Year 11 Extension 1 Mathematics

Polynomials Test

Wednesday October 25, 2006 Teacher: HRK HRK/CAB JJA/BMM
Question 1. Marked by CAB
a) . Factorise 3x° + 3x*—x—1 ‘ 2

b) Given that x = ] is a zero of the polynomial P(x) =x’ — 11 x* + 3Ix - 21

1. Express P(x) as a product of three linear factors. 2

ii. Sketch P(x)

iii. Hence solve the inequality x*— 77 x* + 31x—21<0 1
Question 2. Marked by BMM
a) Find the remainder when the polynomial P(x) = x’ — 4x is divided by x + 3

i Using long division 2
ii. Using the remainder theorem 1

b) The polynomial P(x) = x’ + ax + 12 has a factor (x + 3). Find the value of a.

2
Question 3. Marked by JJA
a) A polynomial is given by p(x) =x’ + ax? + bx — 18. Find values for @ and b if

(x + 2) is a factor of p(x) and if —24 is the remainder when p(x) is divided by

(x-1 4
b) Find the cubic polynomial with a double root at x =1 and aroot at x =7 that
crosses the y axis at 21. 3
) The polynomial equation P(x) = 0 has a double root at x = g and is monic.
i. By writing P(x) = (x — a)’Q(x), where O(x) is a polynomial, show that
Plla)=0. 2

il. Hence or otherwise find the values of @ and b if x = I is a double

rootof x* +a +bx’ —S5x+1=0

Test continues over the page




Question 4. Marked by HRK i
1
a) If @, Band yare the roots of x* — 3x + I = 0 find: 5
i. a+f+y
ii. af+ By + ya
iii. afy
iv. 1 + 1 + 1
a By
b) When the polynomial P(x) is divided by (x + I)(x —4), the quotient is O(x) and
the remainder is R(x).
i. Why is the most general form of R(x) given by R(x) = ax + b? 1
ii. Given that P(4) = -3, show that R(4) =-3. 4
iii. Further, when P(x) is divided by (x + I), the remainder is 5. Find
R(x) 3
c) P(x) is a monic polynomial of the fourth degree.

When P(x) is divided by x + I and x — 2, the remainde.r's are 5 and —4
respectively. Given that P(x) is an even function [ie. one where P(x) = P(-x)]

6

i. Express it in the form ax* +bx’ +cx* +dx +e

ii. Find all the zeros of P(x)

End of test
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