

Mathematics HSC Assessment June 7 Task 3 2017

General Instructions

- Time Allowed 50 minutes
- Write using blue or black pen only
- Draw any relevant diagrams using pencil
- Board-approved calculators may be used
- All necessary working should be shown in every question

Total marks (40)

Multiple Choice

- 1. The function $f(x) = -3\cos\left(\frac{\pi x}{5}\right)$ has a period of
- A. $\frac{\pi}{5}$
- B. $\frac{\pi}{10}$
- C. 3
- D. 10
- 2. A particle is moving in a straight line. It's distance (x metres) from a fixed point O is given by $x = 2\sin 2t$, where t is the time in seconds.

At which times is the particle at rest?

- A. $t = 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, \dots$
- B. $t = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \frac{7\pi}{2}$
- C. $t = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}, \frac{7\pi}{2}...$
- D. $t = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$
- 3. A circular metal plate of area $A cm^2$ is being heated. It is known that the rate of increase in area of the plate after a certain time "t" is given by

$$\frac{dA}{dt} = \frac{\pi t}{32} cm^2 / h$$

What is the exact area of the plate after 8 hours, if initially the plate had a radius of 6cm?

- Α. π
- B. 0.25π
- C. 36π
- D. 37π

4. Which of the following graphs could be the displacement function of the velocity function below?

Question 5

Trigonometric Functions (17 Marks)

a. Differentiate the following with respect to x.

i.
$$y = \cos 3x$$

ii.
$$y = e^{2x} \tan 2x$$

b. If
$$y = \cot x$$
 show that $\frac{dy}{dx} = -\cos ec^2 x$

c. Evaluate
$$\lim_{x\to 0} \frac{\sin 5x}{7x}$$
 (show all working)

d. Find
$$\int_0^{\frac{\pi}{6}} \frac{dx}{\cos^2 x}$$
 in exact form.

e. Find the volume generated when the curve $y = \sqrt{\cot x}$ is rotated about the x axis between $x = \frac{\pi}{4}$ and $x = \frac{\pi}{3}$. Leave your answer in exact simplified form.

f. ABCD is a quadrilateral inscribed in a quarter of a circle centred at A with radius 100m. The points B and D lie on the x and y axes and the point C moves on the circle such that $\angle CAB = \alpha$ as shown in the diagram below.

i. Show that the area of the quadrilateral ABCD can be expressed as

2

$$A = 5000 (\sin \alpha + \cos \alpha)$$

ii. Show that the maximum area of this quadrilateral is $5000\sqrt{2} m^2$.

3

Question 6 START A NEW PAGE

Applications of Calculus to the Physical World (19 Marks)

a. The mass M kg of radioactive substance present after t years is given by the equation

$$M = M_a e^{-kt}$$

where k is a positive constant.

After 50 years the substance has been reduced from 20kg to 10 kg in mass.

- i. Clearly show that $\frac{dM}{dt} = -kM$.
- ii. State the value of M_o .
- iii. Show that the exact value of k is $\frac{\ln 2}{50}$
- iv. Find the time for the substance to lose $\frac{4}{5}$ of its original mass (to 1 dec. pl.)
- b. The displacement of a particle is given by:

$$x = t - 4\log_e(t-1) + 5$$
, $t > 1$

where x is in metres and t is in seconds.

- i. Find the exact displacement of the particle when t = 8.
- ii. Find an expression for ν and hence find when the particle comes to rest. 2
- iii. Clearly show that the acceleration remains positive for t > 1.
- iv. Find the exact distance travelled by the particle between the times the particle comes to rest and t = 8.

c. A swimming pool is being emptied for maintenance. The quantity of water Q litres, remaining in the pool at any time, t minutes, after it starts to empty is given by:

$$Q(t) = 2000(25-t)^2$$
, $t \ge 0$

- i. At what rate is the pool being emptied at any time, t.
- ii. How long will it take to half empty the pool to 1 decimal place?
- iii. At what time is the water flowing out at 20kL/minute.
- iv. What is the average water flow in the first 10 minutes in litres?

END OF ASSESSMENT TASK

Brigidine Mathematics

HSC Assessment Task 3 2017

SAMPLE SOLUTIONS

MC.

1.
$$\int (x) = -3 \cos \left(\frac{\pi x}{s} \right)$$

2. x: 2sin 2t.

= at t=0, 1/2, 11

we want at O relocity (at rest)

ie we differentiate

we get 4052 t

Costis at o when to

$$A = \int \frac{\pi t}{32} dt.$$

$$A = \frac{\pi 64}{64} + 367$$

$$= 37\pi = 70$$

5. a. 1)
$$y = cos 3x$$
 $\frac{dy}{dx} = -3sin 3x$.

ii) $y = e^{2x} tan 2x$.

use product rule.

let $u = e^{2x}$
 $V = tan 2x$.

 $\frac{du}{dx} = 2e^{2x}$.

 $\frac{du}{dx} = 2e^{2x}$.

 $\frac{du}{dx} = 2e^{2x} tan 2x + 2e^{2x} sa_{x}^{2} 2x$
 $\frac{du}{dx} = 2e^{2x} (tan 2x + 2e^{2x} sa_{x}^{2} 2x)$

b. $y = cot x = 3 = \frac{1}{tan x} = \frac{cos xt}{sin x}$.

use quotint rule

 $\frac{du}{dx} = \frac{1}{tan x} = \frac{cos xt}{sin x}$.

 $\frac{du}{dx} = \frac{vu' - uv'}{v^{2}} = \frac{sin x(-sn x) - cos^{2}x}{sin^{2}x}$
 $\frac{dy}{dx} = \frac{vu' - uv'}{v^{2}} = \frac{sin x(-sn x) - cos^{2}x}{sin^{2}x}$
 $\frac{-sin^{2}x - cos^{2}x}{sin^{2}x} = \frac{(sin^{2}x + tos^{2}x)}{sin^{2}x} = \frac{1}{sin^{2}x}$

:. cosd = snd. =7 at d= 14

-'. A mux =
$$\left(\frac{3}{12}\left(\frac{7}{4}\right) + c_{00}\left(\frac{7}{4}\right)\right)$$
 x5000
= $5000\left(\frac{1}{12} + \frac{1}{12}\right)$
= $5000\left(\frac{2}{12}\right) = \left(\frac{252}{2}\right)$ 5000
= $52\left(5000\right)$ m²
6. M: Mo e-kt. | 1) M: M. at t= 0. M=20. dm
The Mo = 20. dm

6. M: Mo e-kt.

at t= 0. M: 20.

in Mo = 20.

at t: 50, M= 10.

20e - 10.

e-kso=10.

$$kso=10$$
 $kso=10$
 $kso=10$

i)
$$M = M_0 e^{-kt}$$
.
 $dM = -k M_0 e^{-kt}$.
 $= -k M$.
ii) $M_0 : 20$
iii) $k = \frac{1}{50} (see | eft)$.
iv) $4 \times 20 : 16 \text{ kg}$
 $16 = 20e^{-kt}$.
 $1 \times \frac{16}{20} = -kt$.

all t>1.

111) -20000= -4000(8-6) 5 = 25 - t. t = 20 min. iv) d - 4000(25-t) = 4000 4000×10= 4000 L/min