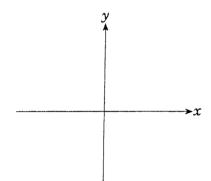
Question 1 Sketch the following lines on the given number plane by first finding the x and y intercepts:

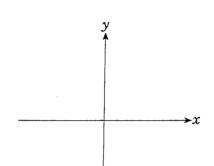
(a)
$$2x + y = 4$$

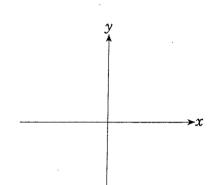
 $y = 0 \implies x =$

$$x = 0 \implies y =$$

$$\mathbf{(b)} \quad 3x + 2y = 6$$


$$y = 0 \implies x =$$


$$x = 0 \implies y =$$


$$(\mathbf{c}) \qquad x - 4y = 12$$

$$y = 0 \implies x =$$

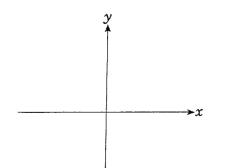
$$x = 0 \implies y =$$

(d)
$$2x - 3y - 12 = 0$$

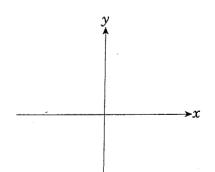
$$y = 0 \implies x =$$

$$x = 0 \implies y =$$

(e)
$$y - 3x + 5 = 0$$


$$y = 0 \implies x =$$


$$x = 0 \implies y =$$


(f)
$$4x - 3y + 6 = 0$$

$$y = 0 \implies x =$$

$$x = 0 \implies y =$$

	(ii) the gradient of the line joint(iii) the midpoint	ining them	
(a)	(1, 3) and (5, 9)	(b)	(-3,4) and $(7,2)$
		-	
			·
	- : · · · · · · · · · · · · · · · · · ·	-	
		•	
(c)	(-5, -3) and $(-2, 1)$	(d)	(0,5) and (-2,7)
(e)	(-7, 1) and $(3, -5)$	(f)	(3,4) and $(-9,-3)$
	· · · · · · · · · · · · · · · · · · ·		

For each of the following pairs of points, find:

(i) the distance between them

Question 2

Question 3 Use the gradient-intercept form to find the equations of the lines in the following:

- (a) gradient = -1, y-intercept = 4
- **(b)** $m = \frac{1}{2}$ $b = \frac{1}{2}$

(c) m = -2 b = 3

(d) $m = -\frac{3}{2}$ $b = \frac{5}{4}$

Question 4 Use the point-gradient form to find the equations of the lines in the following:

(a) gradient = -1, through (2, -1)

(b) m = 4, point is (-1, -2)

(c) $m = \frac{1}{2}$, through (3, -2)

(d) $m = -\frac{3}{2}$, through $\left(\frac{1}{2}, \frac{1}{2}\right)$

(e) $m = \frac{3}{5}$, through (0,5)

(f) $m = -\frac{2}{7}$, through (-3, 0)

Question 5 Use either the two-point form or the point-gradient form (by first finding the gradient) to find the equation of the line joining the two points given.

(a) (1, 3) and (2, 5)

(b) (-1, -1) and (3, 2)

(c) (-3, 2) and (2, -3)

(d) (3,-5) and (6,3)

Question 6	In each case, find the equation of the line from the given information, using the	
-	appropriate formula.	
	m \ 2	

- (a) gradient = 3, y-intercept = -7
- (b) gradient = 2, through (-3, 1)

(c) through (-3,-3) and (7,5)

(d) m = -2, through (1,7)

(e) m = 7, b = -1

(f) through (7,3) and (-2,-3)

(g) m = -1, through (-1, -1)

(h) gradient = 5, through (0,0)

- (i) gradient = -2, y-intercept = 9
- (j) through (4,-2) and (-3,-7)

(k) gradient = -2, through (2, -5)

(1) $m = \frac{2}{5}$, through (-3, -4)

Question 7 In each of the following, find the equation of the line:

(a) through (1, 2), parallel to 2x + y - 1 = 0

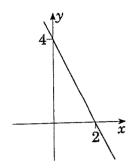
(b) through (-3, 2), parallel to x-3y+5=0

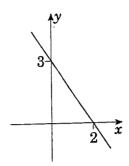
(c)	through $(-1, -1)$, to $y = 5x + 3$	(d)	through $(7, 2)$, to $7x - 4y + 3 = 0$
		_	,
	_		
		_	
(e)	through $(4, 1)$, perpendicular to $3x + 2y + 1 = 0$	(f)	through $(2, 4)$, \perp to $3x - 4y - 11 = 0$
		-	
		-	<u> </u>
		-	
(g)	through $\left(\frac{1}{2}, -\frac{1}{2}\right)$, \parallel to $4x - y - 3 = 0$	(h)	through $(5,-5)$, \perp to $x-y-7 = 0$
Ques	stion 8 Triangle ABC has vertices $A(-1)$	1, 4), B(3,	6), $C(9,-4)$
(a)	Find the coordinates of K, L, M , which are t	he midpoin	ts of AB , BC and CA respectively.
			·

	· · · · · · · · · · · · · · · · · · ·		- -				-
						w	
							1
	nates of G , the			d <i>BM</i> , and	show that	<i>CK</i> also pa	sses throu
Find the coordin	nates of G , the	intersection (
Find the coordin		intersection (show that		sses throu
Find the coordin	nates of G , the	intersection (
Find the coordin	nates of G , the	intersection (
Find the coordin	nates of G , the	intersection (
Find the coordin	nates of G , the	intersection (
Find the coordin	nates of G , the	intersection					
Find the coordin	nates of G , the	intersection					
Find the coordin	nates of G , the	intersection					

.

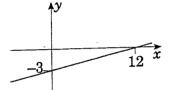
ANSWERS

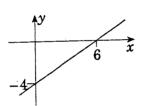

19 Coordinate geometry


1 (a)
$$y=0 \Rightarrow x=2$$

(b)
$$y = 0 \implies x = 2$$

$$x=0 \implies y=4$$


$$x = 0 \implies y = 3$$



(c)
$$y = 0 \Rightarrow x = 12$$

 $x = 0 \Rightarrow y = -3$

(d)
$$y=0 \Rightarrow x=6$$

 $x=0 \Rightarrow y=-4$

(e)
$$y = 0 \Rightarrow x = \frac{5}{3}$$
 (f) $x = 0 \Rightarrow y = -5$

(e)
$$y=0 \Rightarrow x=\frac{5}{3}$$
 (f) $y=0 \Rightarrow x=-\frac{3}{2}$
 $x=0 \Rightarrow y=-5$ $x=0 \Rightarrow y=2$

$$\frac{x-0}{\sqrt{\frac{5}{3}}} \xrightarrow{x}$$

$$\frac{2}{\sqrt{-\frac{3}{2}}}$$

(ii)
$$1\frac{1}{2}$$

(iii) (3, 6)

(ii)
$$-\frac{1}{5}$$

(ii)
$$1\frac{1}{3}$$

(iii)
$$\left(-3\frac{1}{2}, -1\right)$$

$$(ii)$$
 -1

(ii)
$$-\frac{3}{5}$$

(iii)
$$(-2, -2)$$

(ii)
$$\frac{7}{12}$$

(iii)
$$\left(-3, \frac{1}{2}\right)$$

3 (a)
$$y = -x + 4$$
 (b) $y = \frac{1}{2}x + \frac{1}{2}$

(c)
$$y = -2x + 3$$
 (d) $y = -\frac{3}{2}x + \frac{5}{4}$

4 (a)
$$y = -x+1$$
 (b) $y = 4x+2$

(c)
$$y = \frac{1}{2}x - \frac{7}{2}$$
 (d) $y = -\frac{3}{2}x + \frac{5}{4}$

(e)
$$y = \frac{3}{5}x + 5$$
 (f) $y = -\frac{2}{7}x - \frac{6}{7}$

5 (a)
$$y = 2x + 1$$
 (b) $y = \frac{3}{4}x - \frac{1}{4}$

(c)
$$y = -x - 1$$
 (d) $y = \frac{8}{3}x - 13$

6 (a)
$$y = 3x - 7$$
 (b) $y = 2x + 7$

(c)
$$y = \frac{4}{5}x - \frac{3}{5}$$
 (d) $y = -2x + 9$

(e)
$$y = 7x - 1$$
 (f) $y = \frac{2}{3}x - \frac{5}{3}$

(g)
$$y = -x - 2$$
 (h) $y = 5x$

(i)
$$y = -2x + 9$$
 (j) $y = \frac{5}{7}x - \frac{34}{7}$

(k)
$$y = -2x - 1$$
 (l) $y = \frac{2}{5}x - \frac{14}{5}$

7 (a)
$$y = -2x + 4$$
 (b) $y = \frac{1}{3}x + 3$

(c)
$$y = 5x + 4$$
 (d) $y = \frac{7}{4}x - \frac{41}{4}$

(e)
$$y = \frac{2}{3}x - \frac{5}{3}$$
 (f) $y = -\frac{4}{3}x + \frac{20}{3}$

(g)
$$y = 4x - \frac{3}{2}$$
 (h) $y = -x$

8 (a)
$$K(1,5)$$
 $L(6,1)$ $M(4,0)$

(b)
$$BM$$
: $y = -6x + 24$ CK : $y = -\frac{9}{8}x + \frac{49}{8}$ AL : $y = -\frac{3}{7}x + \frac{25}{7}$

(c)
$$\left(3\frac{2}{3}, 2\right)$$
 Proof: $y = -\frac{9}{8} \times 3\frac{2}{3} + \frac{49}{8}$; $y = 2$