
2018

Multiple choice Questions 1 to 10

- Each question is worth 1 mark
- Circle your chosen answer on the question paper

Question 1

Question 2

What is the gradient of the curve $y = x^2 - x - 6$ at (6, 24)?

(A)	11	(B) 12
(C)	23	(D) 24

Question 3

	of the tangent to the curve $y = x^2 - 2x$ at the point
(1,-1)?	
(A) $y = -1$	(B) $y = 1$
(C) $y = x + 2$	(D) $y = x - 2$

Homebush Boys High School

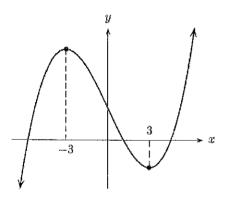
HSC ASSESSMENT TASK 2

2018 MATHEMATICS

Time allowed -90 minutes

Name: Class: Teacher: **General Instructions** o Attempt all questions o Questions 1 to 10 are multiple o Write using blue or black pen choice • All necessary working should be Total marks (60) shown for every question Question Mark Out of -• Approved calculators may be 1 - 1010 used 11 13 o Begin each question on a new 12 13 page clearly marked "Question 1", "Question 2", etc. 13 13 o Write your name on every sheet 14 11 of paper handed in. Total 60

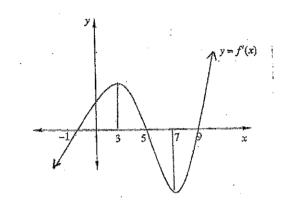

J.Kaur


HBHS Assessment Task 2	HSC Mathematics	2018

Question 4

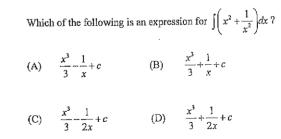
The curve $y = of a$?	The curve $y = ax^2 - 6x + 3$ has a stationary point at $x = 1$. What is the value of a?			
(A) 2	(B) -1			
(C) 3	(D) -3			

Question 5

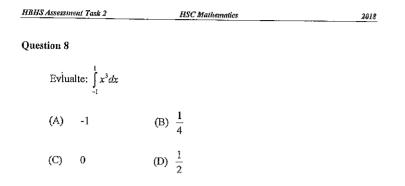


- (A) x < -3 or x > 3
- (B) -3 < x < 3
- (C) $x \leq -3$ or $x \geq 3$
- (D) $-3 \le x \le 3$

Question 6

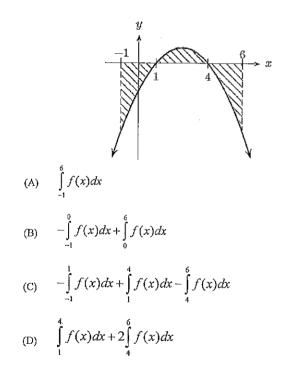


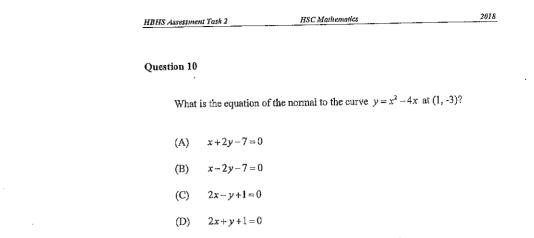
A maximum turning point on y = f(x) occurs at:


(D) x = 7

Question 7

.


2018



Question 9

J.Kaur

Which of the following expressions gives the total area of the shaded region in the diagram?

End of Multiple choice section

HBHS Assessment Task 2	HSC Mathematics	

3

3

2

2

1

2

Р. 7

2018

~

(a) If
$$y = \frac{\sqrt{x+1}}{x}$$
 show that $y' = \frac{-x-2}{2x^2\sqrt{x+1}}$.

A function is defined by $f(x) = x^3 - 3x^2 - 9x + 22$ (b)

(iv) For what values of x is the graph of y = f(x) concave up?

Given that $f(x) = ax^4 + 5x - 6$. Find the value of a if f'(1) = -2(c)

Question 12(13 marks) Begin a new booklet Find the primitive of $\frac{x}{3} + \frac{1}{x^2}$ 2 (a) (b) Find the values of k if $\int (x+1)dx = 6$ 3 Evaluate $\int x\sqrt{x} dx$. Leave your answer in simplified exact form. 3 (c) The shaded region is bounded by the parabolas $y = x^2 - 2x$ and (d) $y = 4x - x^2 + 8$ $y = x^2 - 2x$

> Find the coordinates where the curves $y = 4x - x^2 + 8$ and 2 (i) $y = x^2 - 2x$ intersect.

 $y = 4x - x^2 + 8$

Calculate the area bounded by the two curves (ii)

3

J.Kaur

Quest	ion 13	(13 marks) Begin a new page		(c)	The diagram illustrates the shape of a vessel obtained by rotating, about the y-axis, the part of the parabola $y^2 = 5x$ between $y = 0$ and y = 5
(a)		The two curves $y = p(x)$ and $y = h(x)$ are sketched below. Different areas enclosed by the curves and the axes are labelled A to G.			۲. ۲
		The integrals below represent the sum of which areas.			Show that the volume of the vessel is 25π cubic units.
	(i)	$\int_{0}^{4} p(x) dx$	1	(d)	Sammy needs to estimate the area of the following hole in the wall, which is divided into four equal intervals.
	(ii)	$\int_{1}^{5} (p(x) - h(x)) dx$	1		NOT TO SCALE
	(iii)	Give an integral which would define the area denoted by letter G.	1		30 cm 36 cm 41 cm 45 cm 17 cm
					1 metre
(b)		Find:			
	(i)	$\int (\sqrt{2-x}) dx$	2	(i)	Copy and complete the table below:
	(ii)	$\int \frac{4x - x^4}{x^3} dx$	2		Distance from the left edge(cm)0100Height of hole(cm)3036
			.9	(ii)	Use Simpson's Rule and all the values from the table to find an approximation for the area of the hole.

2018

.

HBHS Assessment Task 2

J.Kaur

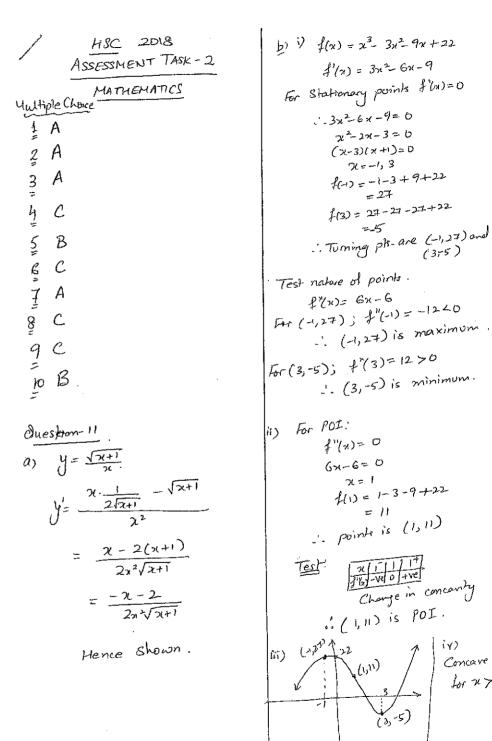
HSC Mathematics

2018

3

HSC Mathematics

HBHS Assessment Task 2


J.Kaur

P. 10

1

2

HBHS Assess	nent Task 2 HSC Mathematics 26	18
Question 1	4 (11 marks) Begin a new booklet	
(a) (i)	Sketch $y = f(x)$ given that $f'(x) < 0$ for $x < 0$, $f'(x) > 0$ for $x > 0$ and $f(0) = f'(0) = 0$	2
(ii)	State a possible equation for $y = f(x)$	1
(b) (i)	Let $f(x) = 3x^2 + 1$ Copy the following table and find the missing values. x = 0 0.2 0.4 0.6 0.8 1 f(x) = 1 4	1
(ii)	Use these six values of the function and the trapezoidal rule to find the approximate value of : $\int_{0}^{1} (3x^2 + 1) dx$	2
(c)	Joe is building a small toy box with no lid. The box is twice as long as it is wide. The box has a total external surface area of 3750 cm^2 . h cm 2x cm	
(i)	Show that the height h of the toy box is given by $h = \frac{625}{x} - \frac{x}{3}$	1
(ii)	Find the dimensions of the box which gives a maximum volume.	2
(iii)	Joe decides that height of the box will be $10\frac{5}{6}$ cm. Find the new dimensions of the box and hence find its volume if the surface area is to remain at 3750cm ² .	2
	End of Examination	

ir)

Concare up

for 273

J.Kaur

.

P. 11

V"
$$\angle 0$$
 at $z = 2s$
is Maximum Volume Dicuv
at $z = 2s$
Dimensions of the box :
 $50, 25, \frac{50}{3}$
ii) Since Surface area remain;
same and height is alarger?
i. $h = 10\frac{c}{5} = \frac{65}{6}$
i. $\frac{625}{2} - \frac{7}{3} = \frac{65}{6}$
 $3750 - 2n^2 = 652$
 $2n^2 + 65x - 3750 = 0$
 $\chi = -\frac{65 \pm \sqrt{8123/450000}}{4}$
 $= 30$
New Driment with the f
Seare S-A one: 30, 60, $10\frac{5}{6}$

) Since Surface area remains
some and height is charger
:
$$h = 10\frac{5}{6} = \frac{65}{6}$$

: $\frac{685}{7} - \frac{7}{3} = \frac{65}{6}$
 $3750 - 2n^2 = 65n$
 $2n^2 + 65n - 3750 = 0$
 $n = -\frac{65 \pm \sqrt{21235} + 30000}{4}$
 $= -\frac{65 \pm 185}{4}$
 $= 120$, $(-\frac{270}{4})$ Rayer
 $= 30$.
: New Domense with the
Same S-A are: 30, 60, 105
f Volume = $30 \times 60 \times 10\frac{6}{6}$