J.M.J.Ch

MARCELLIN COLLEGE RANDWICK

MATHEMATICS

YEAR 10 Stage 5.3

ASSESSMENT TASK 2 2017

Weighting: 30% of	Assessment Mark		
STUDENT NAME:	. (, ,	MARK:	´/75
TEACHER:	MATHS A LOBO	MATHS B ROBINS	;
Time Allowed:	75 minutes		

Directions:

- · Answer all questions in the space provided.
- Show all necessary working. Where more than one mark is allocated to a question, full marks may not be awarded for answers only.
- Marks may not be awarded for careless or badly arranged work.
- Calculators may be used.

Q1 Algebra	14 /14	Q4 Quadratic Equations		_1	/15
Q2 Further Equations	9 /9	Q5 Financial Maths	•	Ĺ.	/9
Q3 Surds and Indices	17 /17	Q6 Linear Relationships			/11
			TOTAL	•	/ 75

Question 1

Algebra

(14 marks)

a) Fully factorise: $4ab^2 - 8ab$

b) Expand and simplify: 7-2(a-4) 2 mar Ls

c) Factorise then simplify: $\frac{5m+10}{m^2-m-2} \div \frac{m^2-4}{3m^{\frac{2}{3}}} = 3 \mod k$

d) Solve: $\frac{a}{4} - \frac{a+2}{3} = 9$ 3 marks.

a) Solve the pair of simultaneous equations:

$$2x+3y = -14$$
$$x+3y = -4$$

b) Solve the pair of simultaneous equations:

$$x^2 + y^2 = 9$$
$$x + y = 3$$

c) P Solve $8x^3 + 1 = 0$

d) Rearrange the formula to make m the subject:

$$bm-y=z-cm$$

2)

•

e) Solve 7-3n < 4

2 marks

f) Factorise then simplify: $\frac{1}{x^2-1} + \frac{2}{x+1}$

3 marks

Question 3

Surds and Indices

(17 marks)

a) Simplify:

i. $(5x^3y^2)^2$

ii. $6a^4b \div 18a^3b^2$

iii. $\left(\frac{2}{3x}\right)^{-3}$

iv. $(16y^4)$

b) Simplify:

i. $\sqrt{12} - \sqrt{27}$

ii.. 2√3×5√12

iii. $\frac{16\sqrt{12}}{3\sqrt{2}}$

1 6

.

c) Expand and simplify

$$\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)$$

d) Express the following with a rational denominator:

$$\frac{2}{\sqrt{5}+1}$$

Question 4

Quadratic Equations

(15 marks)

6

a) Solve the following equations:

i.
$$x^2 - x = 0$$

ii.
$$4x^2 - 1 =$$

iii.
$$m^2 = 6 - 5m$$

b) Solve by completing the square: $x^2 + 4x - 1 = 0$ (Leave your answer in surd form) 3

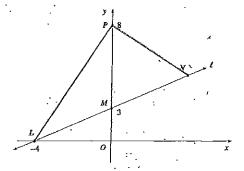
c) Using the Quadratic Formula, solve the following equation, leaving your , answer in the *simplest surd form*.

2

 $3x^2-2x-2=0$

d) A rectangular swimming pool 12m by 8m is surrounded by a concrete path of a constant width. If the area of the path is $224m^2$, find the width of the path.

d) Michael and Lilly plan to have \$20 000 in an investment account in 15 years time for their grandson's university fees.


The interest rate is 3% per annum compounded monthly.

Calculate the amount that they will need to deposit into the account now in order to achieve their plan.

Question 6

Linear Relationships

(11 marks)

a) Show that the equation of LM is 3x-4y+12=0.

2

b) Show that the point (16, 15) lies on the line LM.

l mach

c) Show that ΔPLM is an isosceles triangle.

2

,

d) Calculate the gradient of PL.

2

e) M is the midpoint of the interval LN. Find the coordinates of N.

.'2

Question 1

Algebra

(14 marks)

a) Fully factorise: $4ab^2 - 8ab$

4ab (b-2)

b) Expand and simplify: 7-2(a-4)

7-20-18

=15-2a

c) Factorise then simplify: $\frac{5m+10}{m^2-m-2} \div \frac{m^2-4}{3m+3}$

 $\frac{5(m+2)}{(m+1)(m-2)} \div \frac{(m-2)(m+2)}{3(m+1)}$

 $\frac{5(m+t)}{(m-1)(m-2)} \times \frac{3(m+t)}{(m-2)(m+2)} = \frac{15}{(m-2)(m-2)}$

d) Solve: $\frac{a}{4} - \frac{a+2}{3} = 9$

4: -a-8=108 V -a=116

(a = -116)

 $\frac{3a}{12} - \frac{(4a+8)}{12} = 9$ $\frac{3a-4a-8}{12} = 9$

f) Factorise then simplify: $\frac{1}{x^2-1} + \frac{2}{x+1}$

 $\frac{1}{x^2-1}+\frac{2}{x+1}$

(x-1)(x+1) + (x+1)

 $\frac{1+2x-2}{(x-1)(x+1)} = \frac{-1+2x}{(x+1)(x+1)}$

(9 marks)

a) Solve the pair of simultaneous equations:

$$2x+3y=-14 \text{ (1)} \qquad 2x+3y=-14$$

$$x+3y=-4 \text{ (2)} \qquad x=-4-3y$$

$$5ub \qquad y$$

$$2(-4-3y)+3y=-14 \qquad x=-4-3(2)$$

$$-8-6y+3y=-14 \qquad x=-10$$

$$-8-3y=-14 \qquad y=2$$

$$-3y=-6 \qquad y=2$$

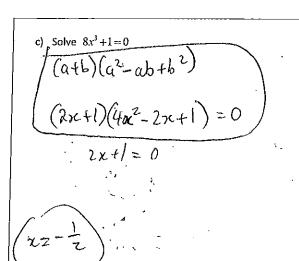
b) Solve the pair of simultaneous equations:

$$x^{2}+y^{2}=9 \text{ (3-y)}^{2}+y^{2}=9$$

$$x+y=3 \text{ (2)}$$

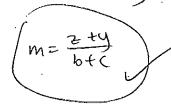
$$x=3-y$$

$$2y^{2}-6y+9=9$$


$$2y^{2}-6y=0$$

$$2y(y-3)=0$$

Sub into (1)


$$x+y=3$$

 $x=y-3$
When $y=x=3$
 $y=03$, $x=0$

y=0,3

d) Rearrange the formula to make m the subject:

$$bm-y=z-cm$$

 $bm+cm=z+y$
 $m(b+c)=z+y$

a) Simplify:

25x by 4

ii. $6a^4b \div 18a^3b^2$

iii.
$$\left(\frac{2}{3x}\right)^{-2}$$

iv. $(16y^4)^{\frac{3}{4}}$

b) Simplify:

 $\sqrt{12} - \sqrt{27}$

 $2\sqrt{3}\times5\sqrt{12}$

1453-5953

iii.

816JZ 14

- 10 Favy = 10x6

c) Expand and simplify

$$(\sqrt{2}+1)(\sqrt{2}-1)$$

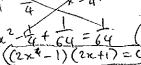
d) Express the following with a rational denominator:

$$\frac{2}{\sqrt{5}+1}$$

$$\frac{2\sqrt{5}-2}{5-1} = \frac{2\sqrt{5}-2}{4} = \frac{12(\sqrt{5}-1)}{24}$$

$$= \frac{\sqrt{5}-1}{2}$$

$i_x x^2 - x = 0$	
<i>a</i> 2 1	1
(x2-x+4	= 9
(L)2	

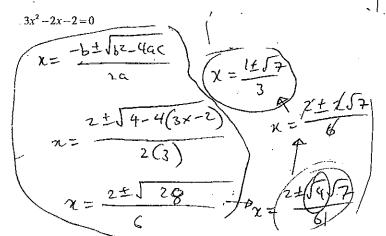

a) Solve the following equations:

$$\begin{cases} x^{2}-x=0 \\ (x-\frac{1}{2})^{2} = \frac{1}{4} \end{cases}$$

$$x = \frac{1}{2} + \sqrt{\frac{1}{4}}$$

$$x = \frac{1}{2} + \frac{1}{2}$$

ii.
$$4x^2 - 1 = 0$$



ii.
$$m^2 = 6 - 5m$$

$$m^2-6+5m=0$$

 $m^2+5m-6=0$

b) Solve by completing the square: $x^2 + 4x - 1 = 0$ (Leave your answer in surd form)

c) Using the Quadratic Formula, solve the following equation, leaving your , answer in the simplest surd form.

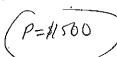
Acons retargle =
$$(12+2\pi)(12+2\pi)$$

= $96 + 40 \times 14 \times 14$

Aren path =
$$96 + 40x + 4x^2 - 96$$

$$= 40x + 4x^2 = 224.$$

$$(x+14)(x-4)=0 \qquad (x>0)$$


Question 5

Financial Maths

(9 marks)

a) James takes out a loan of \$4000 for a period of 2 years at a simple interest rate of 11.5% per annum. How much will he need to pay back per month?

b) Jessica invested an amount for 10 years at 5% p.a. simple interest. He earned \$750 in interest on his investment. How much did he invest?

2

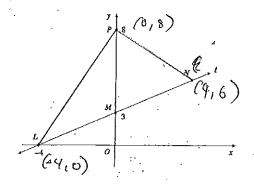
c) A new car is purchased for \$25 000 and depreciated by the 10% p.a. Find, to the nearest dollar, the value of the car after 7 years.

$$A = P(1-R)^{2-n}$$
 $A = 25000(1-0.10)^{2}$

2

d) Michael and Lilly plan to have \$20 000 in an investment account in 15 years time for their grandson's university fees.

The interest rate is 3% per annum compounded monthly. Calculate the amount that they will need to deposit into the account now in order to achieve their plan.


$$A = P(1+R) 20000 = P(1+\frac{0.03}{12}) |5 \times 12|$$

$$20000 = P(1.0025)^{180}$$

Question 6

Linear Relationships

a) Show that the equation of LM is 3x-4y+12=0.

$$y = \frac{3}{4}(-4)+3$$

 $y = 0$ $(-4,0)$

b) Show that the point (16, 15) lies on the line LM.

$$y = \frac{3}{4}x + 3$$

Thus (16,15) lies on the the LM.

In PM (0,8)(0,3)

$$d = \sqrt{(0-0)^2 + (3-8)^2}$$

$$= 5$$
In M($(0,3)(-4,0)$

$$d = \sqrt{(0-3)^2 + (-4-0)^2}$$

a ML
$$(0,3)(-4,0)$$
 $d = \sqrt{(0-3)^2 + (-4-0)^2}$
 $= \sqrt{9+16}$
 $= \sqrt{25} = 5$

Clarified the gradient of PL

d) Calculate the gradient of PL.

$$M = \frac{y_2 - y_1}{x_2 - x_1}$$

$$M = \frac{-4-0}{0-8}$$
 $M = \frac{-8}{-8}$

e) M is the midpoint of the interval LN. Find the coordinates of N.

12

Show that $\angle NPL$ is a right angle.

In CNPL

i. LNPL is a right as k q 2 x b 2 = c 2

END OF EXAMINATION

FORMULA SHEET

Simple Interest

$$I \Rightarrow PRN$$

Compound Interest

$$A = P(1+r)^n$$

Depreciation

$$A = P(1-r)^n$$

Quadratic Formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

. Midpoint Formula

$$M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

Gradient Formula

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Point Gradient Formula

$$y - y_1 = m(x - x_1)$$