

SECTION 1 . Objective Response Ouestions (5 marks)

Use the Objective Response answer sheet for Question 1 - 5.

1. Which of the following is the exact value of sin 120°?

$(A)\frac{\sqrt{3}}{2}$	·· ·	 	··
(B) √3			s.
(C) $\frac{-\sqrt{3}}{2}$, , ,
$(D)\frac{2}{\sqrt{3}}$			

General Instructions

- Working Time ~ 75 minutes
- Write using blue or black pen. Pencil may be used to draw diagram.

HSC Mathematics

- Board approved scientific calculators may be used,
- Write your student number on each new answer booklet.
- The marks indicated are a guide only.

Total marks – 45

- SECTION I ~ (5 marks)
- * Attempt all questions in this section.

Assessment Task 1 23 November 2017

- Answers Objective Response question (1) to (5) on the separate answer sheet.
- Allow about 8 minutes to complete this section.

SECTION II ~ (40 marks)

- Attempt ALL questions in this section
- Start a new answer booklet for each question.
- Clearly label each question part
- Work down the page.
- All necessary working must be shown.
- Full marks may not be awarded for careless or badly arranged work
- Allow about 67 minutes for this section.

2. The function y = f(x) is shown below. Which of the following is true at the point A?

- (A)f'(x) > 0, f''(x) > 0(B)f'(x) > 0, f''(x) < 0
- (C) f'(x) < 0, f''(x) > 0
- (D)f'(x) < 0, f''(x) < 0

3.

Given $\cos x = \frac{1}{7}$ and $\tan x < 0$), what is the exact value of cosec x?
---	--

(A)
$$\frac{\sqrt{33}}{7}$$

(B) $\frac{7}{\sqrt{33}}$

4

(C)
$$-\frac{\sqrt{33}}{7}$$

(D) $-\frac{7}{\sqrt{33}}$

4. Which of the following is the solution to $2\cos\theta = 1$ for $0^\circ \le \theta \le 360^\circ$?

- (A) $\theta = 60^{\circ}$
- (B) $\theta = 60^{\circ}, 300^{\circ}$
- (C) $\theta = 120^{\circ}, 240^{\circ}$
- (D) $\theta = 60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ}$
- 5. In the diagram, XYZ is a triangle where $\angle ZXY = 60^{\circ}$ and $\angle ZYX = 45^{\circ}$. What is the exact value for $\frac{x}{2}$?

End of Section I

2

SECTION II

Total marks (40) Attempt Questions 6-8

Start each question in a new answer booklet. Correctly label each booklet with your student number and the appropriate question number.

Question 6	Start a new answer booklet	(12 marks)

 HIJK is a quadrilateral with vertices H(-4, -3), I(0, -1), J(6, -2) and K(2, -4).
 Draw this information onto a number plane in your writing booklet.

- (i) Prove that HIJK is a parallelogram but *not* a rectangle. 3
- (ii) Show that the equation of *HI* is x 2y 2 = 0 1
- (iii) Find the exact perpendicular distance from *K* to *HI*. 2
- (iv) Hence or otherwise find the area of the parallelogram 2 HIJK.

(b) Aaron and Carl leave point B at the same time. Aaron walks on a bearing of 310° at a speed of 1.8km/h and Carl walks on a bearing of 070° at a speed of 2.4km/h.

Copy the diagram above into your booklet and label the given information on your diagram.

- (i) How far apart are Aaron and Carl after 2 hours? 2 Answer to 1 decimal place.
- $\stackrel{1}{\downarrow}$ (ii) What is the true bearing of Carl from Aaron after 2 2 hours?

End of Question 6

3

Question 7

(a)

(c)

Start a new answer booklet

Not To Scale

3

Ouestion 8

(a) A rectangular box, open at the top, is to be constructed out of a thin sheet of metal. It has a base which is twice as long as it is wide.

- (i) The box is to have a volume of 2304 cubic units. 1 If its width is x units and its height is y units, find an equation for y in terms of x.
- Show that the area A, in square units, of sheet metal 2 required is given by

$$A = 2x^2 + \frac{6912}{x}.$$

- (iii) Hence find the least area of sheet metal required to make 3 such a box.
- (b) A triangle *ZAY* is constructed using the base of a rectangle *WXYZ*, with intersection points *B* and *C* as shown. *AE* is the altitude of the triangle *ZAY*.

- (i) Copy the diagram into your writing booklet and 3 prove that ΔBAC is similar to ΔZAY .
- (ii) The area of $\triangle ZAY$ is three times the area of the 2 rectangle WXYZ. Show that AD = 5

 $\frac{AD}{AE} = \frac{5}{6}$

(iii) Hence or otherwise, show that 6CX + 6BW = ZY 2

End of Task

The angles of elevation of the top of a tree T from two points on the ground P and Q, are $10^{\circ}12'$ and $14^{\circ}38'$ respectively.

0

14-38

Γ^IB

Find the height of the tree BT to the nearest metre.

10-12

100m

- (b) For the curve $f(x) = x^3(4-x)$
 - (i) Find the coordinates of the stationary points and determine their nature.
 - (ii) Find the coordinates of any points of inflexion.
 - (iii) Sketch the graph of y = f(x) for $-1 \le x \le 4$
 - (iv) For the given domain $-1 \le x \le 4$ when is the curve 1 concave up?

Prove that
$$\frac{1}{secA-1} + \frac{1}{secA+1} = 2cotAcosecA$$

3

3

2

3

End of Question 7

4

HSC Maths Task I Nov 2017

.

ρl

 $\frac{1}{2} \quad \frac{\sin 120^{\circ} = \sin 60^{\circ}}{2}$ $\frac{1}{2}$ A $\frac{1}{2}$ $\frac{1}{2}$ A $\frac{1}{2}$ $\frac{1}{2}$

3. $\cos x = \frac{4}{7}$ tan x < 0 $\sin x = -\frac{33}{7}$ $\cos x = -\frac{7}{33}$ $\cos x = -\frac{7}{33}$ $\cos x = -\frac{7}{33}$

4.
$$2\cos \Theta = 1$$

 $\cos \Theta = \frac{1}{2}$ + in 1st + 4th Quadkant
 $\Theta = 60^{\circ}$, 300° B

5.
$$\frac{x}{\sin 60} = \frac{y}{\sin 45}$$
$$\frac{x}{y} = \frac{\sin 60}{\sin 45} = \frac{\sqrt{3}}{2} \times \frac{\sqrt{2}}{1}$$
$$= \frac{\sqrt{6}}{2}$$

$$\begin{array}{c} (2 \ 6 \ a) \\ i. \\ \hline \\ m_{kr} = \frac{-1+3}{0+4} = \frac{1}{2} \\ m_{kr} = m_{jk} \\ m_{jk} = \frac{-1+3}{0+4} = \frac{1}{2} \\ m_{jk} = \frac{m_{jk}}{1} \\ m_{jk} = \frac{-1}{0+2} \\ m_{jk} = \frac{-1}{2} \\ m_{$$

1. $c^{2} = a^{2} + b^{2} - 2bc \cos \mathbf{C}$ $Ac^{2} = 3.6^{2} + 4.8^{2} - 2(3.6)(4.8) \cos |20^{\circ}$ $Ac^{2} = 53.28$ AC = [7.3km]

ii. $\frac{\sin \angle BAC}{4.8} = \frac{\sin 120}{7.3}$ $\sin \angle BAC = 34.7^{\circ}$ $130 - 34.7^{\circ} = [95.29^{\circ}]$ True bearing [095°]

7 b)
$$f(x) = xc^{3} (4 - xc)$$

 $= 4x^{3} - x^{4}$
i. $f'(x) = 12x^{2} - 4x^{3} = 0$
 $4x^{4}(3 - x) = 0$
 $x = 0$ $x = 3$
 $f''(x) = 24x - 12x^{2}$
 $f''(x) = 24x - 12x^{2}$
 $f''(x) = 24x - 12x^{2}$
 $f''(x) = -36 < 0$
possible pt. of inflection max
 $\frac{x}{1-1} = 0$ | 1
 $f''(x) = -36$ | $f''(x) = -36 < 0$
possible pt. of inflection max
 $\frac{x}{1-1} = 0$ | $\frac{1}{1-1}$
 $f''(x) = -36$ | $\frac{1}{2}$ | $\frac{1}{2}$ | $\frac{2}{3}$
 $f''(x) = 24x - 12x^{2} = 0$
 $12x (2 - x) = 0$
 $x = 0$ $x = 2$
 $\frac{12x (2 - x) = 0}{12x (2 - x) = 0}$
 $x = 0$ $x = 2$
 $\frac{12x (2 - x) = 0}{12x (2 - x) = 0}$
 $\frac{12x (2 - x) = 0}{12x (2 - x) = 0}$
 $\frac{12x (2 - x) = 0}{12x (2 - x) = 0}$
 $\frac{11}{12x (2 - x) = 0}$

7 c) Prove
$$\frac{1}{\sec A - 1} + \frac{1}{\sec A + 1} = 2 \cot A \csc A$$

LHS = $\frac{\sec A + 1}{\sec^2 A - 1}$
= $\frac{2 \sec A}{\tan^2 A}$
= $\frac{2}{\cosh^2 A} \div \frac{\sin^2 A}{\cos^2 A}$
= $\frac{2}{\cos A} \div \frac{\cos^2 A}{\sin^2 A}$
= $\frac{2}{2 \times \cosh^2 A} \times \frac{1}{\sin^2 A}$
= $2 \times \cosh^2 A \times \frac{1}{\sin^2 A}$
= $2 \coth A \csc A$
= $2 \coth A \csc A$
= RHS

.

PЬ

i. Volume =
$$2x^2y = 2304$$

 $y = \frac{2304}{25c^2} = \frac{1157}{2c^2}$

ii.
$$A = 2xy + 4xy + 2x^{2}$$

= $2x^{2} + 6xy$
= $2x^{2} + 6x(\frac{1152}{x^{2}})$
= $2x^{2} + \frac{6912}{2x}$ as required.

iii.
$$\frac{dA}{dx} = 4\pi - \frac{6912}{x^2} = 0$$

 $4\pi^3 - 6912 = 0$
 $4\pi^3 = 6912$
 $\pi^3 = 1728$
 $\pi = 12$
 $\frac{d^2A}{dx^2} = 4 + \frac{13824}{\pi^3} > 0$ when $\pi = 12$
 \therefore concave up \rightarrow minimum area when $\pi = 12$
 \therefore concave up \rightarrow minimum area when $\pi = 12$
Minimum Area is $2\times 12^2 + \frac{6912}{12} = 864$ units²

8b
ii. Area
$$= 3$$
 Area $= 2$ $= y$

 $\frac{1}{2} ZY \times AE = 3 ZY \times DE$ $ZY \times AE = 6 ZY \times DE$ AE = 6 (AE - AD) AE = 6 AE - 6AD 6AD = 5AE $\boxed{AD = 5}$ AE = 6

iii Since AZAY ||| ABAC

 $\frac{BC}{ZY} = \frac{5}{6} \qquad \left(\begin{array}{c} P_{ROM} & \underline{AD} & = 5\\ \underline{AE} & \underline{5} \end{array} \right)$ $\frac{ZY - BW - CX}{ZY} = \frac{5}{6}$

6 ZY - 6BW - 6CX = 5 ZYZY = 6BW + 6CX as required