification
ii.	$x^2 + y^2 - 18x + 72 = 0$	2	1 for
1	$x^{2} - 18x + (-9)^{2} + y^{2} = -72 + 81$		completing
	$(x-9)^2 + y^2 = 9 \text{ in circle form}$		the square
	centre: (9, 0) radius: 3		1 for centre and radius
e)	a = 2 concave up, $Vertex = (4 - 1)$	2	1 for focus
	1,		and vertex
	$\left(x-h\right)^2 = 4a(y-k)$		1 for
	$(x-4)^2 = 8(y+1)$		equation
-	(% 1) 0() 1)	/12	
L		114	

1	Question 7 Preliminary Final Examination - Mathemat		cs	2011
	Part	Solution	Marks	Comment
	a) i.	$\frac{d}{dx}\left(\frac{2x^3}{\sqrt{x}}\right) = \frac{d}{dx}\left(2x^{\frac{5}{2}}\right)$ $= 2 \times \frac{5}{2}x^{\frac{3}{2}}$	1	For differentiation
	ii.	$= 5\sqrt{x^3}$ $\frac{d}{dx} \left(3(2x-1)^{-\frac{1}{2}}\right) = 3 \times -\frac{1}{2}(2x-1)^{-\frac{3}{2}} \times 2$ $= -3(2x-1)^{-\frac{3}{2}}$	2	1 for differentiation 1 for simplifying
	b)	$= -\frac{3}{\sqrt{(2x-1)^3}}$ $u = 2x, v = (4x+3)^2$ $u' = 2, v' = 2(4x+3) \times 4 = 8(4x+3)$	3	1 for differentiation
		$\frac{dy}{dx} = \frac{(4x+3)^2 \times 2 - 2x \times 8(4x+3)}{(4x+3)^4}$ $\frac{dy}{dx} = \frac{(4x+3)[2(4x+3) - 16x]}{(4x+3)^4}$ $\frac{dy}{dx} = \frac{8x+6-16x}{(4x+3)^3}$		1 correct rule 1 for simplifying
ı	c)	$\frac{dy}{dx} = \frac{6 - 8x}{(4x + 3)^3}$ $u = 5x^2, v = (3x - 1)^4$ $u' = 10x, v' = 12(3x - 1)^3$	3	1 for differentiation
		$f'(x) = 5x^{2} \times 12(3x - 1)^{3} + (3x - 1)^{4} \times 10x$ $f'(x) = 10x(3x - 1)^{3}[6x + (3x - 1)]$ $f'(x) = 10x(3x - 1)^{3}(9x - 1)$ $f'(2) = 10(2)(5)^{3}(17)$ $f'(2) = 42500$		1 for correct rule 1 for substitution
	d)	$y' = 2x + 5$ and $y = \frac{x}{5}$ $m_1 = \frac{1}{5}$ $m_2 = -5$ $\therefore 2x + 5 = -5$ 2x = -10	3	1 for differentiation 1 for equation 1 for point
		$x = -5 \qquad y = 4$	/12	1 for point