+ SOL'NS

Year 11 Extension 1 Mathematics

Polynomials Test

Wednesday October 25, 2006

Teacher: HRK HRK/CAB JJA/BMM

Question 1.

Marked by CAB

a) Factorise $3x^3 + 3x^2 - x - 1$

2

- b) Given that x = 1 is a zero of the polynomial $P(x) = x^3 11x^2 + 31x 21$
 - i. Express P(x) as a product of three linear factors.

2

ii. Sketch P(x)

1

iii. Hence solve the inequality $x^3 - 11x^2 + 31x - 21 \le 0$

1

Question 2.

Marked by BMM

- a) Find the remainder when the polynomial $P(x) = x^3 4x$ is divided by x + 3
 - i. Using long division

2

ii. Using the remainder theorem

1

b) The polynomial $P(x) = x^3 + ax + 12$ has a factor (x + 3). Find the value of a.

2

Question 3.

Marked by JJA

- a) A polynomial is given by $p(x) = x^3 + ax^2 + bx 18$. Find values for a and b if (x + 2) is a factor of p(x) and if -24 is the remainder when p(x) is divided by (x 1)
- b) Find the cubic polynomial with a double root at x = 1 and a root at x = 7 that crosses the y axis at 21.
- c) The polynomial equation P(x) = 0 has a double root at x = a and is monic.
 - i. By writing $P(x) = (x a)^2 Q(x)$, where Q(x) is a polynomial, show that P'(a) = 0.
 - ii. Hence or otherwise find the values of a and b if x = 1 is a double root of $x^4 + ax^3 + bx^2 5x + 1 = 0$

1

a) If α , β and γ are the roots of $x^3 - 3x + 1 = 0$ find:

5

6

i.
$$\alpha + \beta + \gamma$$

ii.
$$\alpha\beta + \beta\gamma + \gamma\alpha$$

iii.
$$\alpha\beta\gamma$$

iv.
$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$$

- b) When the polynomial P(x) is divided by (x + 1)(x 4), the quotient is Q(x) and the remainder is R(x).
 - i. Why is the most general form of R(x) given by R(x) = ax + b?
 - ii. Given that P(4) = -5, show that R(4) = -5.
 - iii. Further, when P(x) is divided by (x + I), the remainder is 5. Find R(x) 3
- c) P(x) is a monic polynomial of the fourth degree.

When P(x) is divided by x + 1 and x - 2, the remainders are 5 and -4 respectively. Given that P(x) is an even function [ie. one where P(x) = P(-x)]

- i. Express it in the form $ax^4 + bx^3 + cx^2 + dx + e$
- ii. Find all the zeros of P(x)

End of test

QUAMIVIDE	6	
	QUESTION (iii. $\chi^3 - (\chi^2 3 \chi - 2 \le 0$
		(x-1/x-7/x-3) 60
	a) Factorise 3x3+3x2-x-1	From grouph: $1 \le 1$ AND $3 \le x \le 7$
	$=>3\chi^2(\chi+1)-(\chi+1)$	J 2 5 1 AND 35x57
	$= (\chi + 1)(3\chi^2 - 1)$	
	or = (x+1) J3x -1/J3x +1)	
		· · · · · · · · · · · · · · · · · · ·
	b) $P(x) = x^2 - 1/x^2 + 3/x - 2/$	<u> </u>
····	x=1 1 1 2 200	
	$\frac{\chi^2 - 10\chi + 21}{\chi^2 - 10\chi + 21}$	
	$(\chi-1)$) $\chi^3-1 \chi^2+3 \chi-2 $	
	$\frac{\chi^3 - \chi^2}{-10\chi^2/3/\chi}$	
•	-10×131× -10×2+10×	
	21x-21	
	2(x-2/	
	Ò	
	$x^{2}-10x+21$ $=(x-7)(x-3)$	
	$-\frac{(x-7)(x-3)}{}$	·
/.	P(x) = (x-1)(x-7)(x-3)	
	$\frac{1(x)=(x^{-1})(x^{-1})(x^{-3})}{(x^{-1})(x^{-3})}$	
		(x-1/2, 2/2, 2)
	1	$\frac{(x-1)(x-7)(x-3)=0}{x^2-13.7}$
		7 - 13,1/
	3 7 X	
		
	1-6	

(a)
$$P(x) = x^3 - 4x$$
 (x+3)
 $(x^2 - 3x + 5)$
 $(x^3 + 3x^2 - 4x + 0)$
 $(x^3 + 3x^2 - 4x + 0)$

$$(11)$$
 $P(-3) = (-3)^3 - 4(-3)$
= -27 + 12 /
= -15 \tag{-15}

(b)
$$P(-3) = (-3)^3 - 3\alpha + 12 = 0$$

 $-27 - 3\alpha + 12 = 0$
 $-15 - 3\alpha = 0$
 $15 = 3\alpha$

2	
3	
SE QUAM VIOEHU	Treplan
	factor, der the
	Ja) p(n) = == + an + bn - 18 Perainder
	P(-z) = -8 + 4e - 2b - 18
	0 = 42-26-26 Po not use
	2a-6=13 (1) long division.
	1049 010 130011 - 1
	P(1) = 1 + a + 6 - 18
	724 = a+6-17
	(a+b7) (2)
	6 = -7 - a
	6 = 7 - 4
·	2a - (-7-a) = 13
	347=13
	3 = 6
	$\frac{a=2}{=} \sqrt{4}$
	. – 6
	a+6 =-7 (2)
	2+6 = -7
	6 = -9
•	
	13/2/
	(a) = $k(n-1)(n-7)$ (annot do:
	$n = 0$ $= 21$ $P(x) \neq (x-1)^2(x-7) + 21$
	$z_1 = k(-1)^2(-7)$ (3) (n-1) and (x-7)
	21 = - 7k would not be factors
. '	k = -3 / if this were the
	Case.
	$\ell(n) = -3(n-1)(n-7)$


```
* IST WRITE
 (4a) x^3 + 0x^2 - 3x + 1 = 0
                              P(-1) = (-1) + c(-1) + e = 5
(5) i 2+ B+ 8 = 0
  1+c+e=5
b) idea R(x) < dea (quotient)

dea (Quitient) = 2

i. dea R(x) < 2

... R(x) = ax + b is most
                          2 - 0
3c = -24
   general form.
(b) P(x) = (x + 1)(x - 4) Q(x) + ax + b

P(4) = (4 + 1)(4 - 4) Q(4) + 4a + b
                                     P(x) = x^4 - 8x^2 + 12
   now = 4a+b
  \int P(4) = -(5)
  1. 4a+b=-5
                                      12-81+12=0
    ie R(SI) = -5-//
                                     (V-6)(V-2)=0
  iii P(1) = 5 @ 0 -a+b=5 0
  and from (ii) P(4) = -5
                                      \chi^2 = 6, 2
        ie 4a+b=-5 2
   solve (), (2)
                                     x==56, +52
   1-2 5a =-10
         ... b = 3
    hence R(x) = asc+ b
               = -zx+3
  c) P(x) = ax^4 + bx^3 + cx^2 + dx + e
   Monie : a = 1
   P(-1) = 5
   P(2) = -4
    EVEN : P(x) = P(-x) : b = d = 0
         ie P(x) = x4 + x2 + e = 0
```