Algebraic Equations

Marks:

/60

Time: 1 hour 30 minutes

	•	
Name:		Date:

INSTRUCTIONS TO CANDIDATES

Section A (30 marks)

Time: 45 minutes

- 1. Answer all the questions in this section.
- 2. Calculators may **not** be used in this section.
- 3. All working must be clearly shown. Omission of essential working will result in loss of marks.
- 4. The marks for each question is shown in brackets [] at the end of each question.
- 1 Solve the following equations.

(a)
$$0.2(3x - 4) = 4.7 - 0.5x$$

(b)
$$13 - 2(5 - x) = 3(2x - 5)$$

(c)
$$2x - 5[3 - 2(x + 4)] = 13$$

(b)
$$x = \dots [1]$$

(c)
$$x = \dots [2]$$

(b)
$$8 + \frac{2x-1}{5} = x$$

(b)
$$x = \dots [1]$$

3 Given that
$$px = 12 - 9x$$
, find

- (a) the value of x when p = 3,
- (b) the value of p when x = 3.

(b)
$$p = \dots [1]$$

5 (a) If
$$r = \frac{p}{p-q} + 1$$
, find the value of p if $r = 6$ and $q = 2$.

(b) Given that
$$6x - 9y = 5y + 3x$$
, calculate the numerical value of $\frac{27x}{28y}$.

Answer (a)
$$p = \dots [2]$$

(a)
$$2x^2 + 6x + 9$$
,

(a)
$$2x^2 + 6x + 9$$
,
(b) $x(x^2 + 3x) + 6x^2$.

Answer (a)[1] (b) [2]

The sum of three consecutive odd numbers is 129. Find the largest odd number.

Answer[3]

- Mrs Lee bought x cupcakes and twice as many doughnuts. She also bought 2 fewer muffins than cupcakes. If she spent \$11 altogether, find
 - (a) the value of x,
 - (b) the amount she spent on muffins.

9 Andy has 20 marbles and Steven has 172 marbles. After each of them bought x marbles, Steven has five times as many marbles as Andy. Find the value of x.

Answer $x = \dots [2]$

- 10 Isabelle counted 25 coins in her coin box. Some of the coins were 10-cent coins while the rest were 20-cent coins.
 - (a) If the number of 10-cent coins Isabelle had is x, write down an expression for the number of 20-cent coins she had.
 - (b) Write down an expression, in terms of x, for the total value, in cents, of the 25 coins.
 - (c) Isabelle's brother Tom also had 25 coins in his coin box. The number of 20-cent coins he had is x and the rest of his coins were 10-cent coins. If Isabelle has 70 cents more than her brother, form an equation in x and find the value of x.

Answer	(a)		[1]
--------	-----	--	-----

$$(c) x = \dots [3]$$

12

Time: 45 minutes

INSTRUCTIONS TO CANDIDATES

Section B (30 marks)

- 1. Answer all the questions in this section.
- 2. Calculators may be used in this section.
- 3. All working must be clearly shown. Omission of essential working will result in loss of marks.
- 4. The marks for each question is shown in brackets [] at the end of each question.
- 11 Solve the following equations.

(a)
$$x^2 + 2x(x+1) = 3(x^2 - x) + 10$$

(b)
$$\frac{x-1}{3} - \frac{x-2}{6} = \frac{x-4}{9}$$

(c)
$$\frac{3x}{4} - \frac{2(x-1)}{3} = 1 - \frac{2x+3}{6}$$

(b)
$$x = \dots [2]$$

(c)
$$x = \dots [3]$$

- 12 (a) Given that x = 2f + 1 and $y = \frac{f}{2} 1$,
 - (i) express 3x + 2y 7 in terms of f,

 - (ii) find the values of f, x and y when 3x + 2y 7 = 8. (b) (i) Simplify $(-2x^2 + 5x 11) (-8x^2 9x + 7)$.
 - (ii) Find the values of a, b and c if

$$(-2x^2 + 5x - 11) - (-8x^2 - 9x + 7) = [(ax^2 + bx + 3) - 2(x^2 - 2x) - x - c].$$

13 Marc bought 5 cloth badges and 8 metal badges. The total cost of the badges was \$9.40. If each metal badge costs 20 cents more than each cloth badge, find the cost of a cloth badge and the cost of a metal badge.

Answer Cloth badge = \$[4]

- 14 (a) The sum of two numbers is 49 and the smaller number is x.
 - (i) Express the larger number in terms of x.
 - (ii) $\frac{1}{3}$ of the smaller number is greater than $\frac{1}{5}$ of the larger number by 3. Find the value of
 - (b) Peter bought y CDs for \$148 at a music shop. He also bought 5 VCDs. Each VCD costs half as much as a CD.
 - (i) Write down in terms of y the price of each CD, assuming that all the CDs cost the same.
 - (ii) If he spent \$46.25 on the VCDs, find the value of y.

Answer	(a)	(i)[1
		(ii) $x = \dots [2]$
	(b)	(i) \$[1
		(ii) $y = \dots [2]$

$$A = 120 + \frac{15n}{100}$$

- (a) Calculate the amount of money the salesman earned in a week when he sold 265 toys.
- (b) At the end of another week, the salesman earned \$228.90. How many toys did he sell?
- (c) At the end of the year, his weekly salary was revised to a basic wage of \$105 plus 18 cents for each of the toys sold. Write down a formula connecting A and n.
- (d) Find the number of toys the salesman needs to sell in a week for him to receive the same amount of money from using either formula.

 MI

 \mathbf{M}_{I}

Na

<u>INS</u>

1.

3.

4.

· 1

ELI PAI

Test 8: Algebraic Equations

Section A

1. (a)
$$0.2(3x - 4) = 4.7 - 0.5x$$

 $0.6x - 0.8 = 4.7 - 0.5x$
 $0.6x - 0.8 + 0.8 = 4.7 - 0.5x + 0.8$
 $0.6x = 5.5 - 0.5x$
 $0.6x + 0.5x = 5.5 - 0.5x + 0.5x$
Add 0.8 to both sides.
 $0.6x + 0.5x = 5.5 - 0.5x + 0.5x$
 $1.1x = 5.5$
Add $0.5x$ to both sides.
 $x = \frac{5.5}{1.1}$ Divide both sides by 1.1.

(b)
$$13 - 2(5 - x) = 3(2x - 5)$$

 $13 - 10 + 2x = 6x - 15$
 $3 + 2x = 6x - 15$
 $3 + 2x - 2x = 6x - 15 - 2x$
 $3 = 4x - 15$
 $3 + 15 = 4x - 15 + 15$
 $18 = 4x$
Subtract 2x from both sides.
Add:15 to both sides.
 $x = \frac{18}{4}$ Divide both sides by 4.
 $x = 4\frac{1}{4}$

(c)
$$2x - 5[3 - 2(x + 4)] = 13$$

 $2x - 5[3 - 2x - 8] = 13$
 $2x - 5[-5 - 2x] = 13$
 $2x + 25 + 10x = 13$
 $12x + 25 = 13$
 $12x + 25 - 25 = 13 - 25$
 $12x = -12$
Subtract 25 from both sides,
 $x = \frac{-12}{12}$
 $= -1$

Multiply both sides by 24x; the LCM of 3x, 4x

$$x = 2$$
(b) $8 + \frac{2x - 1}{5} = x$

$$40 + 2x - 1 = 5x$$

$$2x + 39 = 5x$$

$$2x + 39 - 2x = 5x - 2x$$

$$39 = 3x$$

$$x = \frac{39}{3}$$
Divide both sides by 3.

3. (a)
$$px = 12 - 9x$$

When $p = 3$, $3x = 12 - 9x$
 $12x = 12$
 $x = \frac{12}{12} = 1$
(b) $px = 12 - 9x$
When $x = 3$, $3p = 12 - 27$
 $= -15$
 $p = \frac{-15}{3} = -5$
4. $(2a - b)(n - 4) = n(a - 3)$
 $[2(5) - (-2)](n - 4) = n(5 - 3)$
 $(10 + 2)(n - 4) = 2n$
 $12(n - 4) = 2n$
 $12n - 48 = 2n$
 $10n = 48$
 $n = \frac{48}{10} = 4.8$
Teacher's Tip

and simplify before expanding.

(b)
$$6x - 9y = 5y + 3x$$

$$6x - 3x = 5y + 9y$$

$$3x = 14y$$

$$\frac{x}{y} = \frac{14}{3}$$
Divide both sides by 3y.
$$\therefore \frac{27}{28} \frac{x}{y} = \frac{-27}{-28} \frac{44^{-1}}{3}$$

$$= \frac{9}{2}$$

$$= 4\frac{1}{2}$$

6.
$$x^2 + 3x = 18$$
 (Given)
(a) $2x^2 + 6x + 9$
 $= 2(x^2 + 3x) + 9$
 $= 2(18) + 9$
 $= 36 + 9$
 $= 45$

(b)
$$x((x^2+3x^2)+6x^2)$$

= $x(18)+6x^2$
= $6x^2+18x$
= $6((x^2+3x^2))$
= $6(18)$
= 108

7. Let the smallest of the 3 consecutive odd numbers

 \therefore the other odd numbers are x + 2 and x + 4.

$$x + (x + 2) + (x + 4) = 129$$
$$3x + 6 = 129$$
$$3x = 123$$
$$x = \frac{123}{3}$$
$$= 41$$

 \therefore the largest odd number = 41 + 4 = 45

Make it a habit to always check your answe Sum = 41 + 43 + 45 = 129

210x = 1260

 $x = \frac{1260}{210}$

8. (a) No. of cupcakes bought = xNo. of doughnuts bought = 2xNo. of muffins bought = x - 230x + 50(2x) + 80(x - 2) = 110030x + 100x + 80x - 160 = 1100

Express all amount in cents.

- (b) No. of muffins bought = 6 2= 4 Amount spent on muffins = 4×80 ¢ = 320¢
- 9. No. of marbles Andy has now = 20 + xNo. of marbles Steven has now = 172 + x172 + x = 5(20 + x)172 + x = 100 + 5x72 = 4x $x = \frac{72}{4} = 18$

10. (a) No. of 20-cent coins Isabelle had = 25 - x

(b) Total value of Isabelle's coins

= 10x + (25 - x)20

= 10x + 500 - 20x

= [500 - 10x] cents

(c) Total value of Tom's coins

=(25-x)10+20x

= 250 - 10x + 20x

= [250 + 10x] cents

$$500 - 10x = (250 + 10x) + 70$$

500 - 10x = 320 + 10x

180 = 20x

 $x = \frac{180}{20} = 9$

Given that Isabelle has:70 cents more than Tom.

Total value of Isabelle's coins = $500 = 10(9) = 410\varphi$ Total value of Tom's coins = $250 + 10(9) = 340\varphi$ Difference = $410\varphi - 340\varphi = 70\varphi$

Section B

11. (a) $x^2 + 2x(x+1) = 3(x^2 - x) + 10$ $x^2 + 2x^2 + 2x = 3x^2 - 3x + 10$ $3x^2 + 2x = 3x^2 - 3x + 10$ $3x^2 + 2x - 3x^2 = 3x^2 - 3x + 10 - 3x^2$ Subtract/3x 2x = -3x + 10from both 5x = 10 $x = \frac{10}{5} = 2$

$$\frac{x-1}{3} - \frac{x-2}{6} = \frac{x-4}{9}$$

$$6(x-1) - 3(x-2) = 2(x-4)$$

$$6x - 6 - 3x + 6 = 2x - 8$$

$$3x = 2x - 8$$

$$x = -8$$
Multiply both sides by 18, (the ECM of 3), (5 and 9).

(c)
$$\frac{3x}{4} - \frac{2(x-1)}{3} = 1 - \frac{2x+3}{6}$$

 $3(3x) - 8(x-1) = 12 - 2(2x+3)$ Multiply both
 $9x - 8x + 8 = 12 - 4x - 6$ sides by 12:
 $x + 8 = 6 - 4x$ the LCM of $5x = -2$
 $x = -\frac{2}{5}$

12. (a) x = 2f + 1, $y = \frac{f}{2} - 1$ (Given) (i) 3x + 2y - 7 $= 3(2f+1) + 2\left(\frac{f}{2} - 1\right) - 7$ = 6f + 3 + f - 2 - 7= 7f - 6

(ii)
$$3x + 2y - 7 = 8$$

 $7f - 6 = 8$ Express $3x + 2y - 7$ as $7f = 6$.
 $7f = 14$
 $f = \frac{14}{7} = 2$
 $x = 2(2) + 1 = 5$
 $y = \frac{2}{2} - 1 = 0$

(b) (i)
$$(-2x^2 + 5x - 11) - (-8x^2 - 9x + 7)$$

= $-2x^2 + 5x - 11 + 8x^2 + 9x - 7$
= $6x^2 + 14x - 18$

(ii)
$$[(ax^2 + bx + 3) - 2(x^2 - 2x) - x - c]$$

= $ax^2 + bx + 3 - 2x^2 + 4x - x - c$
= $ax^2 - 2x^2 + bx + 3x + 3 - c$
= $(a - 2)x^2 + (b + 3)x + (3 - c)$ Simplify and collect

$$(-2x^{2} + 5x - 11) - (-8x^{2} - 9x + 7) = [(ax^{2} + bx + 3) - 2(x^{2} - 2x) - x - c)]$$
from (b) (i)
simplify from above
$$6x^{2} + 14x - 18 = (a - 2)x^{2} + (b + 3)x + (3 - c)$$

Comparing the coefficient of x^2 term:

$$6 = a - 2$$

$$\therefore a = 8$$

Comparing the coefficient of x term:

$$14 = b + 3$$

$$\therefore b = 11$$

Comparing the constant term:

$$-18 = 3 - c$$
$$c = 21$$

Teacher's Tip

- Algebraic terms having the same variable are called like terms.
 - E.g. 2x and 3x are like terms, $8x^2$ and $9x^2$ are like terms.
- The algebraic term that does not have a variable associated with it is called the constant term.
 E.g. In the expression 5x + 8, 8 is the constant term.
- In the term 5x, 5 is called the coefficient of the term.
 E.g. The coefficient of 2x² is 2 and the coefficient of -3x is -3.
- 13. Let the cost of each cloth badge be x cents.
 - \therefore the cost of each metal badge = (x + 20) cents.

Cost of 5 cloth badges = 5x cents

Cost of 8 metal badges = 8(x + 20) cents

Total cost = \$9.40 = 940 cents

$$5x + 8(x + 20) = 940$$

$$5x + 8x + 160 = 940$$

$$13x = 780$$

$$x = \frac{780}{13} = 60$$

: the cost of each cloth badge is 60 cents and the cost of each metal badge is 60 + 20 = 80 cents.

Teacher's Tip

It is a good habit to check whether your answer is correct. Total cost = 5(60) + 8(80)

$$= 300 + 640$$

 $= 940¢$

- 14. (a) (i) Larger no. = 49 x
 - (ii) $\frac{1}{3}x = \frac{1}{5}(49 x) + 3$ Given that $\frac{1}{3}$ of the smaller no. (x) is greater than $\frac{1}{3}$ of the larger no. (49 x) by 3.

$$5x = 3(49 - x) + 45$$

 $5x = 147 - 3x + 45$
 $8x = 192$
 $x = \frac{192}{8} = 24$
Multiply, both sides: by 15, the LCM of 3 and 5.

Check answer:

Smaller no. = 24, Larger no. = 49 - 24 = 25

Sum of both nos. = 24 + 25 = 49

- (b) (i) Cost of each CD = $\$\left(\frac{148}{y}\right)$
 - (ii) Cost of each VCD = $\frac{1}{2} \left(\frac{\$148}{y} \right)$ = $\$ \left(\frac{74}{y} \right)$

Cost of 5 VCDs = \$46.25 (Given)

Cost of each VCD =
$$\frac{$46.25}{5}$$
 = \$9.25

$$\therefore \$\left(\frac{74}{y}\right) = \$9.25$$

$$74 = 9.25y$$

$$y = \frac{74}{9.25}$$
Multiply both sides by y.

Check answer: Cost of each CD =
$$\frac{\$148}{8}$$

= \$18.50
Cost of each VCD = $\frac{\$18.50}{2}$
= \$9.25

15. (a)
$$A = 120 + \frac{15n}{100}$$

When $n = 265$,
 $A = 120 + \frac{15(265)}{100}$
 $= 120 + 39.75$
 $= 159.75$
 \therefore amount earned is \$159.75.

- (b) When A = 228.90 $228.90 = 120 + \frac{15n}{100}$ $\frac{15n}{100} = 108.90$ $n = \frac{108.90 \times 100}{15}$ = 726 \therefore he sold **726 toys**.
- (c) $A = 105 + \frac{18n}{100}$

Teacher's Tip The original equation $A = 120 + \frac{15n}{100}$ $\begin{array}{c} & & \\ & &$

(d) For him to receive the same amount,

$$\therefore 105 + \frac{18n}{100} = 120 + \frac{15n}{100}$$

$$\frac{18n}{100} - \frac{15n}{100} = 120 - 105$$

$$\frac{3n}{100} = 15$$

$$n = \frac{15 \times 100}{3}$$

$$= 500$$

... he needs to sell **500 toys** in order to receive the same amount of money from using either formula.

Mid-Year Examination Specimen Paper A: Part 1

1. (a) 26.62 - 8.857 = 17.763

(b)
$$15\frac{1}{3} - 8\frac{3}{5}$$

= $15\frac{5}{15} - 8\frac{9}{15}$ The LCM of 3 and 5 is 15.
= $14\frac{20}{15} - 8\frac{9}{15}$
= $6\frac{11}{15}$

2. (a) $0.005845 \approx 0.00585$ (correct to 3 sig. fig.)

- (b) $0.005845 \approx 0.01$ (correct to 2 d.p.)
- 3. (a) 1.56×0.85 $= \frac{15.6}{10} \times \frac{8.5}{10}$ $= \frac{(15.6 \times 8.5)}{100}$ $= \frac{132.6}{100}$ = 1.326
 - (b) $15.6 \times 8.5 = 132.6$ (Given) $\frac{132.6}{15.6} = 8.5$ $1.326 \div 156$ $= \frac{132.6}{100} \div 15.6 \times 10$ $= \frac{132.6}{100} \times \frac{1}{15.6 \times 10}$ $= \left(\frac{132.6}{15.6}\right) \times \frac{1}{1000}$ $= \frac{8.5}{1000}$ = 0.0085
- 4. (a) $\frac{\sqrt[3]{216} + 3^2}{6 \times \sqrt{81}}$ $\sqrt[3]{216} = \sqrt[3]{6 \times 6 \times 6} = 6$. $= \frac{6 + 9}{6 \times 9}$ $= \frac{-15^5}{26 \times 9}$ $= \frac{5}{18}$
 - (b) $\{[(25-31)\times(-24)\div 8]-(-5-12)\}\div 7$ = $\{[(-6)\times(-24)\div 8]-(-17)\}\div 7$ = $(18+17)\div 7$ = $35\div 7$ = 5
- 5. (a) Required fraction = $\frac{1}{2} \left(\frac{1}{9} + \frac{4}{9} \right)$ = $\frac{1}{2} \left(\frac{5}{9} \right)$ = $\frac{5}{18}$