ADVANCED -ALGEBRA

PART A

1. Solve:
$$4 - 5x < 24$$

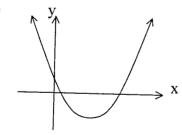
A)
$$x < -4$$

B)
$$x > 4$$

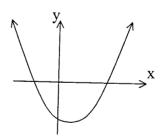
C)
$$x > -4$$

D)
$$x < 4$$

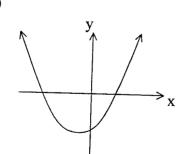
2. Which point lies on both
$$4x - 3y = 0$$
 and $x^2 + y^2 = 25$?

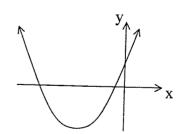

A)
$$(-3,4)$$

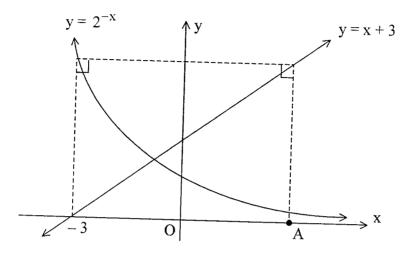
B)
$$(-3, -4)$$
 C) $(3, -4)$


C)
$$(3, -4)$$

3. Which of the following could be the graph of
$$y = x^2 + 4x + 2$$
?




B)


C)

D)

4. What are the coordinates of A?

NOT TO SCALE

A) (6, 0)

B) (4, 0)

C)(3,0)

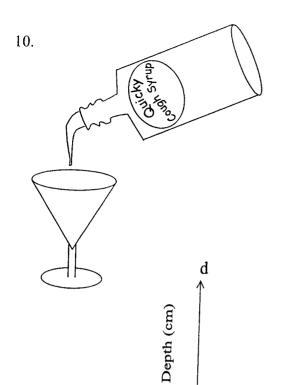
D) (5, 0)

PART B

5.

Find the equation of line (ℓ) .

6. Solve for y the following simultaneous equations


$$\begin{cases} x + 1 = 3y \\ x = 4y - 1 \end{cases}$$

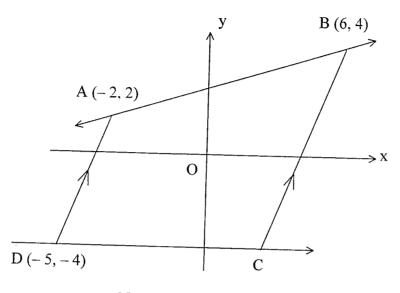
7. Solve the equation $x^2 = 4x$.

8. Simplify
$$\frac{2}{x+1} \times \frac{x^2 + x}{4}$$

9. Make z the subject of $\frac{1}{z} = \frac{1}{x} + \frac{1}{y}$

Time (seconds)

The diagram shows a measurement cup being filled with a cough syrup.


On the axes provided, sketch a graph that represents the changing depth of the medicine as the cup is being filled.

11. If $y^6 + (y+2)^4 + 2 = 322$ when y = 2, what value of y makes $(y-2)^6 + y^4 = 320$ true?

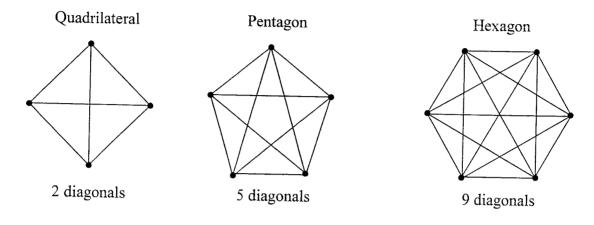
o

QUESTION 12 (3 marks)

ABCD is a trapezium. DA is parallel to CB and DC is parallel to the x axis.

NOT TO SCALE

- a) Find the gradient of the line AD.
- b) Find the equation of the line BC.


c) Find the coordinates of the point C.

e de la composition de la composition

and the second of the second o

QUESTION 13 (3 marks)

Vanessa wants to find the number of diagonals in a polygon of n sides. The diagram shows the number of diagonals in a quadrilateral, pentagon and hexagon.

She realises that the number of diagonals D in a polygon with N sides can be obtained by the formula $D = \frac{N^2 - 3N}{2}$, where N represents the number of sides.

- a) Find the number of diagonals in an octagon.
- b) If Vanessa counts 90 diagonals in a polygon, how many sides must this polygon have?

Vanessa counts $\frac{p^2 - 3p}{2}$ diagonals in a polygon with p sides. How many more diagonals can be counted in a polygon with (p + 1) sides?

Formulae

Simple interest = PRT where $R = \frac{r}{100}$

Amount (compound interest) = $P(1+R)^n$ where $R = \frac{r}{100}$

Circumference of a circle = πd

Area of a circle = πr^2

Surface area of a cylinder = $2\pi r^2 + 2\pi rh$

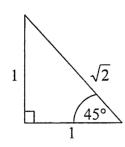
Surface area of a sphere = $4\pi r^2$

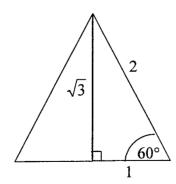
Curved surface area of cone = πrs where s = slant height

Volume of prism = Ah

Volume of a pyramid or a cone = $\frac{1}{3}$ Ah

Volume of a sphere = $\frac{4}{3}\pi r^3$


Sine rule: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$


Cosine rule: $a^2 = b^2 + c^2 - 2bc \cos A$, $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$

Area of triangle = $\frac{1}{2}$ absin C

Quadratic formula: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Exact value triangles:

