	•	
Student Number:		
ocadence i familie	<u> </u>	

St Catherine's School

Waverley

Year 12 Mathematics Extension I Task 3 May 2017

ime allowed:

90 minutes plus 5 minutes reading time

otal marks:

52 marks

veighting:

25%

here are 10 questions including 7 multiple choice questions.

ISTRUCTIONS

In Section I, answer the 7 multiple choice questions on the attached multiple choice answer sheet.

In Section II, start Questions 8, 9 and 10 in three separate answer booklets. You may request more booklets if needed.

Show all necessary working for Questions 8, 9 and 10.

Marks may be deducted for careless or badly arranged work.

A reference sheet is provided.

Write using blue or black pen. Black pen is preferred.

Total	/52 marks
Question 10	/15 marks
Question 9	/15 marks
Question 8	/15 marks
Multiple Choice	/ 7 marks

Attempt Questions I - 7

Use the multiple-choice answer sheet for Questions 1-7.

1. A particle is moving in a straight line. Its velocity v m/s at a position x metres from an origin 0 is given by $v^2 = 4(27 - 3x^4)$. What is the acceleration of the particle when it is 1 metre to the left of the origin?

- (A) -24
- (B) -48
- (C) 24
- (D) 48

2. A particle is moving in a straight line with its velocity as a function of x given by $\dot{x} = e^{-x}$. It is initially at the origin. The displacement x is given by

- (A) $x = \log_e(t-1)$
- (B) $x = \log_e(t+1)$
- (C) $x = e^{t+1}$
- (D) $x = -e^{-t} + 1$

3. The velocity, $v \, \text{ms}^{-1}$, of a particle moving in simple harmonic motion along the x-axis given by $v^2 = 8 - 2x - x^2$, where x is in metres. What is the amplitude of motion?

- (A)
- (B) 4
- (c) -3
- **(D)** 3

$$4. \qquad \int \sin^2\left(\frac{x}{2}\right) \, dx$$

$$(A) \qquad \frac{x}{2} - \frac{1}{2}\sin x + c$$

$$(\beta) \qquad \frac{x}{2} - \frac{1}{2}\sin\frac{x}{2} + c$$

$$(C_1)$$
 $\cos^3\left(\frac{x}{2}\right) + c$

(b)
$$x + \frac{1}{2}\sin x + c$$

5. Which integral is obtained when the substitution
$$u = \cos^{-1} x$$
 is applied to

$$\int \frac{e^{\cos^{-1}x}}{\sqrt{1-x^2}} dx$$

(A)
$$\int e^u du$$

(B)
$$-\int e^u du$$

(C)
$$\int \frac{e^u}{\sqrt{1-\cos^2 u}} \ du$$

(D)
$$\int \frac{e^{\sin u}}{\sqrt{1-\cos^2 u}} \ du$$

$$6. \qquad \int_0^{\frac{\pi}{2}} \cos x \sin^2 x \ dx$$

(A)
$$\frac{1}{3}$$

- 7. A spherical bubble is expanding so that its volume is increasing at the constant rate of $10~\rm cm^3$ per second. What is the rate of increase of the radius when the surface area is $400~\rm cm^2$?
 - (A) 4 cm/s
 - (B) 40 cm/s
 - (C) $\frac{1}{10}$ cm/s
 - (D) $\frac{1}{40}$ cm/s

End of Section I

SECTION II

45 marks

Attempt Questions 8 - 10

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 8 - 10, your response should include relevant mathematical reasoning and/or calculations.

Question 8

Use a SEPARATE writing booklet

15 marks

(a) Use the substitution u = 1 + x to find

3

$$\int_{1}^{2} \frac{1-x}{(1+x)^3} dx$$

(b) A salad, which is initially at a temperature of 23° C, is placed in a refrigerator that has a constant temperature of 4° C. The cooling rate of the salad is proportional to the difference between the temperature of the refrigerator and the temperature, T, of the salad. That is, T satisfies the equation

$$\frac{dT}{dt} = -k(T-4)$$

where t is the number of minutes after the salad is placed in the refrigerator.

(j) Show that $T = 4 + Be^{-kt}$ satisfies the equation.

1

(ii) The temperature of the salad is 12° C after 8 minutes. Find the values of B and k.

2

- (iii) How long will it take for the temperature of the salad to cool to 9°C? 2

 Give your answer correct to the nearest minute.
- (iv) Draw a graph of T against t, showing key points and features.

2

Question 8 (continued)

- (c) The velocity of a particle moving in a straight line is given by $v = (x+1)^2$ where x is its displacement from the origin after t seconds. Initially the particle is at the origin.
 - (i) Find an expression for a in terms of x.
 - (ii) Find an expression for x in terms of t.

End of Question 8

2

(a) A person P on horizontal ground is looking up at a helicopter H which is approaching at a speed of $100~\mathrm{ms^{-1}}$ at a constant altitude of $250~\mathrm{metres}$ above the ground. When the horizontal distance of the helicopter from the person is x metres, the angle of elevation of the helicopter is θ radians.

(i) Show that
$$\theta = \tan^{-1} \frac{250}{x}$$

(ii) Show that
$$\frac{d\theta}{dt} = \frac{25000}{x^2 + 62500}$$

- (jii) Find the rate at which θ is changing when $\theta = \frac{\pi}{4}$, giving the answer in degrees per second correct to the nearest degree.
- (b) A particle moves in a straight line. Its displacement, x metres, after t seconds is given by

$$x = \sin 2t - \sqrt{3}\cos 2t$$

- (i) Express the displacement of the particle in the form $x = A \sin(2t \alpha)$ 2 where α is in radians.
- (ii) Show that the particle is moving in simple harmonic motion. 2
- (iii) What is the period of the motion?
- (iy) Find the maximum speed of the motion.

Question 9 continues

Question 9 (continued)

Å particle moving in a straight line with SHM has a period of π seconds and (c) oscillates between x = -2 and x = 4. The particle is initially 1 metre to the right of the origin.

Write an expression for the displacement \boldsymbol{x} in terms of \boldsymbol{t} as $x = a\cos(nt + \alpha) + c.$

End of Question 9

(a) Use the substitution $u^2 = x$, u > 0, evaluate

$$\int \frac{1}{4(x+\sqrt{x})} dx$$

Using the substitution $x = 5 \sin \theta$ to find

$$\int \sqrt{25-x^2} \, dx$$

(c) An arrow is fired from the origin θ with initial velocity $80~ms^{-1}$ with variable angle of projection θ to hit a target 40~m high and 200~m away from the point of projection. The equations of motion are given by

$$x = 80t \cos \theta$$

$$y = 80t \sin \theta - 5t^2$$

Do NOT prove these equations of motion.

(i) Show that the Cartesian equation of motion is given by

$$y = x \tan \theta - \frac{x^2}{1280} (1 + \tan^2 \theta)$$

- (ii) Show that the range of the motion is given by $640 \sin 2\theta$.
- 2

2

(iii) Find the two possible angles of projection, θ , so that the arrow hits the target.

Give your answers correct to the nearest minute.

(iv) If the arrow just misses the target, find the closest distance the arrow lands from the target.

Give your answer correct to 2 decimal places.

End of paper

Student Number: SOLUTIONS

Year 12 Mathematics Extension | Task 3 May 2017

Multiple Choice Answer Sheet

Colour in the correct oval completely

1. A B C D

2. A B C D

3. A B C D

4. A B C D

5. A B C D

6. A B C D

7. A B C D

Student number. Solutions

Course name. Mathematics. Extension 1.

Question. Multiple Charge. 1-7.

$(1) \ddot{\varkappa} = \frac{d}{dx} (\pm v^2)$
= = = [2(27-324)]
$= 2\left(-12x^3\right)$
$= -24x^3$
when $x = -1$, $\dot{x} = -24(-1)^3$.
= 24
$\frac{dx}{dt} = e^{-x}$
$\frac{dt}{dx} = e^{x}$
$dt = e^{x} dx$
$t = \int e^{x} dx$
$t = e^x + c$
when $t=0$, $x=0 \Rightarrow 0=e^{\circ}+c$
c=-
$t=e^{x}-1$
$e^{x} = t + 1$
x = (n(t+1))
$(3) v^2 = 8 - 2x - x^2$
$=-(x^2+2\pi-8)$
$=-\left(\kappa^2+2x+1-9\right)$
$=-\left(\left(\chi+1\right)^{2}-3^{2}\right)$
$= 1^2 \left[3^2 - (x+1)^2 \right]$
p. 1

conparing $V^2 = n^2 \left[a^2 - (x - c)^2 \right]$ to $V^2 = l^2 \left[3^2 - (x + l)^2 \right]$	<u> </u>
« amplitude a = 3	
OR	
extreme points of motion when U=0	
then $0 = 8 - 2x - x^2$	
$0 = x^2 + 2x - 8$	
0 = (x + 4)(x - 2)	
x = 2 or $x = -4$	
amplitude $a = 2 + 1 - 41$	
2 <u> </u>	
= 6	
~ a = 3	
$(4) \cos 2\theta = 1 - 2\sin^2\theta$	
$2\sin^2\theta = 1-\cos 2\theta$	
$\sin^2\theta = \frac{1}{2} \left(1 - \cos 2\theta \right)$	
$\sin^2(\frac{x}{2}) = \pm (1 - \cos x)$ when $\phi = \frac{x}{2}$	
then $\int \sin^2(\frac{x}{2}) dx = \frac{1}{2} \int -\cos x dx$	
$= \pm (x - \sin x) + c$	
= = = - ± sinx+c	
(s) let $u = \cos^7 x$	·
$\chi = \cos u$	
$\frac{dx}{du} = -\sin u$. <u>.</u>
$dx = -\sin u du$	
$\int \frac{e^{\cos^{-1}x}}{\sqrt{1-x^{2}}} dx = \int \frac{e^{x}}{\sqrt{1-\cos^{2}u}} - \sin u du$	
$= -\int e^{u} \cdot \sin u du$	p. 2

.

Cow
$=-\int \frac{e^{u}}{\sin u} \cdot \frac{\sin u}{\sin u} du$
= - Se" du
- T
(6) $\int_{0}^{\frac{\pi}{2}} \cos x \sin^{2} x dx = \frac{1}{3} \left(\sin^{3} x \right)_{0}^{\frac{\pi}{2}}$
$\frac{(6) \int_{0}^{\infty} \cos 2 \sin \lambda \cos \lambda}{\sin 2 \sin 2 \sin 2 \cos \lambda} = \frac{1}{3} \left[\left(\sin \frac{\pi}{2} \right)^{3} - \left(\sin 0 \right)^{3} \right]$
$=\frac{1}{3}(1^3-0^3)$
$=\frac{1}{2}$
S
JV
(7) given $\frac{dV}{dt} = 10$ find $\frac{dC}{dt} = \frac{dC}{dV} \times \frac{dV}{dt}$
find de = dV x de
now Surface Area = dr
- 400
$\frac{dr}{dt} = \frac{1}{4\infty} \times 10$
= 40 cm/s
р. 3

Student numberSOLUTIONS	
Course nameMathematics. Extension	1
Question	

(a) let $u=1+x$ when $x=1$, $u=1+1=2$	7 _
$\frac{du}{dx} = 1 \qquad \text{when } x = 2, \ u = 1 + 2 = 3$	<u>(£)</u>
du =dx	
$\int_{-\infty}^{2} 1-x = \int_{-\infty}^{3} 1-(u-1) du$	
$\int_{1}^{2} \frac{1-x}{(1+x)^{3}} dx = \int_{2}^{3} \frac{1-(u-1)}{u^{3}} du$	
$\int_{2}^{3} \frac{1-u+1}{u^{3}} du$	
$-\int_{2}^{3} \frac{2-u}{u^{3}} du$	<u>.</u>
$= \int_{2}^{3} \frac{2}{u^{3}} - \frac{u}{u^{3}} du$	
$= \int_{2}^{3} 2u^{-3} - u^{-2} du$	
$= \left[-u^{-2} + u^{-1}\right]_{2}^{3}$ $= \left[-\frac{L}{u^{2}} + \frac{L}{u}\right]_{2}^{3}$	
$\frac{1}{3^2} + \frac{1}{3} - \left(-\frac{1}{2^2} + \frac{1}{2}\right)$	<u> </u>
= - 36	<u>(1)</u>
· · · · · · · · · · · · · · · · · · ·	
	p. 4

		_
(b)(i) $T = 4 + Be^{-kt} \Rightarrow Be^{-kt} = T - 4$		
$\frac{dT = -kBe^{-kt}}{dt}$		
	Ć.	_
of $\frac{dT}{dt} = -k(\tau - 4)$ as required	<u> </u>	_
		_
(ii) when t=0, T=23		
$23 = 4 + Be^{-lc \times 0}$		
23 = 4 + Be°		-
23 = 4 + B		
° B = 19		_
then T= 4 + 19e-kt		
when t=8, T=12		_
12 = 4 + 19e-kx8		
8 = 190-8k		
$8 = 19e^{-3k}$ $\frac{8}{19} = e^{-8k}$ $\frac{8}{19} = \frac{1}{e^{8k}}$		
19 - C 8 = 1 _k		_
19 e ⁰¹²		_
$e^{8k} = \frac{19}{8}$		_
$8k = \ln \frac{19}{8}$		—
:. k = \$ 6 19	0	—
		—
(iii) when T=9, t=?		_
$9 = 4 + 19 e^{(-\frac{1}{5}\ln\frac{19}{5})t}$ $5 = 19 e^{(\frac{1}{5}\ln\frac{3}{5})t}$		 -
5 = 19e(まい音)t		_
5 = e(\$h\$) t		
(the) t = h = h	①	
+= Wig + 8Wig		
= 12°20′48″		
: t = 12 minutes (nearest minute)	0	
	p. S	

.'

(iv) the amoun that lands' closest to the tagget is	<u> </u>
when anyle of projection 0 = 8.0° 34'	$\binom{1}{2}$
then range when $0 = 80:34'$:	
$x = 640 \sin 2(80°34′)$	
= 640sin(161°8')	·
= 206.954	(1)
then distance from target = 206.954 200	
= 6.954	
= 6,95 m (2 deumal	places)
y t	
	. —
40 + 80°34′	· · · •
0 20°44°) → x	
,	
	
	
	···
	
<u> </u>	
	· · · · · · · · · · · · · · · · · · ·
	<u>p. 13</u>

Student number SOLUTIONS
Course name. Mathematics Extension 1
Question9

250	
(a) (i) $tan \theta = \frac{250}{x}$	
250 20 0 = tan 1 250	(D)
20 G - Ean X	
$\frac{d\theta - 1}{dx} = \frac{1}{1 + \left(\frac{250}{x}\right)^2} \times \left(-250x^{-2}\right)$	
$\frac{(ii)}{dx} = \frac{1}{1 + \left(\frac{250}{x}\right)^2} \times \left(-250x^{-2}\right)$	•
$\frac{1}{x^2 + 250^2} \times \frac{250}{x^2}$	
$\frac{x^2 + 250^2}{x^2} \times \frac{250}{x^2}$	
_ x ² x -250	
$\frac{2}{x^2 + 250^2} \times \frac{235}{3}$	
2-+230	
250	<u> </u>
x²+62500	\odot
	·
given dx	
given $\frac{dx}{dt} = -100$	•
$\frac{d\theta - d\theta \times dx}{dt}$	
dt de dt	,
250 X - 100	
x2+62500	
a do _ 25000 as required	
$\frac{d\theta - 25000}{x^2 + 62500} = \frac{as required}{x^2}$	
£ +02000	250
(iii) when $\theta = \frac{\pi}{4}$, $\frac{250}{2} = \tan \theta \Rightarrow \frac{250}{2} = \tan \frac{\pi}{4} \Rightarrow$	$\frac{x}{520} = 1$.
oc = 250	1
do 25 000	
dt 2502 + 62500 5	

(b)(i) $\sin 2t - \sqrt{3}\cos 2t = A\sin(2t-\alpha)$	
= A sin 2+ cos x - A cos 2+ Sin x	
= (A cosa) sinzt - (Asina) coszt	
comparing coefficient of LHS and RHS	
$A \cos \alpha = 1 \text{(1)} \text{and} A \sin \alpha = \sqrt{3} \text{(2)}$	
71.000	
then $(D^2 + Q)^2 : A^2 \cos^2 x + A^2 \sin^2 x = 1^2 + \sqrt{3}$	-2
$A^{2}(\cos^{2}\alpha + \sin^{2}\alpha) = 4$	
$A^2 = 4$	
A = 2	
and \bigcirc : A sin α $= \sqrt{3}$ A cos α	·
$tan \propto = \sqrt{3}$	
$\alpha = \frac{\pi}{3}$	<u>(1)</u>
$\frac{T}{2}$	
$2 = 2 \sin(2t - \frac{\pi}{3})$	
(T.)	
(ii) $\tilde{x} = 4 \cos(2t - \frac{\pi}{3})$	
$\hat{x} = -8\sin(2t - \frac{\pi}{3})$	
$= -4 \left[2\sin(2t - \frac{\pi}{5}) \right]$	
=-4x	
$\ddot{\chi} = -2^2 \chi$	
the particle moves in SHM with n=2	
2 π	
$T = \frac{2\pi}{n}$	
= = = =================================	
of T = Tt seconds	
	ρ-8

(iv) $\dot{x} = 4 \cos(2t - \frac{\pi}{3})$	
max. value of $\cos(2t - \frac{T}{3}) = 1$	
$max. \dot{x} = 4x$	
= 4 m/s	
(c) $T = \frac{2\pi}{\Lambda}$	
$T = \frac{2\pi}{n}$ $T = \frac{2\pi}{n}$	
	(£)
n=2	
2a = -2 + 4	
2a = 6	
: a = 3	$\frac{\left(\frac{1}{2}\right)}{2}$
., .,	
$\frac{-2+4}{2}$	
centre of motion = 2	(£)
30 C =	
2 (21 + 21) + 1	
then $x = 3\cos(2t + \infty) + 1$	
when $t=0, x=1$:	
$= 3\cos(2x0+\alpha)+1$	
0 = 3.005 \times	
D = 605d	<u> </u>
$\alpha = \frac{\pi}{2}$	
π	
$\frac{3\cos(2t+\frac{\pi}{2})}{\cos(2t+\frac{\pi}{2})}$	(2)
OR TO	
$\alpha = 3\cos 2(t + \frac{\pi}{4}) + 1$	<u> </u>
	p. 9

Student number SOLUTIONS
Course name. Mathematics Extension 1
Question

(a) let $u^2 = x$	
u=Jx suce u>0	
and $\frac{dx}{du} = 2u$	
dx = 2u du	(E)
$\int \frac{1}{4(x+\sqrt{x})} dx = \int \frac{\cancel{x}u}{\cancel{x}(u^2+u)} du$	
$= \frac{1}{2} \int \frac{\mathcal{U}}{\mathcal{U}(u+1)} du$	
= I Jutidu	
$= \pm \ln(u+1) + C$	
$= \pm \ln(\sqrt{2}L+1) + C$	0
•	
(b) (et $x = Ssin \Theta$	
$\frac{d\theta}{dx} = 2\cos\theta$	
$dx = 5\cos\theta d\theta$	
$\int \sqrt{2s-x^2} dx = \int \sqrt{2s-2s \sin^2 \theta} \cdot s \cos \theta$	0 00
= \(\sigma S(1-sin^20) \). 5 cos0	40-
= \ 5\\(\cos^2 \text{O}^{\text{T}} \cdot \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
= 25 \ coso · coso do	
= 25 \int cos 20 do	
$=\frac{25}{2}\int \cos 20+1 \ d0 \text{since}$	$\cos 2\theta = 2\cos^2 \theta - 1$
$= \frac{25}{2} \left(\frac{1}{2} \sin 20 + 0 \right) + C$	D ρ.10

$\frac{\text{now}}{x} = 5\sin\theta$	
$\frac{x}{5} = \sin \theta \implies \theta = \sin^{-1} \frac{x}{5}$	
$\frac{5}{0} \times \cos 0 = \frac{\sqrt{25 - 2^2}}{5}$	•
$\frac{2}{\sqrt{2}}\cos Q = \frac{\sqrt{2}}{\sqrt{2}}$	
125-2	
then $\frac{25}{2}\left(\frac{1}{2}\sin 2\theta + \theta\right) + C$	
$=\frac{25}{3}\left(\frac{1}{2}\cdot2\sin\theta\cos\theta+\theta\right)+C$	①
$=\frac{25}{3}\left(\sin\theta\cos\theta+\theta\right)+C$	
$\frac{25\left(\frac{x}{5} \times \sqrt{25-x^2} + \sin^{-1}\frac{x}{5}\right) + c}{2\left(\frac{x}{5} \times \sqrt{25-x^2} + \sin^{-1}\frac{x}{5}\right) + c}$	
25 (x 125-x2 , -1x) +c	
$\frac{25\left(\frac{x\sqrt{25-x^2}}{25}+\sin^{-1}\frac{x}{5}\right)+c}{2\left(\frac{25}{25}+\sin^{-1}\frac{x}{5}\right)}$	
× [25-x2] . 251 × 1.0	<u> </u>
$\frac{x\sqrt{25-x^2}}{2} + \frac{25}{2} \sin^{-1} \frac{x}{5} + c$	
[
$\int \sqrt{25-\chi^2} d\chi = \frac{\chi \sqrt{25-\chi^2}}{2} + \frac{25}{2} \sin^{-1} \frac{\chi}{5} + \frac{1}{2} \sin^{-1} \frac{\chi}{5} + \frac{1}{2$	
J' &	
(c) (i) x = 80 tws0	
t = 80 cos 0	
substitute (1) into y=80tsin0-5t2	
$y = 80\left(\frac{\chi}{80\cos\theta}\right) \sin\theta = 5\left(\frac{\chi}{80\cos\theta}\right)^2$	
J (80 caso) (80 caso)	· · · · · · · · · · · · · · · · · · ·
= x tano = 5x2	
6400 cos 20	
$= \chi + 600 - \frac{\chi^2}{1280} \sec^2\theta$	
$= x + a_0 \theta - \frac{x^2}{1280} \sec^2 \theta$ $= x + a_0 \theta - \frac{x^2}{1280} (1 + tan^2 \theta) \text{as res}$	ruited
y - Leuris 1200 C	
	n //:

.

,

(ii) for range y=0
0 = 80+sig-5t2
0=st(16sni0-t)
t=0 or t=165m0
(inskal) (range)
when $t = 16 \sin \theta$, $x = 80 (16 \sin \theta) \cos \theta$
= 1280 sin 0 cost0
$= 640 \times 25 \text{ in } 0 \cos 0 \qquad (1)$
$\approx x = 640 \sin 20$ is the range
(iii) when $x = 200$ and $y = 40$
$40 = 200 \tan \theta - \frac{200^2}{1280} \left(14 \tan^2 \theta \right)$
$40 = 200 + 400 - \frac{125}{4} (1 + 4an^20)$
$160 = 800 + 4900 - 125 - 125 + 400^{2}$
$32 = 160 \tan \theta - 25 - 25 \tan^2 \theta$
$0 = 25 \tan^2 \theta - 160 \tan \theta + 57$
$\frac{160 \pm \sqrt{(-160)^2 - 4(25)(57)}}{2(25)}$
_ 16d ± 1d \(\square{199} \)
$\frac{16 + \sqrt{199}}{5} \text{or} \tan \theta = \frac{16 - \sqrt{199}}{5}$
$0 = \tan^{-1}\left(\frac{16 + \sqrt{199}}{5}\right) \qquad 0 = \tan^{-1}\left(\frac{16 - \sqrt{199}}{5}\right)$
$\theta = 80^{\circ}34'$ or $\theta = 20^{\circ}44'$ (1) p.12