

Teacher:

Year 12 HSC Term 1 Assessment February 2016 Mathematics

Time allowed: 45 minutes

Instructions to Students:

- Board approved calculators may be used.
- To obtain full marks, well set out logical reasoning or explanations must accompany your answers.
- Include your student number/name at the top of each purple sheet.
- Start each question on a new sheet of purple paper.

Total: 32 marks

Ques	ition 1 [Maximum mark: 14] [Start on a new purple shee	t]
a)	Find the equation of the locus of a point $P(x,y)$ that moves so that its distance from the origin is 4 units.	(1)
b)	 i) Find the locus of a point P(x,y) that moves so that PA = 2PB, given that A(-2,4) and B(4,1). 	(3)
	ii) \$how that the locus is a circle. State the radius and the coordinates of its centre.	(3)
c)	Find the equation of the parabola with vertex $(3,1)$ and directrix the line x = 2 and hence find the coordinates of the focus.	(3)
d)	Find $f(x)$ given $f'(x) = 2x - 2$ and $f(1) = 4$	(2)
e)	Find the gradient of the tangent to the curve $x^2 = -8y$ at the point $x = 1$.	(2)
	· · · ·	

Yea	February 2016	
Que	stion 2 [Maximum mark: 18] [Start on	a new purple sheet]
a)	Consider the function $f(x) = x^3(4-x)$	
	i) Find the coordinates of the points where the curve c	osses the axes. (2)
	ii) Find any stationary points and determine their natur	e. (4)
	iii) Find the coordinates of the points of inflexion.	(2)
	iv) Sketch the graph of $y = f(x)$, indicating clearly the and points of inflexion.	intercepts, stationary points (3)
	v) For what values of x is the curve concave down?	(1)
) }	The slant edge <i>AB</i> of a right circular cone is 6 cm. The very <i>x cm</i> .	ertical height of the cone is

Express the radius of the base in terms of x_i I) (1)Using the formula for volume of a cone, $V = \frac{1}{2}\pi r^2 h$, show that the volume ii) of the cone can be expressed as $V = \frac{\pi x (36 - x^2)}{2}$

- ili) Hence find the vertical height of the cone when the volume is a maximum. (3)
 - End of Assessment

- にそうけににくろう AUDEDUMENI d) f'(x) = 2x - 2 $x^2 + y^2 = 16$ $f(x) = x^2 - 2x + C$ $\partial \partial PA^2 = 4PB^2$ f(i) = 4 $(x_{+2})^{2} + (y_{-4})^{2} = 4 \left[(x_{-4})^{2} + (y_{-1})^{2} \right]$ $2 + 4x + 4 + y^2 - 8y + 16 = 4(x^2 - 8x + 16 + y^2 - 2y + 1)$ $4 = (1)^2 - 2(1) + C$ 4 = 1 - 2 + C3x2-36x+342+48=0 1. C = 5 x2 - 12x + 47+16=0 $(x) = x^2 - 2x + 5$) $x^{2} - 12x + (-6)^{2} + y^{2} = -16 + (-6)^{2}$ (x-6)2 + y2 = 20 e) X = - 84 ilocus is a cirde as is of $y = \frac{x^2}{-8}$ general form (x-h) + (y-k) = 1+ C = (6, 0) $\frac{dY}{dx} = \frac{2x}{-8}$ -= 120 = 2/5 units (2)V(311) when or = $\frac{dy}{dx} =$ $(y-1)^2 = 4a(x-h)$ V=(3,1)a=1 $(y-1)^2 = 4(x-3)$ $m = -\frac{1}{4}$ Sus = (4, 1)

. (2)

2. A)
(1) Ket filter of for prop prop
$$p$$
 of p and p
 $0 = x^{2}(t + x)$
 $(x = 0 \text{ for } x = t,$
 $(x = 0 \text{ for } x = t,$
 $(x = 0 \text{ for } x = t,$
 $(x = 0 \text{ for } x = t,$
 $(x = 0 \text{ for } x = t,$
 $(x = 0 \text{ for } x = 2, y = 2^{2}(t + 2)$
 $(x = 0 \text{ for } x = 2, y = 2^{2}(t + 2)$
 $(x = 0 \text{ for } x = 2, y = 2^{2}(t + 2)$
 $(x = 0 \text{ for } x = 2, y = 2^{2}(t + 2)$
 $(x = 0 \text{ for } x = 2, y = 2^{2}(t + 2)$
 $(x = 0 \text{ for } x = 2, y = 2^{2}(t + 2)$
 $(x = 0 \text{ for } x = 2, y = 2^{2}(t + 2)$
 $(x = 16)$
 $(x = 10 \text{ for } x = 2, y = 2^{2}(t + 2)$
 $(x = 16)$
 $(x = 10 \text{ for } x = 2, y = 2^{2}(t + 2)$
 $(x = 16)$
 $(x = 10 \text{ for } x = 2, y = 2^{2}(t + 2)$
 $(x = 16)$
 $(x = 10 \text{ for } x = 2, y = 2^{2}(t + 2)$
 $(x = 16)$
 $(x = 10 \text{ for } x = 2, y = 2^{2}(t + 2)$
 $(x = 10 \text{ for } x = 2, y = 2^{2}(t + 2)$
 $(x = 10 \text{ for } x = 2, y = 2^{2}(t + 2)$
 $(x = 10 \text{ for } x = 2, y = 2^{2}(t + 2)$
 $(x = 10 \text{ for } x = 2, y = 2^{2}(t + 2)$
 $(x = 10 \text{ for } x = 2, y = 2^{2}(t + 2)$
 $(x = 10 \text{ for } x = 2, y = 2^{2}(t + 2)$
 $(x = 10 \text{ for } x = 2, y = 2^{2}(t + 2)$
 $(x = 2, 16)$
 $(x = 2, 16)$