

SYDNEY GRAMMAR SCHOOL

2016 Half-Yearly Examination

FORM VI

MATHEMATICS 2 UNIT

Thursday 25th February 2016

General Instructions

- Writing time 1 hour 30 minutes
- · Write using black or blue pen.
- Board approved calculators and templates may be used.

Total — 60 Marks

· All questions may be attempted.

Section I - 8 Marks

- Questions 1-8 are of equal value.
- Record your answers to the multiple choice on the sheet provided.

Section II - 52 Marks

- Questions 9-12 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

Collection

- Write your candidate number on each answer booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Write your candidate number on this question paper and hand it in with your answers.
- Place everything inside the answer booklet for Question Nine.

Checklist

- SGS booklets 4 per boy
- Multiple choice answer sheet .
- Reference sheet
- Candidature 87 boys

Examiner

LRP

SGS Half-Yearly 2016 Form VI Mathematics 2 Unit Page 2

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

The graph of y = f(x) is shown above. At which point is f'(x) > 0 and f''(x) > 0?

- (A) A
- (B) B
- (C) C
- (D) D

QUESTION TWO

What is the focal length of the parabola $x^2 = 4y$?

- $(A) \frac{1}{4}$
- (B) 1
- (C) 4
- (D) 8

QUESTION THREE

What is the domain of the curve $y = \log_e (x - 1)$?

- (A) x > -1
- (B) x > 0
- (C) x > 1
- (D) all real x

Exam continues next page ...

1

1

1

SGS Half-Yearly 2016 Form VI Mathematics 2 Unit Page 3

QUESTION FOUR

Simpson's Rule is used with three function values to approximate $\int_{1}^{2} xe^{x} dx$. 1

Which expression is obtained?

(A)
$$\frac{1}{2} \left(e + 3e^{1.5} + 2e^2 \right)$$

(B)
$$\frac{1}{4} \left(e + 3e^{1.5} + 2e^2 \right)$$

(C)
$$\frac{1}{6} \left(e + 6e^{1.5} + 2e^2 \right)$$

(D)
$$\frac{1}{12} \left(e + 6e^{1.5} + 2e^2 \right)$$

QUESTION FIVE

A parabola with focus S(-2,0) and directrix y=4 is shown above. Which of the following is the equation of the parabola?

(A)
$$(x+2)^2 = -8(y-2)$$

(B)
$$(x+2)^2 = -8y$$

(C)
$$(x-2)^2 = -8(y+2)$$

(D)
$$(x-2)^2 = -8y$$

SGS Half-Yearly 2016 Form VI Mathematics 2 Unit Page 4

QUESTION SIX

What is the value of k if $\int_1^k \frac{2}{x} dx = 4$?

(B)
$$e^{3}$$

QUESTION SEVEN

1

The graph of $y=e^x$ is shown above. Which of the following expressions does NOT represent the area of the shaded region?

$$(A) e - \int_0^1 e^x dx.$$

(B)
$$\int_1^e e^x dx$$

(C)
$$\int_1^e \log_e y \, dy$$

(D)
$$\int_0^1 (e-e^x) \ dx$$

1

SGS Half-Yearly 2016 Form VI Mathematics 2 Unit Page 5

QUESTION EIGHT

The graph of the gradient function y = f'(x) is shown above. Which of the labelled x-values corresponds to a stationary point of inflexion on the original curve y = f(x)?

- (A) a
- (B) b
- (C) c
- (D) d

End of Section I

SGS Half-Yearly 2016 Form VI Mathematics 2 Unit Page 6 SECTION II - Written Response					
Start a new booklet for each question.	•				
QUESTION NINE (13 marks) Use a separate writing booklet.	Marks				
(a) Calculate $\frac{3}{e^2}$ correct to 3 significant figures.	. 1				
(b) Expand and simplify $e^x (e^x + e^{-x})$.	1				
(c) Differentiate:					
(i) \sqrt{x}	1				
(ii) <i>e</i> ^{2x}	1				
(iii) $\log_e 3x$	1				
(d) Find a primitive of:					
(i) $6x^2$	1				
(ii) e^{4x}	1				
$\sin \frac{3}{x}$					
(e) Evaluate $\int_2^3 (2x-1) dx$.	2				
(f) Find the equation of the parabola with vertex (0,0) and focus (4,0).	1				

(g) Consider the curve whose first derivative is given by $y' = x^2 + x - 6$.

For what values of x is the curve increasing?

2

SGS Half-Yearly 2016 Form VI Mathematics 2 Unit Page 7

QUESTION TEN (13 marks) Use a separate writing booklet.

Marks

1

1

1

(a) Differentiate the following with respect to x:

(i)
$$y = \log_e(x^2 + 3)$$

(ii)
$$y = \frac{x+1}{x}$$

- (b) Find the equation of the tangent to the curve $y = e^{3x} + 1$ at the point (0,2). 2
- (c) Consider the parabola with equation $y^2 = -8(x+2)$.
 - (i) Write down the coordinates of the vertex.
 - (ii) Find the coordinates of the focus.
 - (iii) Find the equation of the directrix.
 - (iv) Sketch the parabola clearly showing the vertex, focus and directrix.

(d)

Consider the points A(-4,0) and B(4,6). The point P(x,y) moves so that PA is always perpendicular to PB.

- (i) Find expressions for the gradients of PA and PB:
- (ii) Hence show that the equation of the locus of P is $x^2 + y^2 6y 16 = 0$.
- (iii) Express the above equation in the form $(x-h)^2 + (y-k)^2 = r^2$.
- (iv) Hence, or otherwise, describe the locus of P geometrically.

SGS Half-Yearly 2016 Form VI Mathematics 2 Unit Page 8

QUESTION ELEVEN (13 marks) Use a separate writing booklet.

Marks

2

3

(a) If
$$f'(x) = \frac{2x-3}{x^2-3x+1}$$
 and $f(3) = 5$, find $f(x)$.

(b)

The diagram above shows the curves $y = -x^2 + 4x - 3$ and $y = x^2 - 2x + 1$.

(i) Show that the curves intersect at the points where x = 1 and x = 2.

(ii) Find the area of the shaded region enclosed between the two curves.

The points P and Q are located on the curves $y = -x^2 + 4x - 3$ and $y = x^2 - 2x + 1$ respectively, and share the same x-coordinate as shown.

(111) If the length of PQ is ℓ units, show that $\ell = -2x^2 + 6x - 4$.

3 (iv) Hence find the maximum length of PQ for $1 \le x \le 2$.

The region bounded by the curve $y = \frac{3}{\sqrt{4x-3}}$, the x-axis and the lines x = 1 and x=2 is shown above. Find the volume of the solid generated when this region is rotated about the x-axis.

END OF EXAMINATION

End of Section II

MATHEMATICS 2U
Half-Yearly Examination - SOLUTIONS
* Multiple Choice
Q1. D positive gradient
Q2 B a=1
Q3, C x-1>0 . .:x>1
Q4. C $x = \frac{1}{1.5} \frac{1.5}{2} \cdot \frac{1}{6} \left(e^{+4} \times \frac{3}{2} e^{1.5} + 2e^{2} \right)$ $y = \frac{3}{2} e^{1.5} 2e^{2}$
Q5. A $(x-h)^2 = -4a(y-k)$ $(x-(-2))^2 = -4x2(y-2)$
$QG. A \int_{1}^{k} \frac{2}{x} dx = 4 \rightarrow \left[2 \ln x\right]_{1}^{k} = 4$
$2 \ln k - 2 \ln l = 4$ $\ln k = 2$ $e^2 = k$
Q7. B
Q8. D for stationary point of inflexion either a/t ce curve
J'(x) has a the stole of

•

* QUESTION II:

a)
$$f(x) = \log_{e}(x^{2}-3x+1) + C$$
 $5 = \log_{e}(9-9+1) + C$
 $5 = \log_{e}(1+C)$

$$\therefore f(x) = \log_{e}(x^{2}-3x+1) + 5$$

b) i) $x^{2}-2x+1 = -x^{2}+4x-3$
 $2x^{2}-6x+4=0$
 $x^{2}-3x+2=0$
 $(x-2)(x-1)=0$
 $\therefore x=1 \text{ at } x=2$.

[Alternatively show the substitutions of both x values into both equations \Rightarrow four substitutions

ii) $A = \int_{1}^{2}(-x^{2}+4x-3-(x^{2}-2x+1)) dx$

$$= -2\int_{1}^{2}(x^{2}-3x+2) dx$$

$$= -2\left[\frac{x^{3}}{3}-\frac{3x^{2}}{2}+2x\right]_{1}^{2}$$
 $= -2\left[\frac{x^{3}}{3}-\frac{3x^{2}}{2}+2x\right]_{1}^{2}$

iii)
$$l = y_p - y_q$$

= $-x^2 + 4x - 3 - (x^2 - 2x + 1)$ show that...

= $-2x^2 + 6x - 4$

iv) $dl = -4x + 6$
 dx

= 0 when $x = \frac{3}{2}$

$$d^2l = -4$$

$$< 0 : v : max occurs when $x = \frac{3}{2}$

$$\therefore l_{max} = -2(\frac{3}{2})^2 + 6(\frac{3}{2}) - 4$$

= $\frac{1}{2}$ units

Alternatively, for middle mark:

$$x = \frac{1}{2}$$

$$dx = \frac{2}{4}$$

$$dx = \frac{2}{4}$$$$

```
* QUESTION 12:
a) 2^3 = x^2 - 2x
     x2-2x-8=0
     (x-4)(x+2)=C
    :x=-2 0 x=4 V
    Check x2-2x>0:
         when y = -2: (-2)^2 - 2(-2) = 8
                                      -y-5-6-6-4-4-6-C
                                      for full marks
               x = 4: (4)^2 - 2(4) = 8
                                   both valid
 (b)1) y= x logo x
      Let u= x V= loge x
                                   Show that ..
       y'= loge X x 1 + X x \frac{1}{2}
         = 10gex +1
        \frac{d}{dx}(x\log_e x) = \log_e x + 1
      : (logex + 1) dx = x logex + C1 - V
         Tragex dx + fldx = x logex + C,
      : Ingexdx = xlogx - Ildx + C
                      = x logex - x + C2 - V
```


iii) d	y = 0	When	x=2	$y = \frac{2}{e^2}$	
			2 3 0 1 e ³	: change in the point of at (2);	concavity
n Pt	hen $x = \frac{1}{100}$ of infl.	$(1, \frac{1}{e})$	÷ 0.27		
		4			
			2:) _{\alpha}