SYDNEY GRAMMAR SCHOOL

2013 Annual Examination

FORM V MATHEMATICS EXTENSION 1

Wednesday 28th August 2013

General Instructions

- Writing time 3 hours
- Write using black or blue pen.
- Board-approved calculators and templates may be used.
- A list of standard integrals is provided at the end of the examination paper.

Total — 117 Marks

All questions may be attempted.

Section I - 13 Marks

- Questions 1-13 are of equal value.
- Record your solutions to the multiple choice on the sheet provided.

Section II - 104 Marks

- Questions 14-21 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

Collection

- Write your name, class and master on each booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Place your multiple choice answer sheet inside the answer booklet for Question Fourteen.
- Write your name and master on this question paper and submit it with your answers.

5A: DNW 5B: PKH 5C: RCF 5D: BDD 5E: KWM 5F: FMW 5G: LRP 5H: TCW

Checklist

- SGS booklets 8 per boy
- Multiple choice answer sheet

• Candidature — 150 boys

Examiner

RCF

SGS Annual 2013 Form V Mathematics Extension 1 Page 2

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

The correct factorisation of $10y^2 - 19y + 6$ is:

(A)
$$(5y-2)(2y-3)$$

(B)
$$(5y-3)(2y-2)$$

(C)
$$(5y-2)(3-2y)$$

(D)
$$(3-5y)(2-2y)$$

QUESTION TWO

\boldsymbol{x}	0	5	10
f(x)	1	5	9

The table of values above gives three data points from an experiment modelling an unknown function f(x).

Using Simpson's rule, with three function values, to approximate $\int_0^{10} f(x) dx$, gives the answer:

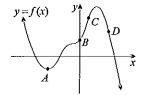
QUESTION THREE

Given that a quadratic function with integer coefficients has a positive non-square discriminant, which of the following statements about its zeroes is true?

(A) Equal zeroes

- (B) Distinct irrational zeroes
- (C) Distinct rational zeroes
- (D) No real zeroes

QUESTION FOUR



For which point on the graph above is f(x) > 0, f'(x) > 0 and f''(x) < 0?

- (A) A
- (B) B
- (C)
- (D) D

Exam continues next page ...

OUESTION FIVE

A correct primitive of $2\sqrt{x}$ is:

(A)
$$\frac{x\sqrt{x}}{3}$$

(B)
$$3x\sqrt{x}$$

(C)
$$x\sqrt{x}$$

(B)
$$3x\sqrt{x}$$
 (C) $x\sqrt{x}$ (D) $\frac{4x\sqrt{x}}{3}$

QUESTION SIX

Which of the following is not equivalent to $\log_e e^2 + \log_e \left(\frac{1}{e}\right)$?

(A)
$$2\log_e e - 1$$

(B)
$$-\log_e\left(\frac{1}{e}\right)$$

(C)
$$\log_e \left(\frac{e^3 + 1}{e} \right)$$

QUESTION SEVEN

The derivative of $\frac{1}{(3-5x)^3}$ is:

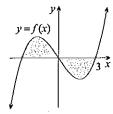
(A)
$$\frac{-15}{(3-5x)^4}$$

(B)
$$\frac{-3}{(3-5x)^2}$$

(C)
$$\frac{15}{(3-5x)^4}$$

(A)
$$\frac{-15}{(3-5x)^4}$$
 (B) $\frac{-3}{(3-5x)^2}$ (C) $\frac{15}{(3-5x)^4}$ (D) $\frac{3}{5(3-5x)^2}$

QUESTION EIGHT



Which of the following definite integrals would correctly evaluate the area shaded above, given that f(x) is an odd function?

(A)
$$\int_{-3}^{3} f(x) dx$$

(A)
$$\int_{-3}^{3} f(x) dx$$
 (B) $2 \int_{0}^{3} f(x) dx$

(C)
$$\left| \int_{-3}^{3} f(x) \, dx \right|$$

(C)
$$\left| \int_{-3}^{3} f(x) dx \right|$$
 (D) $2 \int_{-3}^{0} f(x) dx$

QUESTION NINE

The line perpendicular to y = 5 - 2x and passing through the point (1, -3) has equation:

(A)
$$x - 2y - 7 = 0$$

(B)
$$2x + y + 1 = 0$$

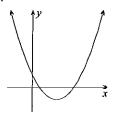
(C)
$$x - 2y + 5 = 0$$

(D)
$$2y + x + 5 = 0$$

Exam continues overleaf ...

SGS Annual 2013 Form V Mathematics Extension 1 Page 4

QUESTION TEN



Which of the following sets of statements is true for the quadratic $y = ax^2 + bx + c$ graphed

(A)
$$a > 0, c = 0, \Delta > 0$$

(B)
$$a \neq 0, c > 0, \Delta < 0$$

(C)
$$a < 0, c > 0, \Delta = 0$$

(D)
$$a > 0, c > 0, \Delta > 0$$

QUESTION ELEVEN

Given a > 0, which of the following functions is continuous but not differentiable at x = a?

(A)
$$y = \log(x + a)$$

(B)
$$y = |x - a|$$

(C)
$$y = ax^3$$

(D)
$$y = \sqrt{x} + a$$

QUESTION TWELVE

The quadratic equation $2x^2 - 18x + c = 0$ has one root twice the other. What is the value of c?

QUESTION THIRTEEN

The derivative of $\ln\left(\frac{1}{r}\right)$ is:

(A)
$$-\frac{1}{x}$$
 (B) x (C) $-e$

(D)
$$\frac{1}{x^2}$$

End of Section I

SGS Annual 2013 Form V Mathematics Extension 1 Page 5				
SECTION II - Written Response				
Answers for this section should be recorded in the booklets provided. Show all necessary working. Start a new booklet for each question.				
QUESTION FOURTEEN (13 marks) Use a separate writing booklet.	Marks			
(a) Simplify:				
(i) $\log_e\left(\frac{1}{e^4}\right)$. 1			
(ii) $\sqrt{18}-\sqrt{8}$	1			
(b) Expand and simplify:				
(i) $4-2(x-3)$	1			
(ii) $(2\sqrt{3} + \sqrt{5})^2$	1			
(c) Find the derivative of:				
(i) $x^2 + 2x + 4$	1			
(ii) $\frac{1}{x}$	1			
(iii) $\log_e(2x+1)$	1			
(d) Determine the exact value of $\tan 150^{\circ}$.	. 2			
(e) Find a primitive of:				
(i) $x^2 + 2x + 4$	1			
(ii) $\frac{4}{x}$	1			
(f) Find the limiting sum of the geometric series $3 + \frac{3}{2} + \frac{3}{4} + \cdots$	2			

QUESTION FIFTEEN (13 marks) Use a separate writing booklet.	Marks
(a) Solve: (i) $(x-2)^2 - 3 = 0$ (ii) $ x-2 = 4$	1
(iii) $(x-2)(x+4) > 0$	1
(b) Form the monic quadratic equation with roots 3 and −4.	1
(c) Let $f(x) = x^3 - 8x$.	
(i) Find $f(1)$, $f'(1)$ and $f''(1)$.	3
(ii) Is $f(x)$ increasing, decreasing or stationary at $x = 1$? Justify your answer.	1
(iii) Is $f(x)$ concave up or down at $x = 1$? Justify your answer.	1
(iv) Find the equation of the tangent to $y = f(x)$ at $x = 1$.	1
(d) (i) Write down the discriminant of the quadratic expression $3x^2 - mx + 3$.	1
(ii) For what values of m does the expression have no real zeroes?	2

QUESTION SIXTEEN (13 marks) Use a separate writing booklet.

Marks

(a) Find the equation of the curve with derivative $\frac{dy}{dx} = 4x - 2$ that passes through the point (2,5).

(b) Evaluate $\int_1^3 2x^3 dx$

2

2

(c)



The graph above shows the parabola $y = 4x - x^2$. Calculate the area of the region enclosed between the curve and the x-axis.

(d) Differentiate the following functions, giving your answers in a factorised form where possible:

(i)
$$(3x^2+2)^4$$

(ii)
$$2x(x+7)^5$$

(iii)
$$\frac{\ln 3x}{x^2}$$

2

(e) Evaluate
$$\lim_{x\to 2} \left(\frac{x^2-4}{x-2}\right)$$
. Show your working clearly.

SGS Annual 2013 Form V Mathematics Extension 1 Page 8

QUESTION SEVENTEEN (13 marks) Use a separate writing booklet.

Marks

- (a) Given the sequence $\sqrt{2}$, $\sqrt{18}$, $\sqrt{50}$, ...
 - (i) Show that the sequence is arithmetic.

(ii) Find the value of the hundredth term.

1

(iii) Find the sum of the first hundred terms.

(b) Suppose that $f(x) = 2x^2 - x$.

(i) Show that $f(x+h) - f(x) = 4xh + 2h^2 - h$.

1

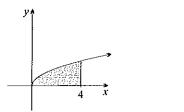
[3]

- (ii) Use the definition $f'(x) = \lim_{h \to 0} \frac{f(x+h) f(x)}{h}$ to find f'(x) from first principles.
- (c) Consider the curve with equation $y = 3x^4 + 8x^3 + 12$.
 - (i) Find the coordinates of any stationary points and determine their nature.
 - (ii) Find any points of inflexion, demonstrating a change in concavity at these points.
 - (iii) Sketch the curve showing all the points found in parts (i) and (ii). You do NOT need to find the x-intercepts.

QUESTION EIGHTEEN (13 marks) Use a separate writing booklet.

Marks

(a) 3



The diagram above shows the region enclosed by the curve $y = 3\sqrt{x}$, the x-axis and the line x = 4. What is the volume of the solid of revolution generated by rotating this region about the x-axis?

(b) Find the following indefinite integrals:

(i)
$$\int (2x+3)^5 dx$$

(ii)
$$\int \frac{x+4}{\sqrt{x}} dx$$

(iii)
$$\int \frac{2x}{4+x^2} dx$$

- (c) (i) Write down the equation of the line with gradient m which passes through the point P(1, -18).
 - (ii) Form a quadratic equation and use the discriminant to find the values of m for which the line through P is a tangent to the parabola $y = 2x^2 + 4x 6$.

(d) Find the value of k if
$$\int_1^k \frac{1}{x^2} dx = \frac{1}{4}$$
.

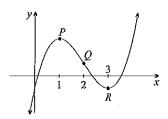
SGS Annual 2013 Form V Mathematics Extension 1 Page 10

QUESTION NINETEEN (13 marks) Use a separate writing booklet.

Marks

[2]

(a)



The function y = f(x) is sketched above. The points P and R are turning points and the point Q is a point of inflexion. Sketch a possible graph of the gradient function, f'(x).

- (b) (i) Sketch the curve $y = \ln(x 1)$, clearly indicating any asymptotes and any intercepts with the axes.
 - (ii) Find the equation of the normal to $y = \ln(x-1)$ at x = 3.
- (c) The equation $x^2 4x + 6 = 0$ has roots m and n.
 - (i) Without solving the equation determine:

(a)
$$m+n$$

$$(\beta)$$
 mn $\boxed{1}$

$$(\gamma) \frac{1}{m} + \frac{1}{n}$$

- (ii) Hence, or otherwise, find a quadratic equation with integer coefficients which has roots $\frac{1}{m}$ and $\frac{1}{n}$.
- (d) Find the area bounded by the curve $y = x^2 2$, the x-axis and the lines x = 1 and x = 2.

QUESTION TWENTY (13 marks) Use a separate writing booklet.

Marks

3

3

(a) Use a suitable substitution to solve $4^x - 5 \times 2^{x+1} + 16 = 0$.

(b) PA = 3

The graph above shows the line y = 2x - 7 and the hyperbola $y = -\frac{3}{x}$, intersecting at $x = \frac{1}{2}$ and x = 3.

The area of the shaded region can be written in the form $\frac{a}{4} + b \ln 6$, where a and b are integers. Find the values of a and b.

(c) Solve $4\cos(2\alpha - 45^{\circ}) - 2\sqrt{3} = 0$ for the domain $0^{\circ} \le \alpha \le 360^{\circ}$.

(d) (i) Differentiate $2x^3 \ln x$.

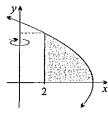
(ii) Hence evaluate $\int_{1}^{2} x^{2} \ln x \, dx$.

SGS Annual 2013 Form V Mathematics Extension 1 Page 12

QUESTION TWENTY ONE (13 marks) Use a separate writing booklet.

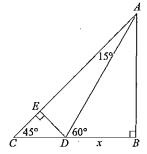
Marks

(a)



The diagram above shows the region bounded by the curve $4x + y^2 - 24 = 0$, the x-axis and the line x = 2. This region is rotated around the y-axis to create a solid of revolution. Calculate the volume of this solid.

(b)



In the diagram above, ABC is a right-angled isosceles triangle. The point D is chosen on BC so that $\angle ADB = 60^{\circ}$, and DE is drawn perpendicular to AC. Let BD = x.

(i) Show that

1

$$DE = \frac{(\sqrt{3} - 1)x}{\sqrt{2}}.$$

(ii) Hence, find an exact value for cos 15°.

2

SGS Annual 2013 Form V Mathematics Extension 1 Page 13

(c) (i) The function f(t) satisfies $0 \le f(t) \le k$ for $0 \le t \le 1$, where k is a constant.

(i) The function f(t) satisfies $0 \le f(t) \le k$ for $0 \le t \le 1$, where k is a constant. 1Explain using a sketch why $0 \le \int_0^1 f(t) dt \le k$.

(ii) By letting $f(t) = \frac{1}{n-t} - \frac{1}{n}$, show that if n > 1 then

 $0 \leq \ln\left(\frac{n}{n-1}\right) - \frac{1}{n} \leq \frac{1}{n-1} - \frac{1}{n}.$

(iii) Hence show that

 $0 \le \ln 2 - \sum_{n=N+1}^{2N} \frac{1}{n} \le \frac{1}{2N}.$

(iv) Use the fact that $\sum_{n=6}^{10} \frac{1}{n} = \frac{1627}{2520}$ to show that

 $6\frac{115}{252} \le \ln 2^{10} \le 7\frac{115}{252}.$

End of Section II

END OF EXAMINATION

SGS Annual 2013 Form V Mathematics Extension 1 Page 14

BLANK PAGE

BLANK PAGE

SGS Annual 2013 Form V Mathematics Extension 1 Page 16

The following list of standard integrals may be used:

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1; \ x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \ x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \ a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \ a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \ a \neq 0$$

$$\int \sec^{2} ax dx = \frac{1}{a} \tan ax, \ a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \ a \neq 0$$

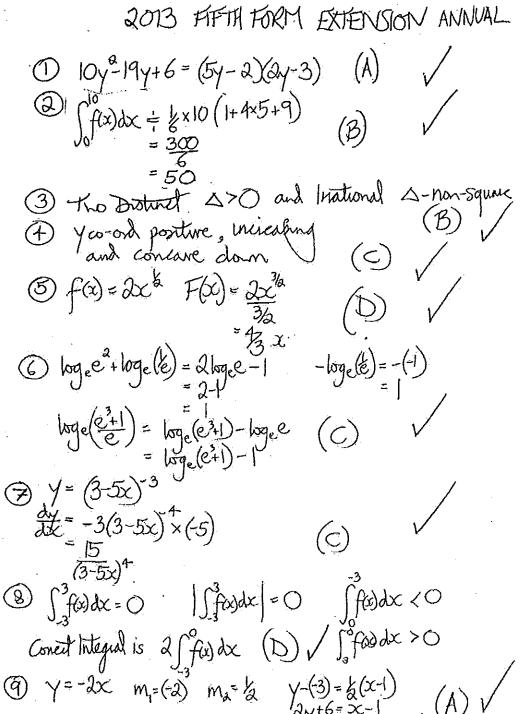
$$\int \frac{1}{a^{2} + x^{2}} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \ a \neq 0$$

$$\int \frac{1}{\sqrt{a^{2} - x^{2}}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$$

$$\int \frac{1}{\sqrt{x^{2} - a^{2}}} dx = \ln \left(x + \sqrt{x^{2} - a^{2}} \right), \ x > a > 0$$

$$\int \frac{1}{\sqrt{x^{2} + a^{2}}} dx = \ln \left(x + \sqrt{x^{2} + a^{2}} \right)$$

NOTE: $\ln x = \log_e x$, x > 0



```
(10) a>0,0>0
(Conswellp) (The District
                        Y-interest
positive
    Let both be & and 2x
     18=8
```

$$(i) = \frac{1}{x}$$

$$= x^{-1}$$

$$= x^{-1}$$

(ii)
$$f(x) = \frac{4}{x}$$

= $4x^{-1}$
 $F(x) = 4\ln|x| + C$

(5) a) (i)
$$(x-2)^2-3=0$$

 $x-2=4$ or $x-2=4$ or $x-2=4$ or $x=6$ or (-2)

$$(ii) (x-2)(x+4)>0$$

b)
$$\alpha(x-x)(x-\beta)=0$$

i. $(x-x)(x+4)=0$ } (either: must include)
or $x^2+x-12=0$ }

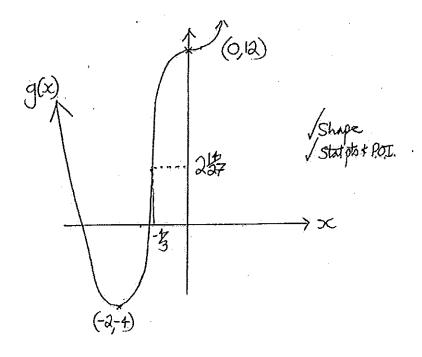
$$\phi(i)f(x) = x^3 - 8x$$
 $f(1) = 1 - 8 = (-7)$
 $f(0) = 3x^2 - 8$ $f'(1) = 3 - 8 = (-5)$
 $f''(x) = 6x$ $f''(1) = 6$

(iv)
$$M = (-5)$$
 (1, -7)
.: Tonget $y+7 = -5(x-1)$
 $5x+y+2 = 0$ (or $y=-5x-2$)

(ii) No real zeroes
$$\triangle < 0$$
: $(m-6)(m+6) < 0$
: $(-6) < m < 6$

(6) a) dy= 4x-2 b) Jax3dx Y= 2x2-2x+C $= \left[2x^{4} \right]_{1}^{3} /$ Grice (2,5) 5=2×22-2×2+C = 40 / 1 y= 2x2-2x+1 $4xiy = (3x^{2}+2)^{4}$ $\int_{0}^{4} 4x \cdot x^{2} dx = \left[2x^{2} - x_{3}^{2} \right]_{0}^{4}$ Chain Rule #-4(3x72)×6X = (32-64)-0 = 96-64 = 33/4 (or 103/42)/ $=24\times (3x^{2}+2)^{3}$ (ii) y-2x (x+7) Product Rule dy=2(x+7)5+2x×5(x+7)/ =2(x+7) | x+7 +5x =2(x+7)(6x+7) e) Lim (x-1) x+2 (x-1) (ii) y= <u>ln3x</u> = Lim ((x+2) (x) dy-x23- 1n3xx2x/ $= \frac{x - 2x \ln 3x}{x^{2}}$

田的原烟烟 b)()f(x) = 2x2-x 12,312,512 f(suh) = 2(xxh)2-(xxh) =2(x+2x++h)-x-h)= =2x2+4x++2h2-x-h 10 t3 t2= 5/2-3/2 -" f(x+h)-f(x) = 4xh+2h2-h (11) for = Lin (45ch+2/2 h) : AP a=12 d=212 (i) t₁₀₀ a+99d = Lin (4x+2h-1) =12+19812 = 199,12 * 4x-1 (ii) S₁₀₀ = 100 (12+199/12) = 10000/21 c) g(x)=3x4+8x3+12 Pasable pts of infliction 9(2)=0 (i) $q(x) = 12x^3 + 24x^2$ 文= O or x= 多/ g(0)=12 g(力)= = 12x2 (x+2) Stateto g(x). 0 ... x=0 ox x=(-2) 9(0)=12 9(2)=3×16-64+12 State (0,12) and (2,-4) (0,12) is stationary port x |-3|-2|-1|0 of inflection from/i) " (-2,-4) Minumen turning point (0,12) Stationary point of inflation/ (i) g"(x)= 36x2+48x = 12x(3x+4) have (-3, 25) is a point of inflection too.

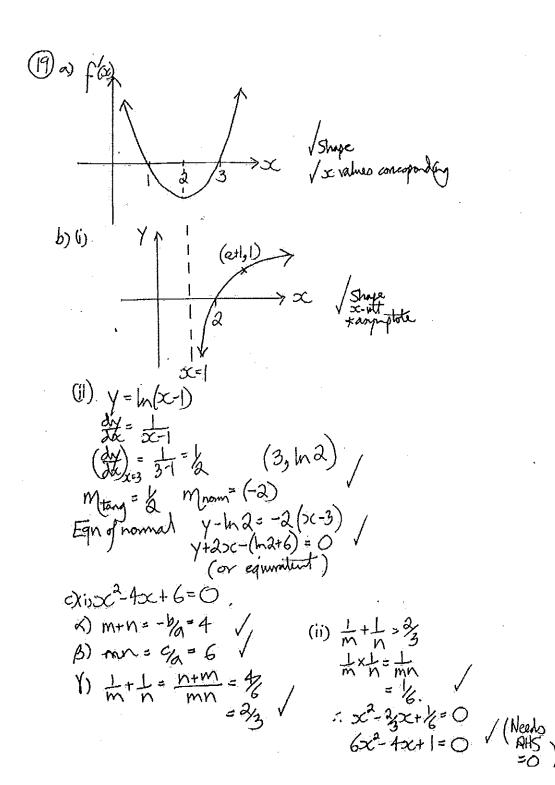


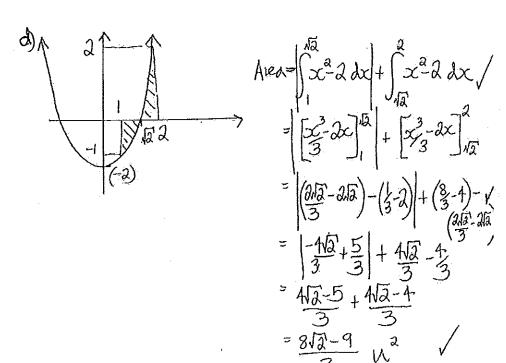
18 a)
$$V = \pi \int_{0}^{4} dx$$

$$= \pi \left[\frac{4}{3} \right]_{0}^{4}$$

$$= \pi \left[\frac{4}{3} \right]_{0}^{4} + C$$

$$= \frac{4}{3} \left[\frac{4}{3} \right$$





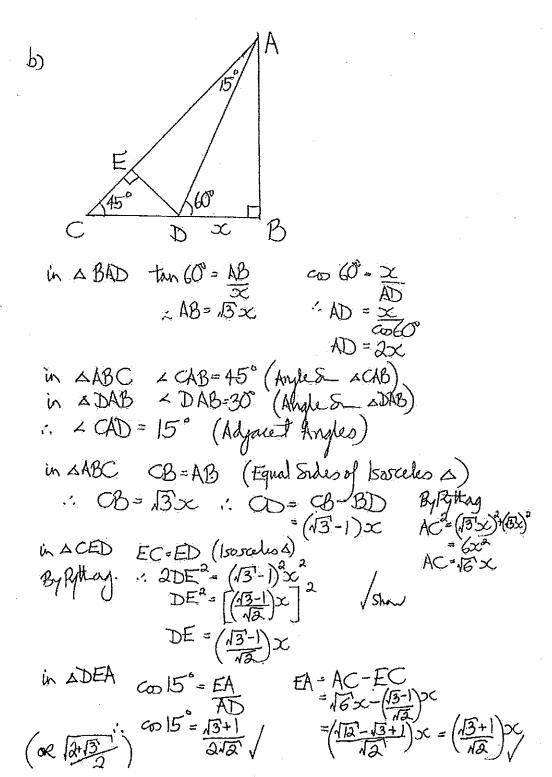
(20)
$$4^{2}-5x^{2x4}+16=0$$
 b) Area between aures

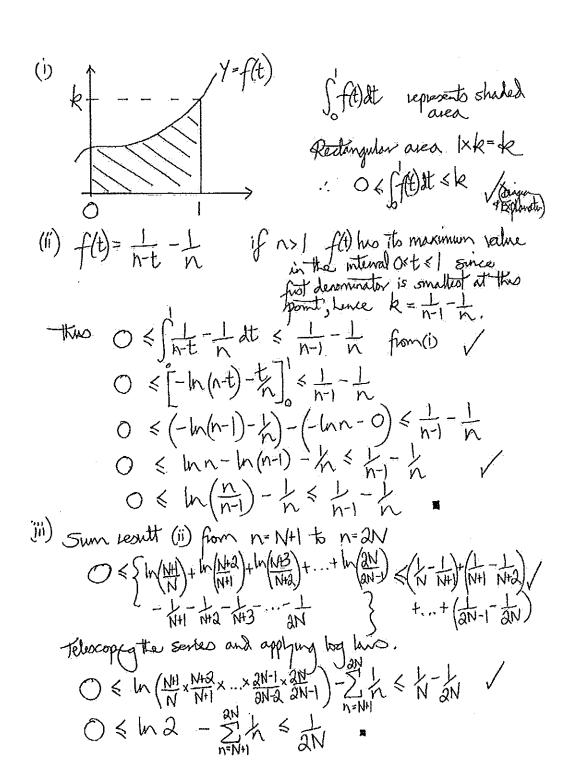
Let $10x^{2} \times 10x^{2} \times 16=0$ b) Area between aures

 $10x^{2}+10x^{2} \times 16=0$ cos ($10x^{2}+10x^{2$

[6/16/192-13+3]

(a)
$$V = \int_{0}^{4} \pi x^{2} dy - \int_{0}^{4} \pi x^{2} dy / ox \int_{0}^{4} \pi x^{2} dy - \int_{0}^{4}$$





(M) path N=5. $0 \le \ln 2 - \frac{10}{2520} \le \frac{10}{10}$ $0 \le \ln 2 - \frac{1627}{2520} \le \frac{10}{10}$ $\frac{1627}{2520} \le \ln 2 \le \frac{1627}{2520} + \frac{252}{2520}$ (×10) $\frac{1627}{252} \le 10\ln 2 \le \frac{1879}{252}$ $6\frac{1}{252} \le \ln(2^{10}) \le 7\frac{115}{252}$