Name:	· · · · · · · · · · · · · · · · · · ·		
Class		· · · · · · · · · · · · · · · · · · ·	

MATHEMATICS

YEAR 9

5.3 (Advanced) COURSE, 2007

ASSESSMENT TASK 3

Time allowed - 55 MINUTES

MARKING:

There are 4 sections in this assessment:

Section 1: Number: 9 marks

Section 2: Algebra: 25 marks

Section 3: Measurement: 6 marks

Section 4: Geometry: 5 marks

TOTAL: 45 marks

INSTRUCTIONS

- Attempt ALL questions
- Answers are to be written in the space provided
- Approved calculators may be used

St Andrew's Cathedral School Year 9 Mathematics Stage 5.3 Assessment Task 3 2007	Name: Class.	
Section 1 NUMBER Surds: 9 Marks Ques.1. Write down all of the irrational numbers:	$\sqrt{4}$, $\sqrt{144}$, $2\sqrt{144}$, $2\sqrt{5}$, $\sqrt{3}$	[1]
Ques.2. Arrange these numbers in ascending orde	er: $\pi, \sqrt{2}, 2.1, \sqrt{12}$	[1]
Ques.3. Simplify fully: (a) $\sqrt{72}$		[1]
(b) 3√48		[1]
(b) $3\sqrt{48}$ (c) $\sqrt{5}(2\sqrt{3}-\sqrt{5})$	•	[1]

Ques.4. Rationalise the denominator and leave your answer in the simplest surd form:

(a)
$$\frac{5\sqrt{7}}{3\sqrt{5}}$$

(b)
$$\frac{1}{2-\sqrt{5}} + \frac{1}{2+\sqrt{5}}$$

END OF SECTION 1 NUMBER

St Andrew's Cathedral School Year 9 Mathematics Stage 5.3 Assessment Task 3 2007 Section 2 ALGEBRA: 25 Marks Indices

Name: __ Class.....

Ques.1. Simplify fully the following indices: (a) $3x^3 \times 2x^4$

-[1]

[1]

[1]

(d) $x^2(2x-5)-2x^3$

[1]

(e) $7p^7q^5 \div 35(p^2q)^3$

[2]

[2]

Name:

Class.....

Surds

Ques.2. Simplify fully:

(a)
$$\sqrt{x}(2\sqrt{x}+3)$$

[1]

(b)
$$\sqrt{20p} \div 2\sqrt{p}$$

[1]

(c)
$$(\sqrt{m} + 2\sqrt{y})(\sqrt{m} - 2\sqrt{y})$$

[1]

$$(d) \left(2\sqrt{x} + \sqrt{y}\right)^2$$

[2]

Factorisation of Algebraic Expressions:

Ques.3. Factorise fully:

(a)
$$16x^2y - 9xy$$

[1]

(b)
$$x^2 - 8x + 16$$

[1]

Name:

Class.

(c)
$$d^2 - 36$$

[1]

(d)
$$8x^2 - 8$$

[2]

(e)
$$2x^2 - 5x + 2$$

[2]

Ques.4. Simplify fully the following: (Show FULL working)

(a)
$$\frac{x^2 - 2x - 24}{x + 4}$$

[2]

(b)
$$\frac{8x+8}{x^2-1} \div \frac{2x-2}{x^2-2x+1}$$

[3]

St Andrew's Cathedral School Year 9 Mathematics Stage 5.3 Assessment Task 3 2007	Name:		
Section 3 Measurement (Practical Appl	ication): 6 Marks		
Ques.1. A pool is built in the shape of a trape	zoidal prism as shown.		
25 m	NOT TO SCALE		
(a) Find the area of the front face of the diagra	am. (Trapezium) [1]		
(b) Find the volume of the trapezoidal prism (pool) in m ³ . [1]		
(c) During the summer months the water level (i) What was the volume of water lost in m ³ ?	[1]		
(ii) How many litres of water were lost?	[1]		

St Andrew's Cathedral School
Year 9 Mathematics Stage 5.3
Assessment Task 3 2007

Ques.2.

A cylinder fits exactly into a cube with side lengths x. How much space is left in the cube? [2] Answer in terms of π .

END OF SECTION 3 MEASUREMENT

ssessment Task 3 2007	Class	
ection 4 GEOMETRY Co-ordin	nate Geometry: 5 Marks	
rues.1 For the points A (-3,-1) and B (-5, (a) the co-ordinates of the midpoin		. [1]
· ·	-	
(b) the gradient of AB.		[1]
	:	
(c) the distance between the points	s A and B	[1]
ues.2. The gradient between two points ((-3,2) and (3,m) is $\frac{1}{2}$ unit. Find the	value of "m". [2]
-		
!		

END OF SECTION 4 GEOMETRY

Name:	ANSWE	RS	
Class			200

MATHEMATICS

YEAR 9

5.3 (Advanced) COURSE, 2007

ASSESSMENT TASK 3

Time allowed - 55 MINUTES

MARKING:

There are 4 sections in this assessment:

Section 1: Number: 9 marks

Section 2: Algebra: 25 marks

Section 3: Measurement: 6 marks

Section 4: Geometry: 5 marks

TOTAL: 45 marks

INSTRUCTIONS

- Attempt ALL questions
- Answers are to be written in the space provided
- Approved calculators may be used

St Andrew's Cathedral School Year 9 Mathematics Stage 5.3 Assessment Task 3 2007

ANSWERS Class.....

Section 1 NUMBER Surds: 9 Marks

Ques.1. Write down all of the irrational numbers: $\sqrt{4}$, $\sqrt{144}$, $2\sqrt{144}$, $2\sqrt{5}$, $\sqrt{3}$ [1]

Ques.2. Arrange these numbers in ascending order: $\pi, \sqrt{2}, 2.1, \sqrt{12}$ [1]

Ques.3. Simplify fully:
(a)
$$\sqrt{72}$$
 = $6\sqrt{2}$ [1]

(b)
$$3\sqrt{48} = 12\sqrt{3}$$
 [1]

(c)
$$\sqrt{5}(2\sqrt{3}-\sqrt{5}) = 2\sqrt{15}-5$$
 [1]

Ques.4. Rationalise the denominator and leave your answer in the simplest surd form:

(a)
$$\frac{5\sqrt{7}}{3\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} = \frac{5\sqrt{35}}{15}$$

$$= \frac{\sqrt{35}}{3} \quad (must simplify)$$
FOR ONE MARK

(b)
$$\frac{1}{2-\sqrt{5}} + \frac{1}{2+\sqrt{5}}$$

$$= \frac{1}{2-\sqrt{5}} \times \frac{2+\sqrt{5}}{2+\sqrt{5}} + \frac{1}{2+\sqrt{5}} \times \frac{2-\sqrt{5}}{2-\sqrt{5}}$$

$$= \frac{2+\sqrt{5}}{4-5} + \frac{2-\sqrt{5}}{4-5}$$

$$= \frac{2+\sqrt{5}}{4-5} + \frac{2-\sqrt{5}}{4-5}$$

$$= \frac{2+\sqrt{5}+2-\sqrt{5}}{(2-\sqrt{5})(2+\sqrt{5})}$$

$$= \frac{4}{4-5}$$

$$= -4$$
END OF SECTION 1 NUMBER
$$= -44.$$

St Andrew's Cathedral School Year 9 Mathematics Stage 5.3

ANSWERS

Assessment Task 3 2007

Class.....

Section 2 ALGEBRA: 25 Marks

Indices

Ques.1. Simplify fully the following indices:

(a)
$$3x^3 \times 2x^4$$

[1]

$$\begin{array}{ccc} \text{(b) } 8(x^2y)^0 & = & \mathcal{S} \times I \\ & = & \mathcal{S} \end{array}$$

(c)
$$(\frac{x^2}{y^2})^{-3} = \frac{3c^{-6}}{y^{-6}} = \frac{y^6}{x^6}$$

[1]

[2]

(d)
$$x^2(2x-5)-2x^3 = 2x^3-5x^2-2x^3$$

(e)
$$7p^7q^5 + 35(p^2q)^3$$

$$= \frac{7}{35} p^6 q^3$$

$$= \frac{pq^2}{5}$$

$$-(f) \left(\frac{16}{x^4}\right)^{\frac{3}{4}} = \frac{2^3}{x^3}$$

$$= \frac{8}{x^3}$$
[2]

St Andrew's Cathedral School Year 9 Mathematics Stage 5.3 Assessment Task 3 2007

Name: ANSWERS

Surds

Ques.2. Simplify fully:

(a)
$$\sqrt{x}(2\sqrt{x}+3) = 2 > c + 3\sqrt{>}c$$

[1]

(b)
$$\sqrt{20p} \div 2\sqrt{p} = \sqrt{\frac{20p}{4p}}$$

$$= \sqrt{5}$$

(c)
$$(\sqrt{m} + 2\sqrt{y})(\sqrt{m} - 2\sqrt{y}) = m - 4y$$
 [1]

(d)
$$(2\sqrt{x} + \sqrt{y})^2 = 4 \times 4 \sqrt{54} + 4 \sqrt{54}$$
 [2]

Factorisation of Algebraic Expressions:

Ques.3. Factorise fully:

(a)
$$16x^2y - 9xy = \chi \chi \left(16x - 9\right)$$

[1]

(b)
$$x^2 - 8x + 16$$
 = $(x - 4)(x - 4)$ [1]

Name: ANSWERS

Class.....

(c)
$$d^2-36 = (d+6)(d-6)$$

[1]

(d)
$$8x^2 - 8 = 8(x^2 - 1)$$

 $= 8(x+1)(x-1)$

(e)
$$2x^2 - 5x + 2 = (2x - 1)(x - 2)$$
 [2]

Ques.4. Simplify fully the following: (Show FULL working)

(a)
$$\frac{x^2 - 2x - 24}{x + 4} = \frac{(x - 6)(x + 4)}{(c + 4)}$$

$$= (x - 6)$$

(b)
$$\frac{8x+8}{x^2-1} \div \frac{2x-2}{x^2-2x+1} = \frac{g(x+1)}{(x+1)(x-1)} \div \frac{2(x-1)}{(x-1)(x-1)}$$

$$= \frac{g}{2x-1} \cdot \frac{2(x-1)}{(x-1)(x-1)}$$

END OF SECTION 2 ALGEBRA

St Andrew's Cathedral School Year 9 Mathematics Stage 5.3 Assessment Task 3 2007

Name:	ANSWERS	
Class		

Section 3 Measurement (Practical Application): 6 Marks

Ques.1. A pool is built in the shape of a trapezoidal prism as shown.

NOT TO SCALE

[1]

	nt face of the diagram. (Trapezium)	[1]
Area =	±(4+3) x 25	
-	87.5m2	

(b) Find the volume of the trapezoidal prism (pool) in m³. [1]
$$\frac{V' \le l = A h}{= 87.5 \times 10}$$

$$= 875 m3$$

(c) During the summer months the water level dropped by 5 cm.(i) What was the volume of water lost in m³?

(ii) How many litres of water were lost? [1]

Name: ANSWERS

Class.....

Ques.2.

e 1,

A cylinder fits exactly into a cube with side lengths x. How much space is left in the cube? [2] Answer in terms of π .

END OF SECTION 3 MEASUREMENT

St Andrew's Cathedral School
Year 9 Mathematics Stage 5.3
Assessment Task 3 2007

Name:	/tas	ve ks	; 	
Class				

Section 4 GEOMETRY Co-ordinate Geometry: 5 Marks

Ques.1 For the points A (-3,-1) and B (-5,3) find:

(a) the co-ordinates of the midpoint AB.

[1]

$$\text{point:} \left(\frac{-3+\frac{-5}{2}}{2}, \frac{-1+\frac{3}{2}}{2} \right)$$
 $= \left(-\frac{4}{3}, \frac{1}{2} \right)$

(b) the gradient of AB.

Grad,
$$m = \frac{3-1}{-5-2}$$

$$= \frac{4}{-2}$$

$$= -2$$

(c) the distance between the points A and B

Clist =
$$\frac{(-2)^2 + (3-1)^2}{(-2)^2 + (4)^2}$$

= $\frac{(-2)^2 + (4)^2}{(-2)^2 + (4)^2}$

= $\frac{(-2)^2 + (4)^2}{(-2)^2 + (4)^2}$

= $\frac{(-2)^2 + (4)^2}{(-2)^2 + (4)^2}$

Ques.2. The gradient between two points (-3,2) and (3,m) is $\frac{1}{2}$ unit. Find the value of "m". [2]

END OF SECTION 4 GEOMETRY