

SYDNEY BOYS HIGH SCHOOL

MOORE PARK, SURRY HILLS

2011

YEAR 12 Mathematics Extension 2 HSC Task #2

Mathematics Extension 2

General Instructions

- Reading Time 5 Minutes
- Working time − 2 hours
- Write using black or blue pen. Pencil may be used for diagrams.
- · Board approved calculators maybe used.
- Each Section is to be returned in a separate

 bundle.
- Marks may NOT be awarded for messy or badly arranged work.
- All necessary working should be shown in every question.
- Answer must be given in simplest exact form.

Total Marks -83

- Attempt questions 1-6
- Start each new section of a separate answer booklet

Examiner: D.McQuillan

SECTION A

Question 1

(a) Let
$$w_1 = -8 + 3i$$
 and $w_2 = 5 - 2i$. Find $w_1 - \overline{w}_2$.

(b) Find
(i)
$$\int x \tan^{-1} x \, dx$$

(ii)
$$\int \frac{\tan \theta}{1 + \cos \theta} d\theta$$

$$\int_{-2}^{-1} \frac{dx}{x^2 + 4x + 5}$$

$$\int_0^{\frac{\pi}{4}} \frac{-\sin x}{\cos^3 x} dx$$

(d)
$$27x^3 - 36x + k = 0$$
 has a double root. Find the possible values of k. 2

Question 2

- (a) In how many ways can 5 mathematics books and 3 science books be arranged on a shelf so that the books of each subject come together?
- SECTION B

Question 3

2

2

(b) In the expansion of $\left(2x^2 - \frac{3}{x}\right)^9$ what is the term independent of x?

(a) A golf ball is hit with a velocity of 40 m/s at an angle of 38° to the horizontal. If it just clears a tree 20 metres away, find the height of the tree to two decimal places.

3

6

(c) On an Argand diagram, shade the region specified by both the conditions

(b) Sketch the graphs of the following functions for $-2\pi \le x \le 2\pi$.

$$Re(z) \le 4$$
 and $|z-4+5i| \le 3$

(i) $y = \sin x + \frac{1}{x}$

Start each SECTION in a NEW writing BOOKLET

(d) The points A and B in the complex plane correspond to complex numbers z_1 and z_2 respectively. Both triangle OAP and OBQ are right-angled isosceles triangles.

(ii) $y = x \sin x$

(iii)
$$y = \frac{\sin x}{x}$$

0

(c) Consider the polynomial equation $x^4 + ax^3 + bx^2 + cx + d = 0$, where a, b, c and d are all integers. Suppose the equation has a root of the form ki, where \hat{k} is real, and $k \neq 0$.

(ii) Let M be the midpoint of PQ. What complex number corresponds to

State why the conjugate -ki is also a root.

(i) Explain why P corresponds to the complex number $(1+i)z_1$.

- Show that $c = k^2 a$.
- Show that $c^2 + a^2d = abc$.
- If 2 is also a root of the equation, and b = 0, show that c is even.

END OF SECTION

Question 4

- (a) The probability that a missile will hit a target is $\frac{2}{5}$. What is the probability that the target will be hit at least twice if 4 missiles are fired in quick succession?

3

- (b)
- (i) Find the least positive integer k such that $\cos\left(\frac{4\pi}{3}\right) + i\sin\left(\frac{4\pi}{3}\right)$ is a solution of $z^k = 1$.
- (ii) Show that if the complex number w is a solution of $z^n = 1$, then so is w^m , where m and n are arbitrary integers.
- (c) A body of mass one kilogram is projected vertically upwards from the ground with an initial speed of 20 metres per second. The body is subject to both gravity of 10 m/s² and air resistance of $\frac{v^2}{40}$ where v is the body's velocity at that time.
 - (i) While the body is travelling upwards, the equation of motion is $\ddot{x} = -\left(10 + \frac{v^2}{40}\right).$
 - (1) Using $\ddot{x} = v \frac{dv}{dr}$, calculate the greatest height reached by the
 - (2) Using $\ddot{x} = \frac{dv}{dt}$, calculate the time taken to reach the greatest height.
 - (ii) After reaching its greatest height, the body falls back to its starting point. The body is still affected by gravity and air resistance.
 - (1) Write the equation of motion of the body as is falls.
 - (2) Find the speed of the body when it returns to its starting point.
- (d)
- (i) Find the remainder when $x^2 + 6$ is divided by $x^2 + x 6$.
- (ii) Hence, find $\int \frac{x^2+6}{x^2+x-6} dx$.

3

Start each SECTION in a NEW writing BOOKLET

SECTION C

Question 5

(a) There are 3 pairs of socks in a drawer. Each pair is a different colour. If two socks are selected at random, what is the probability that they are a matching

2

5

(b) By considering
$$(x+1)^n = \sum_{k=0}^n \binom{n}{k} x^k$$
.

(i) Show that

$$\binom{2m}{0} + \binom{2m}{2} + \dots + \binom{2m}{2m} = \binom{2m}{1} + \binom{2m}{3} + \dots + \binom{2m}{2m-1}$$

(ii) Show that

$$\binom{n}{0} + \frac{\binom{n}{1}}{2} + \frac{\binom{n}{2}}{3} + \dots + \frac{\binom{n}{n}}{n+1} = \frac{2^{n+1} - 1}{n+1}$$

(c) Show that cos(A - B) - cos(A + B) = 2 sin A sin B.

Hence show that $\cos n\theta - \cos(n+1)\theta = 2\sin\left(n+\frac{1}{2}\right)\theta\sin\frac{\theta}{2}$.

(iii) Show that
$$1 + z + z^2 + \dots + z^n = \frac{1 - z^{n+1}}{1 - z}, z \neq 1$$
.

(iv) Let $z = \cos \theta + i \sin \theta$, $0 < \theta < 2\pi$. By consider the real parts of the expression in (iii), show that

$$1 + \cos \theta + \cos 2\theta + \dots + \cos n\theta = \frac{1}{2} + \frac{\sin \left[\left(n + \frac{1}{2} \right) \theta \right]}{2 \sin \frac{\theta}{2}}$$

Question 6

- (a) Let $I_n = \int_1^e (\log_e x)^n dx$.
 - (i) Show that $I_n = e nI_{n-1}$ for n = 1, 2, 3, ...
 - (ii) Hence evaluate I_4 .
- (b) Show that the sum of the x- and y-intercepts of any tangent line to the curve $\sqrt{x} + \sqrt{y} = \sqrt{c}$ is equal to c.
- (c) Let α , β and γ be the roots of $x^3+qx+r=0$. Define $s_n=\alpha^n+\beta^n+\gamma^n$ for n=1,2,3,...
 - (i) Explain why $s_1 = 0$ and show that $s_2 = -2q$.
 - (ii) By considering that $\alpha^3 + q\alpha + r = 0$ show that $s_3 = -3r$.
 - (iii) Show that $s_5 = 5qr$.

END OF EXAM

Section A Q1.
(a)
$$(-8+3i) - (5+2i) = -13+i$$

(ii)
$$\int \frac{\tan \theta}{1 + \omega s \theta} d\theta = \int \frac{\sin \theta}{\omega s \theta (1 + \omega s \theta)} d\theta$$

$$= \int \frac{-d(\omega s \theta)}{\omega s \theta (1 + \omega s \theta)}$$

$$A(1 + \omega s \theta) + B \omega s \theta = -1$$

$$|et \omega s \theta = 0$$

$$A = -1$$

$$|et \omega s \theta = -1$$

$$B = 1$$

$$I = \int \frac{1}{\omega s \theta + 1} - \frac{1}{\omega s \theta} d\theta$$

$$= \ln(\omega s \theta + 1) - \ln(\omega s \theta) + C$$

$$= \ln(1 + s e c \theta) + C$$

(ii)
$$\int_{0}^{\frac{\pi}{4}} \frac{-\sin x}{\cos^{2} x} dx = \int_{0}^{\frac{\pi}{4}} -\sec x \sec x \tan x dx$$
$$= \left[-\frac{1}{2} \sec^{2} x \right]_{0}^{\frac{\pi}{4}}$$
$$= -\frac{1}{2}$$

(e)
$$P(x) = 27x^3 - 36x + k = 0$$

 $P'(x) = 81x^2 - 36 = 0$
 $x^2 = \frac{4}{9}$
 $x = \pm \frac{2}{3}$
 $P(\frac{2}{3}) = -16 + k = 0$
 $P(-\frac{2}{3}) = 16 + k = 0$
 $x = \pm \frac{16}{3}$

(d)

(b)
$$(2x^2 - \frac{3}{7c})^4 = (2x^2)^4 + \frac{9}{4}((2x^2)^8(-\frac{3}{2}) + \frac{9}{4}(2x^2)^7(-\frac{3}{2})^2 \dots$$

power: 18 15 12

we can deduce 7th term

will be independent of x
 $\frac{9}{4}((-3)^6(2)^3 = 489888$

2011 Extension 2 Mathematics Task 2:

Solutions—Section B

3. (a) A golf ball is hit with a velocity of $40\,\mathrm{m/s}$ at an angle of 38° to the horizontal. If it just clears a tree 20 metres away, find the height of the tree to two decimal places.

(b) Sketch the graphs of the following functions for $-2\pi \leqslant x \leqslant 2\pi$:

(i)
$$y = \sin x + \frac{1}{x}$$
,

3

6

(iii)
$$y = \frac{\sin x}{x}$$
.

- (c) Consider the polynomial equation $x^4 + ax^3 + bx^2 + cx + d = 0$, where a, b, c, and d are all integers. Suppose the equation has a root of the form ki, where k is real and $k \neq 0$.
 - (i) State why the conjugate, -ki, is also a root.

Solution: If a polynomial has real coefficients, any complex roots occur in conjugate pairs.

6

(ii) Show that $c = k^2 a$.

Solution: Method 1—
$$P(x) = x^4 + ax^3 + bx^2 + cx + d,$$

$$P(ki) = k^4 - iak^3 - bk^2 + ick + d = 0.$$

$$-ak^3 + ck = 0, \text{ (equating imaginary coefficients)}$$

$$i.e., c = ak^2.$$

Solution: Method 2—
$$P(x) = x^4 + ax^3 + bx^2 + cx + d,$$

$$P(ki) = k^4 - iak^3 - bk^2 + ick + d = 0, \dots \boxed{1}$$

$$P(ki) = k^4 + iak^3 - bk^2 - ick + d = 0, \dots \boxed{2}$$

$$\boxed{1 - 2 : -2iak^3 + 2ick = 0,}$$

$$i.e., c = ak^2.$$

(iii) Show that $c^2 + a^2d = abc$.

Solution: Method 1— Equating real coefficients of
$$P(ki)$$
,
$$k^4 - bk^2 + d = 0,$$

$$\frac{c^2}{a^2} - \frac{bc}{a} + d = 0,$$
 (substituting $k^2 = \frac{c}{a}$)
$$c^2 - abc + a^2d = 0,$$

$$\therefore abc = c^2 + a^2d.$$

Solution: Method 2—
$$2k^4 - 2bk^2 + 2d = 0, \boxed{1} + \boxed{2} \text{ (from part (ii) above)}$$
$$\frac{c^2}{a^2} - \frac{bc}{a} + d = 0, \text{ (substituting } k^2 = \frac{c}{a} \text{)}$$
$$c^2 - abc + a^2d = 0,$$
$$\therefore abc = c^2 + a^2d.$$

(iv) If 2 is also a root of the equation and b = 0, show that c is even.

Solution:
$$P(2) = 16 + 8a + 2c + d = 0$$
, so d is even.
From part (iii), if $b = 0$ then $c^2 = -a^2d$.
Hence c^2 is even, and thus c is even.

4. (a) The probability that a missile will hit a target is $\frac{2}{5}$. What is the probability that the target will be hit at least twice if 4 missiles are fired in quick succession?

2

7

Solution:
$$P(\text{hit} \ge 2) = 1 - \left\{ \left(\frac{3}{5}\right)^4 + \left(\frac{4}{1}\right) \times \frac{2}{5} \times \left(\frac{3}{5}\right)^3 \right\}$$

= $1 - \frac{81 + 216}{625}$,
= $\frac{328}{625}$ (= 0.5248).

(b) (i) Find the least positive integer k such that $\cos\left(\frac{4\pi}{7}\right)+i\sin\left(\frac{4\pi}{7}\right)$ is a solution of $z^k=1$.

Solution:
$$\left(\cos\left(\frac{4\pi}{7}\right) + i\sin\left(\frac{4\pi}{7}\right)\right)^k = 1 = \cos(2n\pi) + i\sin(2n\pi), \ n \in \mathbb{J},$$

$$\frac{4k\pi}{7} = 2n\pi,$$

$$k = \frac{7n}{2},$$

$$= 7 \text{ when } n = 2.$$

(ii) Show that if the complex number w is a solution of $z^n = 1$, then so is w^m , where m and n are arbitrary integers.

Solution:
$$w^n = 1$$
, (as w is a solution of $z^n = 1$)
$$now (w^n)^m = 1^m = 1,$$

$$w^{nm} = 1 = w^{mn},$$

$$(w^m)^n = 1^n,$$
so $w^m = 1$, which establishes the result.

- (c) A body of mass one kilogram is projected vertically upwards from the ground with an initial speed of 20 metres per second. The body is subjected to both gravity of $10\,\mathrm{m/s^2}$ and air resistance of $\frac{v^2}{40}$ where v is the body's velocity at that time.
 - (i) While the body is travelling upwards, the equation of motion is $\ddot{x}=-\left(10+\frac{v^2}{40}\right)\!.$

(α) Using $\ddot{x} = v \frac{dv}{dx}$, calculate the greatest height reached by the body.

Solution:
$$v \frac{dv}{dx} = -\frac{400 + v^2}{40},$$

$$\int_0^h dx = -\int_{20}^0 \frac{20 \times 2v}{400 + v^2} dv,$$

$$x \Big]_0^h = -20 \Big[\ln(400 + v^2) \Big]_{20}^0,$$

$$h = -20 \ln \frac{400}{800},$$

$$= 20 \ln 2,$$

$$\approx 13.9 \text{ m (3 sig. fig.)}$$

(β) Using $\ddot{x} = \frac{dv}{dt}$, calculate the time taken to reach the greatest height.

Solution:
$$\frac{dv}{dt} = -\frac{400 + v^2}{40},$$

$$-\int_0^t dt = 40 \int_{20}^0 \frac{dv}{20^2 + v^2},$$

$$-t \Big|_0^t = 40 \times \frac{1}{20} \left[\tan^{-1} \frac{v}{20} \right]_{20}^0,$$

$$-t = 2 \tan^{-1} 0 - 2 \tan^{-1} 1,$$

$$t = \frac{\pi}{2},$$

$$\approx 1.57 \text{ s (3 sig. fig.)}$$

- (ii) After reaching its greatest height, the body falls back to its starting point. The body is still affected by gravity and air resistance.
 - (α) Write the equation of motion of the body as it falls.

Solution:
$$+$$
 $\int_{10}^{v^2/40} \ddot{x} = 10 - \frac{v^2}{40}.$

 (β) Find the speed of the body when it returns to its starting point.

Solution:
$$v \frac{dv}{dx} = \frac{400 - v^2}{40},$$

$$-\int_0^v \frac{-40v \, dv}{400 - v^2} = \int_0^{20 \ln 2} dx,$$

$$-20 \left[\ln(400 - v^2) \right]_0^v = x \right]_0^{20 \ln 2},$$

$$-20 \ln \left(\frac{400 - v^2}{400} \right) = 20 \ln 2 - 0,$$

$$\frac{400 - v^2}{400} = \frac{1}{2},$$

$$v^2 = 400 - 200,$$

$$v = \sqrt{200} \text{ (taking downwards +ve)},$$

$$= 10\sqrt{2},$$

$$\approx 14.1 \text{ m/s (3 sig. fig.)}.$$

3

(d) (i) Find the remainder when $x^2 + 6$ is divided by $x^2 + x - 6$.

Solution:
$$x^2 + x - 6$$
 $x^2 + 6$ $x^2 + 6$ $x^2 + 6$ $x^2 + 12$

So the remainder is 12 - x

Alternatively:
$$\frac{x^2+6}{x^2+x-6} = \frac{x^2+x-6-x+12}{x^2+x-6}, \\ = 1 + \frac{-x+12}{x^2+x-6}.$$
 So again the remainder is $12-x$.

(ii) Hence find $\int \frac{x^2+6}{x^2+x-6} dx$.

Solution:
$$\int \frac{x^2 + 6}{x^2 + x - 6} dx = \int \left\{ 1 + \frac{12 - x}{x^2 + x - 6} \right\} dx.$$

$$\frac{12 - x}{x^2 + x - 6} \equiv \frac{A}{x + 3} + \frac{B}{x - 2},$$

$$12 - x \equiv A(x - 2) + B(x + 3),$$
put $x = 2$, $10 = 5B \implies B = 2$,
$$x = -3, 15 = -5A \implies A = -3.$$

$$\int \frac{x^2 + 6}{x^2 + x - 6} dx = \int \left\{ 1 - \frac{3}{x + 3} + \frac{2}{x - 2} \right\} dx,$$

$$= x - 3 \ln(x + 3) + 2 \ln(x - 2) + c.$$

Sydney Boys' High School

	13462	5	
Student No.:	Q.No	Tick	Mark
	1		
· · · · · · · · · · · · · · · · · · ·	2		
Paper: Mallis Ext 2	3		
mper: much txt Z	4		
	5		12/2
	6		14
ection:	7		
	8		
Sheet No.: of 2 for this Section.	9	,	
Qs.	10		
= 130 /15 1 x 1 = 1 3 wlows	Fe -		e
$3 \times \frac{1}{15} = \frac{1}{5}$.:	,
(b) $(x+1)^n = \binom{n}{n} x^n + \binom{n}{n} x^1 + \binom{n}{2} x^2 \cdots$	· (n) >	c.h.	
Now let $z = -1$ Let $n=2$			ven)
$\int_{0}^{n} = {n \choose 2} - {n \choose 1} + {n \choose 2} - {n \choose 3} - \dots$	n) (-1)	n	<i>]</i>
rearrange (n.) is po	itive	
$\binom{n}{o} + \binom{n}{2} + \cdots + \binom{n}{n} = \binom{n}{n} + \binom{n}{3} \cdots$	+ (n-	`,)	
now n is arbitrary			PI
so we can let n= 2m			1/21
$(2m) + (2m) + \dots + (2m) - (2m) + (2m)$	t	2m)	•

	t
$(ii) \qquad \int_{0}^{1} (x+1)^{n} = \int_{0}^{\infty} (\frac{n}{n}) + (\frac{n}{n}) \times + (\frac{n}{n}) \times \frac{n}{n}$	
$\hat{c} = \frac{1}{n+1} \frac{(\alpha+1)^{n+1}}{n+1} \frac{1}{1}$	
2 2 1 - 1	
N+1	
Now RHS =	
$= \binom{n}{0} + \binom{n}{2} + \binom{n}{2} - \binom{n}{N}$ $= \binom{n}{0} + \binom{n}{2} + \binom{n}{2} - \binom{n}{N}$ $= \binom{n}{N} + \binom{n}{N} $	
$\frac{2^{n+1}-1}{n+1} = \binom{n}{n} + \frac{\binom{n}{2}}{2} + \frac{\binom{n}{2}}{3} - \frac{\binom{n}{n}}{n+1}$	V
E) i just $(A-B) = \omega s(A+B) = \omega sA \omega sB + sin Asin B - (\omega sA \omega sB - sB)$ $= 2 \sin A sin B$	in A si
o∈o ∨	-,
(ii) $\omega s n \theta - \omega s (n + 1) \theta = \omega s (n + \frac{1}{2} - \frac{1}{2}) \theta + \omega s (n + \frac{1}{2} + \frac{1}{2}) \theta$	j
$= 2\sin\left(n+\frac{1}{2}\right)\theta \sin\frac{\theta}{2}$	
(i)	
(iii) Lust+2+ z²++ zn	
grane tric series	Λ.,
where $a = 1 \ k = 2$ LHS = $\frac{1(1-z^{n+1})}{1-z^{n+1}}$	\/ \/
1-2	
QED	

5.H-5	

Sydney Boys' High School

		13481	b	•
tudent No.: _		Q.No	Tick	Mark
		1.		
-		2		
aper:	Maths Ext 2.	3		3
aper:	mamy Ext Z.	4		
		5		
_		6		
ection:	<u>C</u>	7		
_		8		
heet No.:	Z of Z for this Section. Fe.	9		
	Q6. "FF"	10		
	$= x(nx)^{n} \int_{1}^{e} -n \int_{1}^{e} (nx)^{n}$ $= e - 0 - n I_{n-1}$ $= e - n I_{n-1}$			
	QEP.		· · · · · · · · · · · · · · · · · · ·	
ũ)	I	· 		
	I = e - (e-1) = 1			
	I ₂ = e-2I, = e-2			
	$I_3 = e - 3(e-2) = -2e + 6$. /	
·	I4 = e - 4 (-2e + 6)			

- 9	
(b)	Jx + Jy = Jo
	05 X 5 C
11.11	(±0, 30) 0 ≤ y ≤ U
	x, C
	1 1 1
	$\frac{1}{2}x^{-\frac{1}{2}} + \frac{1}{2}y^{-\frac{1}{2}}y' = 0$
	y'- y'- \\ \frac{y}{x}
	$M = -\sqrt{\frac{y_0}{x_0}}$
eaua	tion of tangent at (xo, yo)
	$y-y=-\frac{y_0}{\pi o}(x-x_0)$
	when z=0 g=y !
	y, -y 0 = 2 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	$= \sqrt{x_0 y_0}$
	y, = 90 + 1×6η.
	J1 J0 , 120 A0
	when y=0 >c+2c,
	$-y_0 = -\sqrt{\frac{3}{2}} (x_1 - x_0)$
1	$\sqrt{x_0 y_0} = x, -x_0$
	$3c = x_0 + \sqrt{x_0 y_0}$

now sum of intercepts is
2, + y, = x, + Jz, y, + Jz, y, + y,
= 2. + 2 Jx, y, + y,
± (√x, +√y,)²
= (Ji) 2
= (Ji) ² = (/////
QE D,
(C) (i) 5, = d+B+8 = (sum of roots) = -(0)
$= 0$ $S_{2} = (\alpha^{2} + \beta^{2} + \beta^{2} = (\alpha + \beta + \beta)^{2} - 2(\alpha \beta + \beta \beta + \alpha \beta)$
= 0-Z (\(\S \alpha \B)
= 0 - 2 (q)
Cii) ponsidu ing
(ii) considering $x^{3} + q\alpha + r = 0$ $8^{3} + q\beta + r = 0$ $0^{3} + q\gamma + r = 0$ $0^{3} + q\gamma + r = 0$
03+gx+cx
8° + 48 + V = 0 3
$Q + Q + \beta = \lambda^3 + \beta^3 + \beta^3 + \beta = 0$
$-2\alpha^3+\beta^3+\gamma^3=-3r$
5 ₃ =-3r

possider $S_8 \times S_2 = (\alpha^3 + \beta^3 + \delta^3)(\alpha^2 + \beta^2 + \delta^2)$
= -3x x - 2q = 6qx
capand LHS
= x + p 5 + y 5 + x = p 2 + p 3 x 2 + p 2 y 3 + B 3 y 2 + d 2 y 3 + o 2 x 3
= ~5+B5+ 75+ 28 (N+B)+ B202 (B+X) + 0202 (N+D)
1000 N+B+ 8=0
$LMS = d^{5} + \beta^{5} + \gamma^{5} - \alpha^{2}\beta^{2} \lambda \beta^{2} \lambda^{2} \lambda \lambda \lambda^{2} \lambda^{2} \lambda^{2}$
= 25+85+85-288 (2B+B8+28)
$- \lambda^5 + \beta^5 + \lambda^5 + \eta r = 69r$
2.E.D
<u>'</u>

	now let $z = 400$
, ,	1- (cist)
	$1 + is\theta + (is\theta)^2 + (is\theta)^2 \cdot \dots = \frac{1 - (is\theta)^{n+1}}{1 - is\theta}$
	Now find real parts of
	both sides
1 14	5 = 1+ 050 + 0520 + 0330 + 0300
	2e (LHS)= 1+ 100 0 + 10620 + 106 n.0
R)	16 = 1- cis (n+1)0 1- ws (n+1)0-sin (n+1)0
	1- 103 0 - 10 in 0)- 105 0 - 16 in 0
	Realize & disregard imaginary part
<u> </u>	
e [[$1 - \cos(n+1)\theta - i\sin(n+1)\theta \qquad (1 - \cos\theta) + i\sin\theta$ $(1 - \cos\theta) - i\sin\theta \qquad (1 - \cos\theta) + i\sin\theta$
·····((1-650) - 65(n+1)0+65865(n+1)0+6in 0-sin (n+1)0
	(1-ωs θ) + sin + Θ
	1-650 - 65(n+1)0 + 650 65(n+1)0 + sinosin (n+1)0
2	
	14 1-21058 + 10520 + 61n20
	
	1-1050 - 105(n+1)0 + 105(n+1-1)0 2-21050
.	$\frac{1}{2} + -\omega_s(n+1)\theta + \omega_s(n\theta)$
	2-2650
	$\frac{1}{2} + \frac{2 \sin (n + \frac{1}{2})\theta \sin \frac{\theta}{2}}{\sin \frac{1}{2}} = from (1i)$
-	7-21058
:	$2-2ioS\theta = 4 (5-5ioS\theta)$
= =	$\frac{1}{2} + \frac{2 \sin{(n+\frac{1}{2})} \theta \sin{\frac{\pi}{2}}}{2 \sin{\frac{\pi}{2}}} = 4 \sin^2{\frac{\pi}{2}}$
	4 sin 2
7	= 1/2 + sin[(n+1/2) 0] QED
	2 cin D

