

2016 SYDNEY BOYS HIGH SCHOOL TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 2

. General Instructions

- Reading time 5 minutes
- Working time 3 hours
- · Write using black pen
- · Board-approved calculators may be used
- · A reference sheet is provided with this paper
- Leave your answers in the simplest exact form, unless otherwise stated
- All necessary working should be shown in every question if full marks are to be awarded
- Marks may NOT be awarded for messy or badly arranged work
- In Questions 11–16, show relevant mathematical reasoning and/or calculations

Total marks - 100

Section I

Pages 3-7

10 marks

- Attempt Questions 1–10
- Allow about 15 minutes for this section

Section II

Pages 8-19

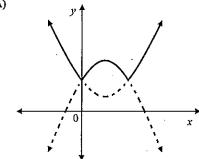
90 marks

- Attempt Questions 11–16
- Allow about 2 hour and 45 minutes for this section

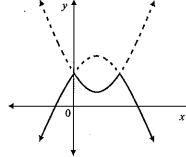
Examiner: E.C.

Section I

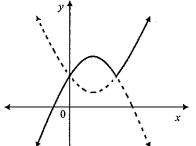
10 marks

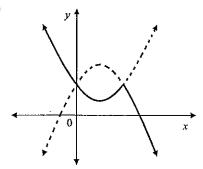

Attempt Questions 1-10

Allow about 15 minutes for this section


Use the multiple-choice answer sheet for Questions 1-10.

1. Which of the following figures in solid line represents $y = 1 - |x - x^2|$?


(A)


B)

(C)

(D)

- 2. In how many ways can eight students be divided into 2 groups of four, for a polo match?
 - (A) 70
 - (B) 140
 - (C) 35
 - (D) 50
- 3. Find $\int \frac{dx}{x^2 + 2x + 2}$.
 - (A) $\tan^{-1}(x+2)+C$
 - (B) $\tan^{-1}(x+1)+C$
 - (C) $\sin^{-1}(x+1) + C$
 - (D) $\cos^{-1}(x+1)+C$
- 4. The linear factors of $z^2 + 6z + 10$ over the complex field are:
 - (A) (z+3+i)(z-3+i)
 - (B) $(z+3+i)^2$
 - (C) (z+3-i)(z+3+i)
 - **(D)** (z+3+i)(z-3-i)

- 5. The gradient of the tangent to the curve $\sin x + 2\sin y = 1$ at the point $\left(\pi, \frac{\pi}{6}\right)$ is:
 - (A) $\frac{1}{\sqrt{3}}$
 - **(B)** $-\frac{1}{\sqrt{3}}$
 - (C) $\sqrt{3}$
 - (D) $-\sqrt{3}$
- 6. The base of a solid is a circle $x^2 + y^2 = 16$. Every cross section of the solid taken perpendicular to the x-axis is a right-angled isosceles triangle with its hypotenuse lying in the base of the solid.

Which of the following is an expression for the volume of the solid?

- (A) $\frac{1}{4} \int_{-4}^{4} (16-x^2) dx$
- (B) $\int_{-4}^{4} (16 x^2) \ dx$
- (C) $2\int_{-4}^{4} (16-x^2) dx$
- (D) $4\int_{-4}^{4} (16-x^2) dx$

7. A particle of mass 1 kg is projected vertically upwards from level with a velocity u m/s. The particle is subject to a constant gravitational force and a resistance which is proportional to the square of its velocity v m/s, (with k being the constant of proportionality).

Let x be the displacement in metres from the ground after t seconds and let g be the acceleration due to gravity.

Which of the following expressions gives the maximum height reached by the particle?

$$(A) \int_{u}^{0} \frac{v}{g + kv^{2}} \ dv$$

$$(B) \qquad \int_{u}^{0} \frac{v}{g - kv^2} \ dv$$

$$(C) \qquad \int_0^u \frac{v}{g + kv^2} \ dv$$

(D)
$$\int_0^u \frac{v}{g - k v^2} \ dv$$

- 8. The equation $x^4 + px + q = 0$, where $p \neq 0$ and $q \neq 0$, has roots α , β , γ and δ . What is the value of $\alpha^4 + \beta^4 + \gamma^4 + \delta^4$?
 - (A) -4q
 - (B) $p^2 2q$
 - (C) p^4-2a
 - (D) p^4

9. The solutions to the equation $x^4 + 4x^3 + 6x^2 - 4x + 1 = 0$ are $x = \alpha, \beta, \gamma$, and δ .

What is the value of $\alpha^2 + \beta^2 + \gamma^2 + \delta^2$?

- (A)
- (B) 16
- (C) 28
- (D) 32
- 10. Consider the integral $\int_{-b}^{b} f\left(a \frac{x}{b}\right) dx$, where a and b are constants. Which of the following integrals is equal to this integral.
 - (A) $-b \int_{a-1}^{a+1} f(x) \ dx$
 - (B) $b \int_{a-1}^{a+1} f(x) \ dx$
 - (C) $-\frac{1}{b}\int_{a-1}^{a+1}f(x) \ dx$
 - (D) $\frac{1}{b} \int_{a-1}^{a+1} f(x) \ dx$

Section II

90 marks

Attempt Questions 11-16

Allow about 2 hour and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In Questions 11-16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.

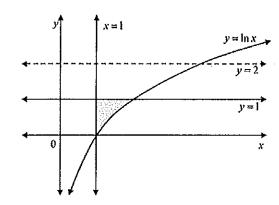
- (a) Given that $z = w + \frac{1}{w}$, where $w = 2(\cos\theta + i\sin\theta)$,
 - (i) Express the real and imaginary parts of z in terms of θ .
 - 10.

2

2

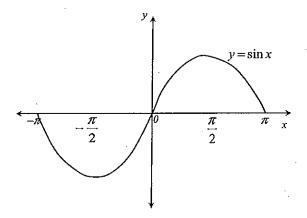
- (ii) Show that the point representing z in the Argand diagram lies on the curve with Cartesian equation $\frac{x^2}{25} + \frac{y^2}{9} = \frac{1}{4}$.
- (b) Evaluate $\int_{0}^{\frac{x}{2}} \frac{1}{4+5\cos x} dx$ using the substitution $t = \tan\left(\frac{x}{2}\right)$.
- (c) The point P in the Argand diagram represents the variable complex number Z and the point Q is in the first quadrant represent the complex number w, where w=1+3i.

Sketch, on separate diagrams, the locus of P in each of the following cases making clear the relationship between the locus and the point Q.


(i)
$$|z| = |w|$$

(ii)
$$|z-w| = 2|w|$$

(iii)
$$|z-w|=|z|$$


Question 11 continues on page 9

(d) The region bounded by the curve $y = \ln x$, x = 1 and y = 1 is shaded in the diagram below. The region is rotated about the line y = 2 to form a solid. Using the method of cylindrical shells, find the volume of the solid formed.

Question 12 (15 marks) Use a SEPARATE writing booklet.

(a) The graph of $f(x) = \sin x$ is shown below for the interval $-\pi \le x \le \pi$.

Draw a separate half page graph for each of the following functions.

$$y = \frac{1}{f\left(x - \frac{\pi}{2}\right)}$$

(ii)
$$y = f(\sqrt{|x|})$$

2

2

(b) Let
$$P(z) = z^5 - 1$$
 and $\alpha = \cos\left(\frac{2\pi}{5}\right) + i\sin\left(\frac{2\pi}{5}\right)$.

(i) Show that 1,
$$\alpha$$
, $\frac{1}{\alpha}$, α^2 and $\frac{1}{\alpha^2}$ are roots of the equation $P(z) = 0$.

(ii) Prove the identity
$$z^5 - 1 = z^2 \left(z - 1\right) \left[\left(z + \frac{1}{z}\right)^2 + \left(z + \frac{1}{z}\right) - 1 \right]$$
.

(iii) Using the results of (i) and (ii), show that
$$4\cos^2\left(\frac{2\pi}{5}\right) + 2\cos\left(\frac{2\pi}{5}\right) - 1 = 0$$
.

(iv) Hence, or otherwise, show that
$$\cos\left(\frac{2\pi}{5}\right) = \frac{\sqrt{5}-1}{4}$$
.

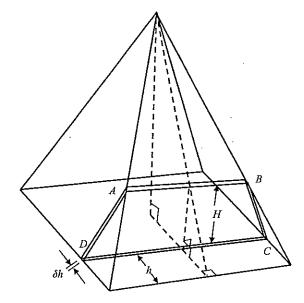
(c) How many diagonals does a regular undecagon (11-sided polygon) have?

Question 12 continues on page 11

Question 12 (continued)

(d) Let
$$y = x^{n-1} (1+x^2)^{\frac{1}{2}}$$
.

(i) Where *n* is a positive integer. Find
$$\frac{dy}{dx}$$
.


(ii) Let
$$I_n = \int \frac{x^n}{\sqrt{1+x^2}} dx$$
, where n is an integer and $n \ge 0$. Using the result from (i), show that $I_n + \frac{n-1}{n} I_{n-2} = \frac{x^{n-1} \left(1+x^2\right)^{\frac{1}{2}}}{n}$.

1

(iii) Hence, find
$$\int \frac{x^3}{\sqrt{1+x^2}} dx$$
.

Question 13 (15 marks) Use a SEPARATE writing booklet.

- (a) n people are sitting around a table.
 - (i) If p is the probability that two particular men A, B are sitting next to each other, find p.
 - (ii) If q is the probability that three particular men A, B, C are sitting in a group, find q.
- (b) A square pyramid of height 24 cm on a base of side 12 cm is drawn below.

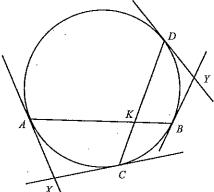
Slicing the square pyramid perpendicular to its base and h units away from one of the edge gives an isosceles trapezium slice ABCD, where CD=12 cm and thickness δh as shown on the diagram. Let H be the perpendicular distance between the parallel side AB and CD of the trapezium ABCD.

- (i) Let AB be the length of the shorter parallel side of the trapezium ABCD. Show that AB = 12 2h and H = 4h.
- (ii) Hence, show that the volume of the square pyramid by the method of slicing is given by

$$V = 2 \int_0^6 4h (12-h) \ dh$$
.

Question 13 continues on page 13

Question 13 (continued)


2

2

2

2

(c) Two chords AKB, CKD of a circle cut at K. The tangents at A and C meet at X, the tangents at B and D meet at Y.

Prove that $\angle AXC + \angle BYD = 2\angle AKD$.

(d) Show that $x^3 - x + 2 = 0$ cannot have a double root.

End of Question 13

Question 14 (15 marks) Use a SEPARATE writing booklet.

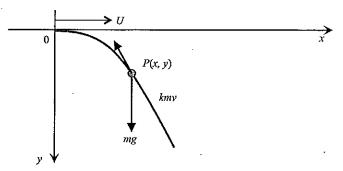
- (a) (i) If $2\sin 2x + \cos 2x = k$, where k is a real constant and $k \ne -1$. Show that $(1+k)\tan^2 x - 4\tan x + (k-1) = 0$.
 - (ii) Hence, show that if $\tan x_1$, and $\tan x_2$ are roots of this quadratics equation in $\tan x$, then $\tan(x_1+x_2)=2$.
- (b) Let a_r be the coefficient of x^r in the expansion of $(1+x+x^2)^n$.

(i) Show that
$$a_0 + a_2 + a_4 + ... + a_{2n} = \frac{3^n + 1}{2}$$
.

- (ii) Show that $a_r = a_{2e^{-r}}$.
- (c) Let z be the complex number $z = r(\cos\theta + i\sin\theta)$.

(i) Show that
$$\frac{z^2}{\overline{z}} = r(\cos 3\theta + i \sin 3\theta)$$
.

- (ii) If $z^2 = i\overline{z}$, find the value of r and the three possible values of θ .
- (iii) If $w = \cos \alpha + i(1 + \sin \alpha)$, where $-\pi < \alpha \le \pi$ find the values of |w i|.
- (iv) Using (ii), solve the equation $(w-i)^2 + 1 = i\overline{w}$, giving your answers in Cartesian form,


Question 15 (15 marks) Use a SEPARATE writing booklet.

- (a) Given that $f(x) = xe^{-x}$, prove by mathematical induction that $f^{(n)}(x) = (-1)^n e^{-x} (x-n)$ for all positive integers n, where $f^{(n)}(x)$ is the nth derivative of $f(x) = xe^{-x}$.
- (b) A bomb P of mass m is released from rest by a stealth bomber flying horizontally at a speed U. The bomb experiences the effect of gravity, and a resistance proportional to its velocity v in both the horizontal and vertical direction at any time t, where v is the speed of the bomb at time t. From the diagram, the equations of motion in the horizontal and the vertical directions are given respectively by

$$\ddot{x} = -k\dot{x}$$
 and $\ddot{y} = g - k\dot{y}$

(Do NOT prove this).

where k is a constant and the acceleration due to gravity is g.

Note that the downwards direction is positive.

- (i) Show that, at time t after the release, the bomb has travelled a horizontal distance $\frac{U\left(1-e^{-tt}\right)}{k}$ metres.
- (ii) Show that, at time t after the release, the bomb is inclined at an angle $\tan^{-1}\left[\frac{g\left(e^{k}-1\right)}{kU}\right]$ to the horizontal.
- (iii) By considering the components of the velocity of the bomb, show that terminal velocity, V, of the bomb is $V = \frac{g}{r}$
- (iv) Show that the least speed of the bomb is W where $W^2 = \frac{U^2 V^2}{U^2 + V^2}$ for $t \ge 0$.

End of Question 14

Question 16 (15 marks) Use a SEPARATE writing booklet.

- (a) (i) Show that $2\cos A\sin B = \sin(A+B) \sin(A-B)$, by expanding the right hand side.
 - (ii) The distinct points $P(\theta, \sin \theta)$ and $Q(\phi, \sin \phi)$ lie on the curve $y = \sin x$, where x is measured in radians. Show the gradient of the chord PQ may be expressed as

$$\frac{\sin\left(\frac{\phi-\theta}{2}\right)\cos\left(\frac{\phi+\theta}{2}\right)}{\left(\frac{\phi-\theta}{2}\right)}$$

Deduce that if ϕ is approximately equal to θ then the gradient of gradient PQ is approximately equal to $\cos\theta$.

(b) Ten people arrived in the Kingsmith Airport from London. It's late at night, only 4 immigration counters are open. In how many ways can 10 people line up in a 4-lane queue?

Question 16 (continued)

1

2

(c) Let n be a positive integer.

(i) Show that
$$\frac{1}{1-t^2} = (1 + t^2 + t^4 + \ldots + t^{2\kappa-2}) + \frac{t^{2\kappa}}{1-t^2}$$
 for $t^2 \neq 1$.

(ii) For
$$-1 < x < 1$$
, show that $\int_0^x \frac{t}{1-t^2} dt = \ln\left(\frac{1}{\sqrt{1-x^2}}\right)$.

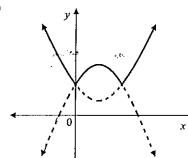
(iii) Using the above parts and by letting
$$x = \sqrt{\frac{8}{9}}$$
, deduce that
$$\int_0^{\sqrt{\frac{8}{9}}} \frac{t^{2n+1}}{1-t^2} dt = \ln 3 - \sum_{k=1}^n \frac{1}{2k} \left(\frac{8}{9}\right)^k.$$

(iv) It can be shown that for
$$0 \le t \le \sqrt{\frac{8}{9}}$$
, $\frac{t^{2s+1}}{1-t^2} \ge 0$ and $\frac{t^{2n+1}}{1-t^2} \le \frac{t^{2n+1}}{1-\frac{8}{9}}$.

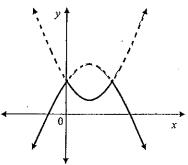
(Do NOT prove this)

3

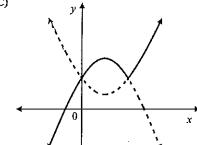
Show that
$$0 \le \ln 3 - \sum_{k=1}^{n} \frac{1}{2k} \left(\frac{8}{9}\right)^k \le \frac{9}{2n+2} \left(\frac{8}{9}\right)^{n+1}$$
.

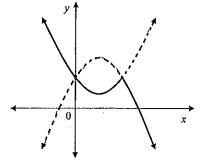

End of paper

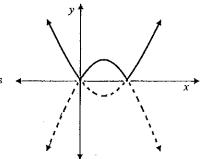
Multiple Choice


SOLUTIONS

1. Which of the following figures in solid line represents $y = 1 - |x - x^2|$?


(A)


(B)


(C)

(D)

The graph of $y = |x - x^2|$

So $y=1-\left|x-x^2\right|$ reflects it in the x-axis and a translation of 1 unit upwards.

- 2. In how many ways can eight students be divided into 2 groups of four, for a polo match?
 - (A) 70
 - **(B)** 140
 - (C) 3:
 - **(D)** 50

 8C_4 is the number of ways to select 4 students, e.g. ABCD, to play against EFGH. But this also accounts for EFGH being selected to play against ABCD. Therefore there are $^8C_4 + 2 = 35$ ways.

3. Find
$$\int \frac{dx}{x^2 + 2x + 2}$$

(A)
$$\tan^{-1}(x+2)+C$$

(B)
$$\tan^{-1}(x+1) + C$$

$$\int \frac{dx}{x^2 + 2x + 2} = \int \frac{dx}{(x+1)^2 + 1}$$
$$= \tan^{-1}(x+1) + C$$

(C)
$$\sin^{-1}(x+1)+C$$

(D)
$$\cos^{-1}(x+1)+C$$

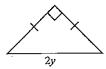
4. What are the linear factors of $z^2 + 6z + 10$ over the complex field?

(A)
$$(z+3+i)(z-3+i)$$

(B)
$$(z+3+i)^2$$

(C)
$$(z+3-i)(z+3+i)$$

$$z^{2}+6z+10=z^{2}+6z+9+1$$
$$=(z+3)^{2}-i^{2}$$


(D)
$$(z+3+i)(z-3-i)$$

- What is the gradient of the tangent to the curve $\sin x + 2\sin y = 1$ at the point $\left\{\pi, \frac{\pi}{6}\right\}$?
 - (A)

 - **(D)**
- $\cos x + 2\cos y \cdot y' = 0$ $\therefore \cos \pi + 2\cos \frac{\pi}{6} \cdot y' = 0$
- The base of a solid is a circle $x^2 + y^2 = 16$. Every cross section of the solid taken perpendicular to the x-axis is a right-angled isosceles triangle with its hypotenuse lying in the base of the solid.

Which of the following is an expression for the volume of the solid?

- (A) $\frac{1}{4} \int_{-1}^{4} (16-x^2) dx$
- (B) $\int_{-1}^{\infty} (16-x^2) dx$
- (C) $2 \int_{0}^{4} (16-x^2) dx$
- **(D)** $4 \int_{-1}^{4} (16-x^2) dx$

The area of the isosceles right triangle with hypotenuse 2y is y^2 . i.e. $16 - x^2$

- A particle of mass 1 kg is projected vertically upwards from level with a velocity u m/s. The particle is subject to a constant gravitational force and a resistance which is proportional to the square of its velocity ν m/s, (with k being the constant of proportionality).

Let x be the displacement in metres from the ground after t seconds and let g be the acceleration due to gravity.

Which of the following expressions gives the maximum height reached by the particle?

Let D be the maximum height. $ma = -me - mkv^2$ $\therefore v \frac{dv}{dy} = -(g + kv^2) \Rightarrow \frac{v \, dv}{g + kv^2} = -dy$

- The equation $x^4 + px + q = 0$, where $p \neq 0$ and $q \neq 0$, has roots α , β , γ and δ . What is the value of $\alpha^4 + \beta^4 + \gamma^4 + \delta^4$?

Substitute α , β , γ and δ into $x^4 + px +$

$$q=0$$

 $\Sigma \alpha = 0$

$$\alpha^4 + \alpha p + q = 0$$

$$\beta^4 + \beta p + q = 0$$

$$\gamma^4 + \gamma p + q = 0$$

$$\delta^4 + \delta p + q = 0$$

$$\sum \alpha^4 + p \sum \alpha + 4q = 0$$

$$\therefore \Sigma \alpha^{4} = -4q$$

The solutions to the equation $x^4 + 4x^3 - 6x^2 - 4x + 1 = 0$ are

$$x = \tan\left(\frac{\pi}{16}\right), \tan\left(\frac{5\pi}{16}\right), \tan\left(\frac{-3\pi}{16}\right), \tan\left(\frac{-7\pi}{16}\right)$$

What is the value of $\tan^2\left(\frac{\pi}{16}\right) + \tan^2\left(\frac{3\pi}{16}\right) + \tan^2\left(\frac{5\pi}{16}\right) + \tan^2\left(\frac{7\pi}{16}\right)$?

- (A) 4
- **(B)** 16
- (C) 28
- (D) 32

$$\alpha^{2} + \beta^{2} + \gamma^{2} + \delta^{2} = (\sum \alpha)^{2} - 2(\sum \alpha \beta)$$
$$= (-4)^{2} - 2(-6)$$
$$= 28$$

10. Consider the integral $\int_{-b}^{b} f\left(a - \frac{x}{b}\right) dx$, where a and b are constants.

Which of the following integrals is equal to this integral.

(A)
$$-b \int_{a+1}^{a+1} f(x) \ dx$$

(B)
$$b \int_{a-1}^{a+1} f(x) dx$$

(C)
$$-\frac{1}{b} \int_{a-1}^{a+1} f(x) \ dx$$

$$(D) \qquad \frac{1}{b} \int_{a-1}^{a+1} f(x) \ dx$$

Let
$$u = a - \frac{x}{b}$$

$$\therefore du = -\frac{1}{b}dx \Rightarrow dx = -bdu$$

$$x:-b \sim b$$

$$u: a+1 \sim a-1$$

$$\int_{-b}^{b} f\left(a - \frac{x}{b}\right) dx = -b \int_{s+1}^{a-1} f(u) du$$

$$= b \int_{-a+1}^{a+1} f(u) du$$

Question 11

SOLUTIONS

2

(a) Given that, $z = w + \frac{1}{w}$, where $w = 2(\cos \theta + i \sin \theta)$

(i) Express the real and imaginary parts of z in terms of θ .

$$z = w + \frac{1}{w}$$

$$= w + \frac{\overline{w}}{|w|^2}$$

$$= 2(\cos\theta + i\sin\theta) + \frac{2(\cos\theta - i\sin\theta)}{4}$$

$$= \frac{5}{2}\cos\theta + \frac{3}{2}i\sin\theta$$

$$\therefore \operatorname{Re} z = \frac{5}{2} \cos \theta \text{ and } \operatorname{Im} z = \frac{3}{2} \sin \theta$$

Comment

Generally well done, though many people didn't know that $\frac{1}{\kappa} = \frac{1}{2} \operatorname{cis}(-\theta)$.

Much time was wasted by making $w + \frac{1}{w} = \frac{w^2 + 1}{w}$.

(ii) Show that the point representing z in the Argand diagram lies on the curve with Cartesian equation $\frac{x^2}{25} + \frac{y^2}{9} = \frac{1}{4}$.

Let
$$x = \frac{5}{2}\cos\theta$$
 and $y = \frac{3}{2}\sin\theta$

$$\therefore \frac{4x^2}{25} = \cos^2\theta \text{ and } \frac{4y^2}{9} = \sin^2\theta$$

$$\therefore \frac{4x^2}{25} + \frac{4y^2}{9} = 1$$

$$\therefore \frac{x^2}{25} + \frac{y^2}{9} = \frac{1}{4}$$

Comment

The setting out was very poor with this question. Not much detail was presented as proof. Some students did assume the result and this was penalised.

Question 11 (continued)

(b) Evaluate
$$\int_0^{\frac{x}{2}} \frac{1}{4+5\cos x} dx \text{ using the substitution } t = \tan\left(\frac{x}{2}\right).$$

$$4+5\cos x = 4+5 \times \frac{1-t^2}{1+t^2}$$

$$= \frac{4+4t^2+5-4t^2}{1+t^2}$$

$$= \frac{9-t^2}{1+t^2}$$

$$t = \tan\left(\frac{x}{2}\right) \Rightarrow x = 2\tan^{-1}t$$

$$\therefore dx = \frac{2dt}{1+t^2}$$

$$= \int_0^1 \frac{2dt}{9-t^2}$$

$$= \int_0^1 \frac{2dt}{(3-t)(3+t)}$$

$$= \int_0^1 \left(\frac{A}{3-t} + \frac{B}{3+t}\right) dt$$

$$= \frac{1}{3} \left[-\ln|3-t| + \ln|3+t|\right]_0^1$$
[See next page for methods]
$$= \frac{1}{3} \ln\left|\frac{3+t}{3-t}\right|_0^1$$

Comment

Too many students don't know how to get to $dx = \frac{2dt}{1+t^2}$ quickly.

 $=\frac{1}{3}(\ln 2 - \ln 1)$

 $=\frac{1}{3}\ln 2$

Step 1 – memorise it! or Step 2 – rewrite $t = \tan \frac{x}{2}$ as $x = 2 \tan^{-1} t$.

Question 11 (continued)

Cover up method

$$\frac{2}{(3-t)(3+t)} = \frac{A}{3-t} + \frac{B}{3+t}$$

To find A: Substitute
$$t = 3$$
 into $\frac{2}{(3-t)(3+t)}$

$$\therefore A = \frac{1}{3}$$

To find B: Substitute
$$t = -3$$
 into $\frac{2}{(3-t)(3+1)}$

$$\therefore B = \frac{1}{3}$$

Identical Polynomials Method

$$\frac{2}{(3-t)(3+t)} = \frac{A}{3-t} + \frac{B}{3+t} \Rightarrow 2 = A(3+t) + B(3-t)$$

Substitute
$$t = 3$$
: $2 = A(3 + 3)$
 $\therefore A = \frac{1}{3}$

Substitute
$$t = -3$$
: $2 = B(3 - (-3))$
 $\therefore B = \frac{1}{3}$

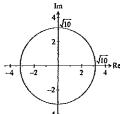
Looker's Theorem

Given the basic nature of the partial fraction, this type could be done by inspection.

$$\therefore \frac{2}{(3-t)(3+t)} = \frac{\frac{1}{3}}{3-t} + \frac{\frac{1}{3}}{3+t}$$

Question 11 (continued)

(c) The point P in the Argand diagram represents the variable complex number Z and the point Q is in the first quadrant represent the complex number w, where w=1+3i.


Sketch, on separate diagrams, the locus of P in each of the following cases making clear the relationship between the locus and the point Q.

$$w = 1 + 3i$$
$$\therefore |w| = \sqrt{10}$$

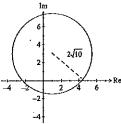
(i)
$$|z| = |w|$$

$$|z| = \sqrt{10}$$

This is a circle with centre the origin and the radius equal to the modulus of w.

Comment:

Generally well done, though some students were confused about the radius

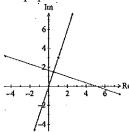

1

1

1

(ii)
$$|z-w|=2|w|$$

This is a circle with centre w and the radius equal to twice the modulus of w.



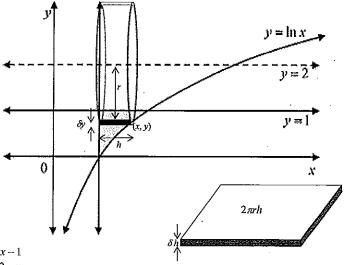
Comment:

Generally well done, though some students were confused about the radius Students were penalised if not enough information was presented

(iii)
$$|z-w|=|z|$$

This is the perpendicular bisector of the line segment through w and the origin,

Comment:


This was not done well as students didn't read the question.

Sketch, on separate diagrams, the locus of P in each of the following cases making clear the relationship between the locus and the point Q.

It was not necessary to find the equation, but it was essential to indicate the perpendicular bisector.

Question 11 (continued)

(d) The region bounded by the curve $y = \ln x$, x = 1 and y = 1 is shaded in the diagram below. The region is rotated about the line y = 2 to form a solid. Using the method of cylindrical shells, find the volume of the solid formed.

h = x - 1r = 2 - y

Let δV be the volume of one shell of thickness δy .

$$\delta V = 2\pi (2 - y)(x - 1) \, \delta y$$

= $2\pi (2 - y)(e^y - 1) \, \delta y$
$$\therefore V = 2\pi \int_0^1 (2 - y)(e^y - 1) \, dy$$

$$V = 2\pi \int_{0}^{1} \underbrace{(2-y)}_{u} \underbrace{(e^{y}-1)}_{y} dy$$

$$= 2\pi \left[\underbrace{(2-y)}_{v} \underbrace{(e^{y}-y)}_{y}\right]_{0}^{1} - 2\pi \int_{0}^{1} \underbrace{(-1)}_{d} \underbrace{(e^{y}-y)}_{d} dy$$

$$= 2\pi \left[(1)(e-1) - (2)(1) \right] + 2\pi \int_{0}^{1} (e^{y}-y) dy$$

$$= 2\pi (e-3) + 2\pi \left[e^{y} - \frac{y^{2}}{2} \right]_{0}^{1}$$

$$= 2\pi (e-3) + 2\pi \left[(e-\frac{1}{2}) - 1 \right]$$

$$= 2\pi (e-3) + e^{-\frac{3}{2}}$$

$$= (4e-9)\pi u^{3}$$

Comment:

Generally well done though no one did it the simplest way i.e. without expanding.

Of concern, was the handling of negative signs.

Solutions: SHS Maths Ext 2 Trial 2016

Question 12

(a) (i)
$$y = \frac{1}{\sin(x - \frac{x}{2})}$$

$$= \frac{1}{-\sin(\frac{x}{2} - x)}$$

$$= \frac{-1}{\cos x}$$

$$= -\sec x$$

[Comments: This question was generally well understood. Many failed to limit their answer to the domain given, but were not penalized.]

(i)
$$y = \sin \sqrt{|x|}$$

[Comments: Generally well understood, but not well drawn, in most cases. The function decreases away from the two values where it equals 1. Many lost 1 mark for these boundary values.]

(b) (i)
$$P(1)=1^{5}-1$$
 $P(\alpha)=\left(\operatorname{cis}\frac{2\pi}{5}\right)^{5}-1$ $P\left(\frac{1}{\alpha}\right)=\left(\operatorname{cis}\frac{-2\pi}{5}\right)^{5}-1$
 $=0$ $=\operatorname{cis}(2\pi-1)$ $=\operatorname{cis}(-2\pi)-1$
 $=0$ $=0$ $P(\alpha^{2})=\left(\operatorname{cis}\frac{4\pi}{5}\right)^{5}-1$ $P\left(\frac{1}{\alpha^{2}}\right)=\left(\operatorname{cis}\frac{-4\pi}{5}\right)^{5}-1$ $=\operatorname{cis}(-4\pi)-1$ $=0$ $=0$

Alternatively
$$P(\alpha) = \left(\operatorname{cis} \frac{2\pi}{5}\right)^5 - 1$$
 Consider $P(\alpha^k) = \left(\alpha^k\right)^5 - 1$ \\
$$= \operatorname{cis} 2\pi - 1 = 0 = 1^k - 1 = 0$$

Hence α^k is a root for all integral k, including 0, 2, -1, -2.

[Comments: Most used either of the two methods shown, mainly the first, but many solved the equation from scratch.]

(ii)
$$RHS = z^{2}(z-1)\left(\left(z+\frac{1}{z}\right)^{2} + \left(z+\frac{1}{z}\right) - 1\right)$$

$$= z^{2}(z-1)\left(z^{2} + 2 + \frac{1}{z^{2}} + z + \frac{1}{z} - 1\right)$$

$$= \left(z^{3} - z^{2}\right)\left(z^{2} + z + \frac{1}{z} + \frac{1}{z^{2}} + 1\right)$$

$$= z^{5} + z^{4} + z + z^{2} + z^{3} - z^{4} - z^{3} - 1 - z - z^{2}$$

$$= z^{5} - 1$$

$$= LHS$$

[Comments: This was very well done throughout.]

(iii)
$$\alpha + \frac{1}{\alpha} = \operatorname{cis}\left(\frac{2\pi}{5}\right) + \operatorname{cis}\left(\frac{-2\pi}{5}\right)$$

$$= \cos\left(\frac{2\pi}{5}\right) + i\sin\left(\frac{2\pi}{5}\right) + \cos\left(\frac{2\pi}{5}\right) - i\sin\left(\frac{2\pi}{5}\right)$$

$$= 2\cos\left(\frac{2\pi}{5}\right)$$
Thus $\alpha^{2}(\alpha - 1)\left(\left(2\cos\left(\frac{2\pi}{5}\right)\right)^{2} + 2\cos\left(\frac{2\pi}{5}\right) - 1\right) = 0$
Now $\alpha^{2} \neq 0$, $\alpha - 1 \neq 0$

$$\therefore \frac{\left(2\cos\left(\frac{2\pi}{5}\right)\right)^2 + 2\cos\left(\frac{2\pi}{5}\right) - 1 = 0}{4\cos^2\left(\frac{2\pi}{5}\right) + 2\cos\left(\frac{2\pi}{5}\right) - 1 = 0}$$

[Comments: Whilst most managed to find the result, many failed to point out why the first two factors could be discounted, and thereby lost a mark.]

(iv) Thus
$$\cos\left(\frac{2\pi}{5}\right) = \frac{-2 \pm \sqrt{4 + 16}}{8}$$

$$= \frac{-2 \pm \sqrt{20}}{8}$$

$$= \frac{\pm 2\sqrt{5} - 2}{8}$$

$$= \frac{\sqrt{5} - 1}{4} \text{ (pos result, 1st quad)}$$

[Comments: Half a mark was lost by those who failed to explain why they chose the positive root.]

(c) Choose 2 vertices from 11, but remove 11 sides.

$$^{11}C_{2}-11=44$$

Alternatively: Diagonals start from 11 vertices, and go to 8 from each, but this counts each diagonal twice. Hence

$$(11 \times 8) \div 2 = 44$$

[Comments: Many candidates need to apply a reasonableness test to their answers, often in the billions.]

(d) (i)
$$y = x^{n-1} (1+x^2)^{\frac{1}{2}}$$

$$\frac{dy}{dx} = (n-1)x^{n-2} (1+x^2)^{\frac{1}{2}} + x^{n-1} \frac{2x}{2\sqrt{1+x^2}}$$

$$= (n-1)x^{n-2} \sqrt{1+x^2} + \frac{x^n}{\sqrt{1+x^2}}$$

[Comments: Generally very well answered.]

(ii)
$$I_{n} = \int \frac{x^{n}}{\sqrt{1+x^{2}}} dx$$

$$= \int \left[\frac{d}{dx} \left(x^{n-1} \left(1+x^{2} \right)^{\frac{1}{2}} \right) - (n-1)x^{n-2} \sqrt{1+x^{2}} \right] dx$$

$$= x^{n-1} \left(1+x^{2} \right)^{\frac{1}{2}} - \int (n-1)x^{n-2} \sqrt{1+x^{2}} dx$$

$$I_{n} + (n-1) \int x^{n-2} \sqrt{1+x^{2}} dx = x^{n-1} \left(1+x^{2} \right)^{\frac{1}{2}}$$

$$I_{n} + (n-1) \int x^{n-2} \frac{\left(1+x^{2} \right)}{\sqrt{1+x^{2}}} dx = x^{n-1} \left(1+x^{2} \right)^{\frac{1}{2}}$$

$$I_{n} + (n-1) \int \left(\frac{x^{n-2}}{\sqrt{1+x^{2}}} + \frac{x^{2}}{\sqrt{1+x^{2}}} \right) dx = x^{n-1} \left(1+x^{2} \right)^{\frac{1}{2}}$$

$$I_{n} + (n-1) I_{n-2} + (n-1) I_{n} = x^{n-1} \left(1+x^{2} \right)^{\frac{1}{2}}$$

$$nI_{n} + (n-1) I_{n-2} = x^{n-1} \left(1+x^{2} \right)^{\frac{1}{2}}$$
Hence $I_{n} + \frac{n-1}{n} I_{n-2} = \frac{x^{n-1} \left(1+x^{2} \right)^{\frac{1}{2}}}{n}$

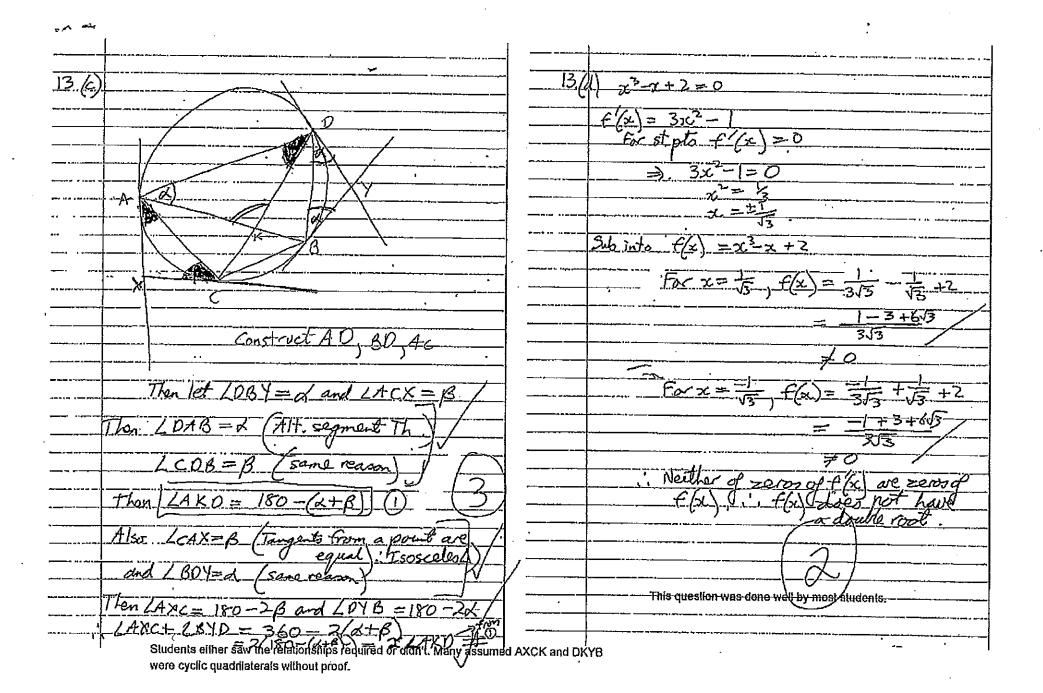
[Comments: Most attempted this part, and around half produced a satisfactory argument.]

(iii)
$$I_n + \frac{n-1}{n}I_{n-2} = \frac{x^{n-1}\left(1+x^2\right)^{\frac{1}{2}}}{n}$$

$$I_3 + \frac{3-1}{3}I_1 = \frac{x^2\left(1+x^2\right)^{\frac{1}{2}}}{3}$$

$$I_3 + \frac{2}{3}I_1 = \frac{x^2\sqrt{1+x^2}}{3}$$

$$I_3 = \frac{x^2\sqrt{1+x^2}}{3} - \frac{2}{3}I_1$$
Now
$$I_1 = \int \frac{x}{\sqrt{1+x^2}} dx$$


$$= \frac{1}{2}\int \frac{2x}{\sqrt{1+x^2}} dx$$

$$= \sqrt{1+x^2} + C$$

$$\therefore \int \frac{x^3}{\sqrt{1+x^2}} dx = \frac{x^2\sqrt{1+x^2}}{3} - \frac{2}{3}\sqrt{1+x^2} + C$$

[Comments: Generally well answered, by all those who attempted it.]

Q13:(a))P(A,B) nort to each other when n.	Q, 13 (b)
- people are sented at table	$\frac{1}{\sqrt{ s _{CC}}} = \frac{1}{2}(a+b) + \sqrt{ s _{CC}} = \frac{1}{2}(a+b) + s _{C$
Now no of ways without restriction = (n-1)	== \frac{1}{46+12} H Sh
From n people no ways AB together = (n-2)	= = (12-2h+12) th 84 V
- (treating A Boss one iporner!)	V= (4) /12-1/d/
. P(A, R together) _ z (n-2) = p	Jo 10 (12 h) wh
$\frac{1}{(n-1)!}$	By symmotry of pyramid
= 2	$V = 2 \left(\frac{4h}{h} \left(\frac{12-h}{h} \right) dh \right)$
(ii) P(A,B,C+ogether) = (n-3)×37	
(n-1)	
(n-1)(n-2)	Students only received 2 marks if they had the volume
Students did this fairly well if they realised it was an arrange	ment as integral from 0 to 12 and then making it 2 times the
around a circle. Most errors were because they didn't find the probability.	ne integral from 0 to 6 with a comment on the symmetry of the pyramid;
14 = 24	
! 24 H = 4h	
imilar: 7 (2)	
10 = 24 = 2	
AB = 24-H	
12-3 C AB = 28-45 = 12-2h -	
First part was done well. The second part to find AB was done	Nova nondu
Some used the equation of a line successfully instead of s	similar triangles.

[4]a]i)	2 sin 2x + (0s 2x = k #6)
777	$\frac{2 \sin 2x + \cos 2x = R}{1 + t^2}$ $1 + t = t + \tan x$ $\frac{2x}{1 + t^2}$
	1-42
	$2\left(\frac{2t}{1+t^2}\right) + \left(\frac{1-t^2}{1+t^2}\right) = k$
	11t / (1tt)
	$\frac{4t + 1 - t^2 = k + kt^2}{(1+k)t^2 - 4t + (k-1) = 0}$
	1+k)tan'x - 4 tanx + (k-1)=0
	TERMINAL TO THE TERMINAL THE TERMINAL TO THE THE TERMINAL TO THE TERMINAL TO THE TERMINAL THE TERMINAL THE TER
<i>ii)</i>	tan x + fair x (-4)
	tan x, $tan x$, $= -(-4)$ $1+k$
	= <u>4</u> 1+b
	1+K
	as V true v - K-1
	$an \times, tan \times_2 = \frac{k-1}{1+k}$
	(v. v.) to v. t. form
- γα	$n(x_1 + x_2) = \frac{\tan x_1 + \tan x_2}{1 - \tan x_1 + \tan x_2}$
	1 - Fanx, Fanx,
	- 4 - 1+k
	1 - R-1 / + R
 	14K
	. 4
	1+R-(R-1)
	4
	= 4/2
	= 2
COMMEN	o substitute & into the result. There is
fried t	o substitute & into the result. There is
much n	were algebra to deal with and many were
not succe	essful.
. Student	I had much more success with partiil
. [·

.

Ł))) (1+x+x2) = a0+a1x+a2x2+a3x3+a4x4+ + a2xx2
\downarrow	
\perp	$\frac{(1+(1)+(1)^2)^n = q_0 + q_1(1) + Q_2(1)^2 + Q_3(1)^3 + Q_4(1)^4 + \dots + Q_{2n}(1)^2}{3^n = q_0 + q_1 + Q_2 + Q_3 + Q_4 + \dots + Q_{2n}(1)}$ $ et x = -1 $
	$3^n = a_0 + a_1 + a_2 + a_3 + a_4 + \dots + a_n$
	let x=-1
	$(1+(-1)+(-1)^{2})^{n} = a_{8} + a_{1}(-1) + a_{1}(-1)^{2} + \alpha_{2}(-1)^{3} + a_{4}(-1)^{4} + \dots + \alpha_{2n}(-1)^{2}$
	1 = a0-a, +a2-a2+a4- +a2n 2
ł	(1)+(2)
	2(a0+a2+a4++a2n)=3"+1
T	$a_{0}+a_{1}+a_{4}+\ldots+a_{2n}=\frac{3^{n}+1}{2}$
T	2
	ii) a is the coefficient of x' in the expansion
	ii) ar is the coefficient of x' in the expansion of (1+x+x2)?
1	
1	(1+x+x2) = (x2(1+x-1+x-2)) M
†	$\frac{\left(1+x+x^{2}\right)^{n}}{\mathbb{E}\left(x^{2}\left(1+x^{-1}+x^{-2}\right)\right)^{n}}$ $\mathbb{E}\left(x^{2n}\left(1+x^{-1}+x^{-2}\right)^{n}\right)$
1	- 2 (1787R)
\dagger	a is the coefficient of you was expansion
	of (1+x1+x2)"
\dagger	
+	of $x^{2n}(1+x^2+x^2)^n$ is $(1+x+x^2)^n$
+	nf 2 ²ⁿ /1/2-1/2-2)h
-	OF RECIPRENTING (1+XLX)
+	1 B - 0
+	$L, \alpha_{in-r} = \alpha_r$
+-	
2	OMMENT: This question was done particularly
╽.	poorly students that tried to connect a
ļ.;	poorly students that tried to connect a with "C, didn't get very far
1	
L	

.

· 	$(2)i) 2^{2} = [r(\cos\theta + i\sin\theta)]^{2}$
	Z [r(cos0+131h0)]
	$= r^2(\cos 2\theta + i\sin 2\theta)$
	r (coso-isino)
	$= r\left(\cos 2\theta + i\sin 2\theta\right)$
	$\cos(-\theta) + i\sin(-\theta)$
	= r (cos(20-(-0)) + isin(20-(-0)))
	= r(cos 30 + 1311,30)
	\vec{l} \vec{l} \vec{l} \vec{l} \vec{l}
	Z ² - C - C - C - C - C - C - C - C - C -
	r (cos 30 + is in 30) = 1 (cos 1 + is in 1)
	r=1 30= 1 + 2kT , where k=0,1-1
	$\theta = \frac{\pi}{6} + \frac{2k\pi}{3}$
	3
	0-K 5T -K
	$iii)$ $\omega = \cos \alpha + i(1 + \sin \alpha)$
	W= cosd +i + isind
	W-i = cosa + isina
	$ \omega-\tilde{c} = \cos \alpha + i\sin \alpha $
	222
	$(iv) (\omega - i)^2 + 1 = i \overline{\omega}$
	$(\omega - i)^2 = i \varpi - $
	= (\overline{\pi} + \overline{\pi}
	= i(\(\varphi\)
	$=i(\tilde{\omega}-\tilde{\omega})$
	1

. .

using (ii)
W-i=1(cos = +151N=), 1 (cos = +151N=1), 1 (cos (=)-121h(=)
•
いい= 塩+生じ, -塩+生じ, -じ
$\omega = \frac{\sqrt{3} + \frac{3}{2}i}{2} - \frac{\sqrt{3} + \frac{3}{2}i}{2} = 0$
 COMMENT; Part (i) & (ii) were done pouticularly
 well by exidente
Part(iv) was done poorly because students did not use part (ii) to solve the equation and
Mose who did $eg (\omega - i)^2 + 1 = i\omega$
$ \frac{(\omega - i)^{2} + 1}{(\omega^{2} - 2\omega^{2} - 1)} = \omega^{2} (using (ii)) $ $ \omega^{2} - 2\omega^{2} - 1 + 1 = \omega^{2} $
- 2wi = 0
€ 5 E 5
had the problem that IW/ # which is needed
 <u> </u>
· · · · · · · · · · · · · · · · · · ·
 ·

YUESTIONIS (X2) Prove that f (x) = (-1) = (x-n) (D) where f(x) = x e x fw n & Z! Step I show true for n=1 ie f(x)=(-1) 'e "(x-1) Now LHS = xx-ex + 1xex =-e x (2-1) = R.H.S. : tem. assure the statement 19 Step I is true for n=k. ie. $f^{(k)}_{(x)=G(1)} = G(x-k)$ Step I me the assumption to slew

Step III me the assumption to selen that (B) is true for n = k+1ie. $f^{(k+1)}(x) = (-1)^k e^{-x}(x - (k+1))$ $LHS = f^{1} \left[(-1)^k e^{-x}(x-k) \right]$ $= (-1)^k e^{-x} \left[1 - (x-k) \right]$ $= (-1)^k e^{-x} \left[1 - (x-k) \right]$ $= (-1)^k e^{-x} \left[-1 + (x-k) \right]$ $= (-1)^{k+1} e^{-x} \left(x - (k+1) \right)$

STEPE By the Principle of Mathematical Andrection the statement (A) is true for all n & 2. COMMENT. The question was very well done with must students resing 4 MARKS.]

(b) (1). $\ddot{x} = -k\dot{x}$ ie dit =- k vz dt = -1 t= -tolon -/a +c when t=0, Nx=U : 0=- to la le + C, Ci= to low. · A=to har (B) i. dx = Ve et LOR. San = Tu = 45 dt x= - U = + 6, new xx = 0 when t=0 :.0=-Ve+62 : x=-U=-kt+U x= U (1-e-kt) m.

COMMENT. The above was the most successful.

neclod. Some students started with

x=v. dv then stanggled to get t into

the armed.

Me have that in vertical direction

$$\frac{dv}{dt} = g - kv$$

$$\frac{dt}{dv} = \frac{1}{g - kv}$$

$$t = \int \frac{dv}{g - kv}$$

$$t = \int \frac{dv}{g - kv}$$

$$= -\frac{1}{k} \ln g + kv + k + k$$

$$\cos x = 0 \quad \text{when } k = 0.$$

$$\therefore 0 = -\frac{1}{k} \ln g + kv$$

$$(3 = \frac{1}{k} \ln g + kv)$$

$$\therefore 4 = -\frac{1}{k} \ln g + kv$$

$$\sin y + kv = g - \frac{1}{k} \ln g + kv$$

$$g - kv = g - \frac{1}{k} \ln g + \frac{1}{k} \ln g$$

COMMISMT Mis question proved difficult for many students. Some students tried to find dy and other incorrectly used. topo = It ristered of I 52= 22+ 32 $= \frac{U^2}{e^{+2k\epsilon}} + \left[\frac{4}{b}\left(1 - \frac{1}{\epsilon^{4}b}\right)\right]$ now to to as too. [2] .. 52 v2x0 + [2 (1-0)] = 0 + gr : S= V8/2 = 967 .: V = g | where V = terminal velocity. COMMENT. The question specifically asked. 'hy wridering the components of the velocity" (to justify it as a 2 MARK Prosture) most students failed to read this. and gave an arener based on ij=0 which resulted in a less of to MARK OR You horizontal care.

(IV) Let 52 = v2 e-2kt + v2 (1-e-kt) 2 [franco ie Sd = U e 2 kt vd (1-2 e kt + e 2 kt) =(U2+V2) -2 2 2 - 2 V2 - 2 V2 - Kt + V2 [This is a quadratic when Ris (V+V) = (U+V2)[e-266-2V2 e-Rt] with it >0. 3 = (U2+V2) [= 2kt 2V2 = 2t (V2)2] + V2 - (U7V1) V4 (U7V1) - (U7V1) 2 = (v+v) [e-rt-va]2 + v2 - v4 = (v+v)[e-kt_v-] + v(v+v)-v4 = (U+VY)[e kt V] + UNV+V4-V4 = (\(\frac{1}{2} + \frac{1}{2} \) \(\frac{1}{2} + \frac{1}{2} \) \(\frac{1}{2} + \frac{1}{2} \) . MIN of when e the VI COLHIBAT. avery small number of students gamed full marks. Here were 3 different ways of doing this question. One using colculus. and arethe quadratic approach using $2=\frac{b}{2a}$.

alternate [1] to a 9~ 0 (5") = -ah(v+v) ealt +avh e-kt (52)" = 4k2(v4v)e-akt_2vk2-kt. F) Let (Sr) = 0 in (3) 2h (U'tor) = 2vh ext. in @ (S)"= 4/2 (04v) × v4 = 4h2v+ - 2h2v+

alternate II in (10)

ve have the quadratic in e-kt

ie. $S^2 = \{U^Y V^Y\} e^{-2kt} = V^X e^{-kt} + V^Y$

(67×7) >0 : MIN.

axis is $\frac{v^{\perp}}{v^{2}+v^{2}}$ (ie. $ay^{2}+by+c=0$)

in sul back to (0)

 $S_{uu}^{2} = W^{2} = \left(U^{2} + V^{2}\right) \times V^{4} - 2V^{2} \times V^{2} + V^{2}$ $\left(U^{2} + V^{2}\right) \times V^{4} - 2V^{2} \times V^{2} + V^{2}$

= UNV (as in previous solution)

Question 16

SOLUTIONS

1

(a) (i) Show that $2\cos A\sin B = \sin(A+B) - \sin(A-B)$, by expanding the right hand side,

RHS =
$$\sin(A+B)$$
 - $\sin(A-B)$ -
= $\sin A \cos B + \sin B \cos A$ - $(\sin A \cos B - \sin B \cos A)$
= $2\cos A \sin B$
= LHS

(ii) The distinct points $P(\theta, \sin \theta)$ and $Q(\phi, \sin \phi)$ lie on the curve $y = \sin x$, where x is measured in radians.

Show the gradient of the chord PQ may be expressed as

$$\frac{\sin\left(\frac{\phi-\theta}{2}\right)\cos\left(\frac{\phi+\theta}{2}\right)}{\left(\frac{\phi-\theta}{2}\right)}.$$

Deduce that if ϕ is approximately equal to θ then the gradient of gradient PQ is approximately equal to $\cos\theta$.

$$m_{FQ} = \frac{\sin \theta - \sin \phi}{\theta - \phi}$$

$$= \frac{2\cos A \sin B}{\theta - \phi}$$

$$= \frac{2\cos(\frac{\theta + \phi}{2})\sin(\frac{\theta - \phi}{2})}{\theta - \phi}$$

$$= \frac{2\cos(\frac{\theta + \phi}{2})\sin(\frac{\theta - \phi}{2})}{\theta - \phi}$$

$$= \frac{1}{2\cos(\frac{\theta + \phi}{2})\sin(\frac{\theta - \phi}{2})}{\theta - \phi}$$

$$= \frac{1}{2\cos(\frac{\theta + \phi}{2})\sin(\frac{\theta - \phi}{2})}{\theta - \phi}$$

For $\phi = \theta$

$$\begin{split} \lim_{\phi \to \theta} m_{PQ} &= \lim_{\phi \to \theta} \frac{2 \cos \left(\frac{\theta + \phi}{2}\right) \sin \left(\frac{\theta - \phi}{2}\right)}{\theta - \phi} \\ &= 2 \cos \theta \lim_{\phi \to \theta} \frac{\sin \left(\frac{\theta - \phi}{2}\right)}{\theta - \phi} \\ &= 2 \cos \theta \times \frac{1}{2} \\ &= \cos \theta \\ \text{i.e. } m_{PQ} \doteq \cos \theta \end{split}$$

Comment:

Generally well done though in the Deduction part, students were penalised for not handling the limit properly.

Evidence of the rule $\sin x \neq x$ for small x, or its equivalent, was necessary

Question 16 (continued)

(b) Ten people arrived in the Kingsmith Airport from London. It's late at night, only 4 immigration counters are open. In how many ways can 10 people line up in a 4-lane queue?

Let the ten people be denoted by X, then we need 3 dividers to separate the Xs to 4 counters

e.g. XXX + XXX + XX + XX or XXXXX ++ XXX + XX or XXXXXXXXX +++

There are $\frac{13!}{3!10!}$ to count this, BUT the people are distinct and there are 10! ways to arrange them.

 \therefore There are $\frac{13!}{3!10!} \times 10! = \frac{13!}{3!}$ ways for the people to line up

Alternatively with the 13 objects: XXXXXXXXXXX +++ there are $^{13}C_3$ ways to choose where the "+" are put.

And so there are ${}^{13}C_3 \times 10! = {}^{13}P_{10}$ ways for the people to line up

NB This is essentially the "ring question" with 10 rings on 4 fingers.

Comment:

It's very hard to give credit to work that is badly set out or where the logic was not immediately evident. Students need to help the markers out and put more detail in.

Question 16 (continued)

2

(c) Let n be a positive integer.

(i) Show that
$$\frac{1}{1-t^2} = (1+t^2+t^4+\ldots+t^{2n-2}) + \frac{t^{2n}}{1-t^2}$$
 for $t^2 \neq 1$.

RHS =
$$\left(\underbrace{1+t^2+t^4+...+t^{2n-2}}_{a=1;r=t^2;n \text{ terms}}\right) + \frac{t^{2n}}{1-t^2}$$

= $\frac{1[1-(t^2)^n]}{1-t^2} + \frac{t^{2n}}{1-t^2}$
= $\frac{1-t^{2n}+t^{2n}}{1-t^2}$
= $\frac{1}{1-t^2}$
= LHS

Comment:

Various methods were used though students who used the GP method without indicating as such, or equivalent, were penalised.

Foolishly there were a few who tried induction. Some tried partial fractions, but forgot that the degree of the numerator must be smaller than the degree of the denominator.

(ii) For
$$-1 < x < 1$$
, show that $\int_0^x \frac{t}{1-t^2} dt = \ln\left(\frac{1}{\sqrt{1-x^2}}\right)$.

LHS =
$$-\frac{1}{2} \int_{0}^{x} \frac{-2t}{1-t^{2}} dt$$

= $-\frac{1}{2} \left[\ln \left| 1 - t^{2} \right| \right]_{0}^{x}$
= $-\frac{1}{2} \left[\ln \left| 1 - x^{2} \right| - \ln 1 \right]_{0}^{x}$
= $-\frac{1}{2} \ln (1 - x^{2})$ [-1 < x < 1]
= $\frac{1}{2} \ln \sqrt{1 - x^{2}}$
= $\ln \left(\frac{1}{\sqrt{1 - x^{2}}} \right)$
= RHS

Comment:

Generally well done, though some students need to recognise $\frac{f'(x)}{f(x)}$

Question 16 (continued)

(iii) Using the above parts and by letting
$$x = \sqrt{\frac{8}{9}}$$
, deduce that
$$\int_0^{\sqrt{\frac{8}{9}}} \frac{t^{2n+1}}{1-t^2} dt = \ln 3 - \sum_{k=1}^n \frac{1}{2k} \left(\frac{8}{9}\right)^k$$

From part (i)
$$\frac{1}{1-t^2} = \left(1 + t^2 + t^4 + \dots + t^{2n-2}\right) + \frac{t^{2n}}{1-t^2}$$

$$\therefore \frac{t}{1-t^2} = \left(t + t^3 + t^5 + \dots + t^{2n-1}\right) + \frac{t^{2n+1}}{1-t^2}$$

$$\therefore \frac{t^{2n+1}}{1-t^2} = \frac{t}{1-t^2} - \left(t + t^3 + t^5 + \dots + t^{2n-1}\right)$$

$$= \frac{t}{1-t^2} - \sum_{k=1}^{n} t^{2k-1}$$

$$\int_{0}^{x} \frac{t^{2k+1}}{1-t^{2}} dt = \int_{0}^{x} \frac{t}{1-t^{2}} dt - \int_{0}^{x} \sum_{k=1}^{n} t^{2k-1} dt$$

$$= \ln\left(\frac{1}{\sqrt{1-x^{2}}}\right) - \sum_{k=1}^{n} \int_{0}^{x} t^{2k-1} dt$$

$$\left[\text{Let } x = \sqrt{\frac{8}{9}} \right]$$

$$= \ln\left(\frac{1}{\sqrt{1-\frac{8}{9}}}\right) - \sum_{k=1}^{n} \left[\frac{1}{2k} t^{2k}\right]_{0}^{\sqrt{\frac{8}{9}}}$$

$$= \ln\left(\frac{1}{\frac{1}{3}}\right) - \sum_{k=1}^{n} \frac{1}{2k} \left(\sqrt{\frac{8}{9}}\right)^{2k}$$

$$= \ln 3 - \sum_{k=1}^{n} \frac{1}{2k} \left(\frac{8}{9}\right)^{k}$$

Comment:

Generally well done, though there was a lot of fudging answers by students who didn't recognise to multiple by t.

Question 16 (continued)

(c) (iv) It can be shown that for
$$0 \le t \le \sqrt{\frac{8}{9}}$$
, $\frac{t^{2n+1}}{1-t^2} \ge 0$ and $\frac{t^{2n+1}}{1-t^2} \le \frac{t^{2n+1}}{1-\frac{8}{9}}$.

(Do NOT prove this)

Show that $0 \le \ln 3 - \sum_{k=1}^{n} \frac{1}{2k} \left(\frac{8}{9}\right)^k \le \frac{9}{2n+2} \left(\frac{8}{9}\right)^{n+1}$.

From (iii),
$$\int_{0}^{x} \frac{t^{2n+1}}{1-t^{2}} dt = \ln 3 - \sum_{k=1}^{n} \frac{1}{2k} \left(\frac{8}{9}\right)^{k}$$

$$0 \le t \le \sqrt{\frac{8}{9}}, \frac{t^{2n+1}}{1-t^{2}} \ge 0, \text{ then } \int_{0}^{x} \frac{t^{2n+1}}{1-t^{2}} dt \ge 0$$

$$0 \le \ln 3 - \sum_{k=1}^{n} \frac{1}{2k} \left(\frac{8}{9}\right)^{k}$$

$$0 \le t \le \sqrt{\frac{8}{9}}, \frac{t^{2n+1}}{1-t^{2}} \le \frac{t^{2n+1}}{1-\frac{8}{9}} \text{ then } \int_{0}^{\sqrt{\frac{8}{9}}} \frac{t^{2n+1}}{1-t^{2}} dt \le \int_{0}^{\sqrt{\frac{8}{9}}} \frac{t^{2n+1}}{1-\frac{8}{9}} dt$$

$$\int_{0}^{\sqrt{\frac{8}{9}}} \frac{t^{2n+1}}{1-t^{2}} dt \le 9 \int_{0}^{\sqrt{\frac{8}{9}}} t^{2n+1} dt$$

$$= \left[\frac{1}{2n+2} t^{2(n+1)}\right]_{0}^{\sqrt{\frac{8}{9}}}$$

$$= \frac{1}{2n+2} \left(\frac{8}{9}\right)^{n+1}$$

$$0 \le \ln 3 - \sum_{k=1}^{n} \frac{1}{2k} \left(\frac{8}{9}\right)^{k} \le \frac{9}{2n+2} \left(\frac{8}{9}\right)^{n+1}$$

$$0 \le \ln 3 - \sum_{k=1}^{n} \frac{1}{2k} \left(\frac{8}{9}\right)^{k} \le \frac{9}{2n+2} \left(\frac{8}{9}\right)^{n+1}$$

Comment:

Generally well done by those who had the time to get here!