

SYDNEY GRAMMAR SCHOOL

2016 Trial Examination

FORM VI MATHEMATICS 2 UNIT

Tuesday 9th August 2016

General Instructions

- Reading time 5 minutes
- Writing time 3 hours
- · Write using black pen.
- Board-approved calculators and templates may be used.

Total - 100 Marks

• All questions may be attempted.

Section I - 10 Marks

- Questions 1-10 are of equal value.
- Record your answers to the multiple choice on the sheet provided.

Section II - 90 Marks

- Questions 11-16 are of equal value.
- All necessary working should be shown.
- Start each question in a new booklet.

Checklist

- SGS booklets 6 per boy
- Multiple choice answer sheet
- · Reference sheet
- Candidature 88 boys

Collection

- Write your candidate number on each answer booklet and on your multiple choice answer sheet.
- Hand in the booklets in a single wellordered pile.
- Hand in a booklet for each question in Section II, even if it has not been attempted.
- If you use a second booklet for a question, place it inside the first.
- Write your candidate number on this question paper and hand it in with your answers.
- Place everything inside the answer booklet for Question Eleven.

Examiner

PKH

SGS Trial 2016 Form VI Mathematics 2 Unit Page 2

SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet handed out with this examination paper.

QUESTION ONE

What are the solutions of $x^2 - 3x + 1 = 0$?

(A)
$$x = \frac{3 \pm \sqrt{5}}{2}$$

(B)
$$x = \frac{-3 \pm \sqrt{13}}{2}$$

(C)
$$x = \frac{3 \pm \sqrt{13}}{2}$$

(D)
$$x = \frac{-3 \pm \sqrt{5}}{2}$$

QUESTION TWO

What is the limiting sum for the infinite geometric series $12-6+3-\ldots$?

- (A) 24
- (B) 8
- (C) -8
- (D) -12

QUESTION THREE

What is the derivative of $\frac{2}{x}$?

- (A) $2 \ln x$
- (B) $\ln 2x$
- (C) $-\frac{2}{x^2}$
- (D) $\frac{2}{x^2}$

SGS Trial 2016 Form VI Mathematics 2 Unit Page 3

QUESTION FOUR

Which of the following is a primitive of e^{2x} ?

- (A) $(2x+1)e^{2x+1}$
- (B) $2e^{2x}$
- (C) $\frac{e^{2x+1}}{2x+1}$
- (D) $\frac{e^{2x}}{2}$

QUESTION FIVE

What is the value of x in the diagram above?

- (A) 66
- (B) 76
- (C) 64
- (D) 86

QUESTION SIX

Simplify $\log_4 54 - 2\log_4 3$.

- (A) $\log_4 9$
- (B) log₄ 48
- (C) log₄ 6
- (D) 1

SGS Trial 2016 Form VI Mathematics 2 Unit Page 4

QUESTION SEVEN

The graph of $y = \sin 2x$ is drawn. How many solutions does the equation $\frac{1}{6}x = \sin 2x$ have?

- (A) 3
- (B) 4
- (C) 7
- (D) 8

QUESTION EIGHT

Consider the points A(1,-2) and B(3,6). What is the equation of the perpendicular bisector of AB?

(A)
$$y-2=-\frac{1}{4}(x-2)$$

(B)
$$y-2=4(x-2)$$

(C)
$$y-4=-1(x-1)$$

(D)
$$y+2=-\frac{1}{4}(x-1)$$

SGS Trial 2016 Form VI Mathematics 2 Unit Page 5

QUESTION NINE

What is the greatest value of $\frac{20}{4\sin^2\theta + 2\cos^2\theta}$ for $0 \le \theta \le \frac{\pi}{2}$?

- (A) 10
- (B) 5
- (C) 20

QUESTION TEN

Which of the following is a correct simplification of

- (A) $\cos \frac{\pi}{2}x$
- (B) $-\tan x$
- (C) $-\cot x$
- (D) $\tan x$

SGS Trial 2016 Form VI Mathematics 2 Unit Pe	age 6
SECTION II - Written Response	
Answers for this section should be recorded in the booklets provided. Show all necessary working. Start a new booklet for each question.	
QUESTION ELEVEN (15 marks) Use a separate writing booklet.	Marks
(a) Calculate $3e^{1.5}$ correct to 3 decimal places.	1
(b) Find the gradient of the line $3y - 2x = 6$.	1
(c) Factorise $9a^2 - 16$.	1
(d) Differentiate x^3e^x .	2
(e) Differentiate $(3 + \sin x)^4$.	2
(f) Solve the inequation $5-2x \ge 14$.	2
(g) Solve $ 2x-5 =7$.	2
(h) Find the coordinates of the focus of the parabola $(x-2)^2 = 8y + 16$.	2
(i) Solve $2\sin\theta = -1$ for $0 \le \theta \le 2\pi$.	2
QUESTION TWELVE (15 marks) Use a separate writing booklet.	Marks
(a) Make y the subject of the equation $x = \log_3 y$.	1
(b) Find $\int \frac{4x^3}{2+x^4} dx$.	1
(c) Differentiate $\frac{x}{\sin x}$.	2
(d) Evaluate $11 + 16 + 21 + \cdots + 101$.	3
 (e) The quadrilateral ABCD has vertices A(0,4), B(4,8), C(-1,-4) and D(-5,-8). (i) Show that ABCD is a parallelogram. (ii) Find the equation of line BC, leaving your answer in the form ax + by + c = (iii) Find the perpendicular distance from A to line BC. (iv) Find distance BC. 	2
(v) Hence find the area of ABCD.	1

SGS Trial 2016 Form VI Mathematics 2 Unit Page 7

QUESTION THIRTEEN (15 marks) Use a separate writing booklet.

Marks

1 2

3

(a)

- (i) Prove that $\triangle ABC \parallel \triangle DEC$ in the diagram above.
- (ii) Find the value of x, giving reasons.

(b)

Find the shaded area in the diagram above.

- <u>-</u>
- (c) A person walks on the true bearing of 050° for $20 \mathrm{km}$ from point P and stops at point A. Another person walks for $30 \mathrm{km}$ on a bearing of 110° from point P and stops at point B.
 - (i) Represent this information on a neat diagram.
 - (ii) Find the distance AB to the nearest kilometre.
 - (iii) Find the bearing of A from B to the nearest degree.
- (d) The volume V is the number of litres of water in a tank at time t minutes. Water is flowing into the tank at a rate given by $\frac{dV}{dt} = \frac{4}{2t+1}$ litres per minute. At time t=0 the water begins to flow into an empty tank. How much water is in the tank after 5 minutes, to the nearest tenth of a litre?
- (e) Use the trapezoidal rule with 3 function values to estimate $\int_1^3 2^x dx$.

Examination continues overleaf ...

SGS Trial 2016 Form VI Mathematics 2 Unit Page 8

QUESTION FOURTEEN (15 marks) Use a separate writing booklet.

Marks

(a) Differentiate $\log_e(e^x + 2)$.

(b) A sum of \$20 000 is invested at a fixed rate of interest, compounded annually. After 5 years the principal has grown to \$28 567.

Find the annual rate of interest to the nearest tenth of one percent.

(c) 2

The sector, shown in the diagram above, has an area of 36 square units and a radius of 3 units. Find the arc length ℓ .

(d) Solve the equation $\tan^2 \theta + \sqrt{3} \tan \theta = 0$ for $0 \le \theta \le 2\pi$.

2

- (e) A particle is moving in a straight line with velocity given by $\dot{x} = 3t^2 9t$ where t is measured in seconds and x is measured in metres. Its displacement from the origin is initially 10 metres.
 - (i) Find the displacement x as a function of t.
 - (ii) Find the displacement when the acceleration is zero.
 - (iii) Find the average speed during the first 4 seconds.

QUESTION FIFTEEN (15 marks) Use a separate writing booklet.	Marks
(a) Find the volume formed when $y = \sec 2x$ is rotated about the x-axis from $x = 0$ to $x = \frac{\pi}{8}$.	2
(b) Find $\int (\sqrt[3]{x-9})^2 dx$.	2
(c) The population P of a town is growing at a rate proportional to its size at any time, so	
that $\frac{dP}{dt} = kP$, for some constant k. At the beginning of 2010 the town's population	
was 23000 and at the beginning of 2016 its population had grown to 28000.	
(i) Show that $P = Ae^{kt}$ satisfies the equation $\frac{dP}{dt} = kP$.	1
(ii) Find the value of A.	1
(iii) Find the value of k .	2
(iv) Estimate, to the nearest hundred, what the population will be at the beginning of 2025.	1
(v) During which year will the population be double the size it was at the beginning of 2010?	2
(d) A person borrows \$400000 and makes regular monthly repayments of M . The interest rate is 6% per annum compounded monthly. The loan is taken over a period of 20 years. Let A_n be the amount owing after n months, just after a repayment has been made.	
(i) Find an expression for A_2 .	1
(ii) Find the monthly payment M to the nearest cent.	[3]

Examination continues overleaf ...

SGS Trial 2016 Form VI Mathematics 2 Unit Page 9

-80	GS Trial 2016 Form VI Mathematics 2 Unit Page 1	0
\mathbf{Q}^{3}	UESTION SIXTEEN (15 marks) Use a separate writing booklet.	Marks
(a	Consider the function $y = x^5 - 80x$.	
	(i) Find the x-intercepts.	1
	(ii) Find the stationary points and determine their nature.	2
	(iii) Find the point of inflexion.	[2]
	(iv) Draw a neat sketch of the function, showing the above information.	2
(b		

A large window is constructed in the shape of a rectangle with a semicircle on top, as in the diagram above. The glass forming the semicircle is opaque and the glass forming the rectangle is clear. The height of the rectangle is x metres and the radius of the semicircle is r metres. The perimeter of the entire window is 12 metres.

(i) Show that
$$x = 6 - \frac{\pi}{2}r - r$$
.

(ii) The window is constructed so that the area of the rectangle, made of clear glass, is maximised.

2

Show that
$$r = \frac{6}{\pi + 2}$$
.

(c) The cubic function $y = ax^3 + bx^2 + cx + d$ has two stationary points and one point of inflexion.

Prove that the x-coordinate of the point of inflexion is located at the average of the x-coordinates of the two stationary points.

--- End of Section II

END OF EXAMINATION

x= 76 (B)

QUESTION ELEVEN (a) $3e^{1-5}$ = 13.445 (3 de). (h) (x-2) = 4(y+4) $\alpha = 4$, V = (2j - 4)(b) 3y - 2x = 6 $y = \frac{2}{3} \times + 2$ Gradient is 3 (c) 902-16 $= (3\alpha - 4)(3\alpha + 4)$ (1) 2 sin 0 = -1 (d) $y = x^3 e^x$: Sin. 0 = - 1 y' = uv' + vu'= $x^3 e^{x} + 3x^2 e^{x}$ 0 = 11 + E or 211 - 6 三河河河川 (e) y = (3 + sinx). y = 4 (3+ sinoc) coroc (f) 5-2x >14 -2x ≥ 9 · V sc ≤ -4.5 √ (9) |2x-5|=72x-5=7 or 2x-5=-7x=6 or 2 =-1

Overtion 13. a i) LACB is common LBAC = LEOC = 90

ABC | ADEC (AAA)

COTT espondence L' tris.

(11) x = 5 (mothery sides in set)

2C+3 6 (Similar 4's) (b) A= \(\frac{b}{a} \frac{y_1 - y_2}{a} \dot de \) $= \int_{0}^{4} -\frac{1}{2}x + 4 - x^{2} dx$ $= \frac{1-x^{2}+4x-\frac{2}{3}x^{\frac{3}{2}}}{4} + 4x - \frac{2}{3}x^{\frac{3}{2}} = \frac{7}{10}$ = -16 + 16 - 2 × 8 - [0] 20 a 2. (ii.) $AB^2 = 20 + 30 - 2 \times 20 \times 80 \ 60 \ /$ $AB^{2} = \sqrt{700} = 26.4.5.75$ = 26 km (to newest Kuy)

(v)
$$\theta = \frac{30^2 + (26.4575)^2 - 20^2}{2 \times 30 \times 26.4575}$$
 $\theta = 40.89 = 41^{\circ} \text{ fo recoust elegation}$
 $\theta = 40.89 = 41^{\circ} \text{ fo recoust elegation}$
 $\theta = 40.89 = 41^{\circ} \text{ fo recoust elegation}$
 $\theta = 40.89 = 41^{\circ} \text{ fo recoust elegation}$
 $\theta = 331^{\circ} (\text{recovest elegation})$
 $\theta = \frac{40.89}{2t+1} + C$
 $\theta = \frac{30^2 + (26.4575)^2 - 20^2}{2t+1} + C$
 $\theta = 40.89 = 41^{\circ} \text{ fo recoust elegation}$
 $\theta = 40.89 = 41^{\circ} \text{ fo recoust elegation}$
 $\theta = 40.89 = 41^{\circ} \text{ fo recoust elegation}$
 $\theta = \frac{40.89}{2t+1} + C$
 $\theta = \frac{40.89}$

Question 14. $(a) \quad y = \ln\left(e^{t} + 2\right)$ $(b) \qquad P = A \left(1 + \frac{\Gamma}{100} \right)$ $28567 = 2000 \left(1 + \frac{1}{100}\right)$ $(1+\frac{1}{100})^{5} = \frac{28.567}{20.000}$ $1 + \frac{7}{100} = \sqrt{\frac{28567}{20000}}$ $1 + \frac{f}{100} = 1.0739...$ F = 0.0739 ... r= 7.39.... So rate 13 7.4% $A = \frac{1}{2}r \stackrel{?}{\Theta} = 36$ $\ell = r\theta = 3 \times 8$ tun 0 + 53 ton 0 = 0 for 0 ≤ 0 ≤ 24 $tan \theta (ton \theta + \sqrt{3}) = 0$ ton 0 = 0 or ton 0 = - 13 0=0, 11, 211 平 0= 五, 511

 $x = t^3 - 9t^2 + C \checkmark$ $x = t^3 - \frac{1}{2}t^2 + 10$ $\dot{x} = 6t - 9 \qquad \dot{x} = 0 \quad t = \frac{3}{2}$ When $t = \frac{3}{2}$, $x = \left(\frac{3}{2}\right)^{3} - \frac{4}{2}x\left(\frac{3}{2}\right)^{2} + 10$ $2C = \frac{2.6}{9} = \frac{13}{4}$ (111) The porticle con charge direction t=0 or t= 3 / $3c = 27 - \frac{9}{2} \times 9 + 10 = -3.5$ Total distance travelled = 13:5 + 5:5 = 19 Average speed = 19 = 4.75 m/s/ aprel first 4 sexs 4

M=\$2865.72

 $(a) V = \pi \int \sec^2 2\pi e^{-2\pi i t}$ = 11. Jun 2x 7 8 = I [tonI = ton0] = II unt V (6.) $\left(3\sqrt{x-9}\right)^2 dx$ $= \left(\left(x - 9 \right)^{\frac{2}{3}} dx \right)$ $=(2-9)^{\frac{3}{3}}+C$ $= \frac{3}{5}(x-9)^{\frac{3}{3}} + C\sqrt{2}$ $\begin{array}{ccc} (C) & (1) & P = A e^{Kt} \\ & AP = K A e^{Kt} \end{array}$ (11) P= Aekt 2000, t=0 23000 = Ae P = 23000 A = 23000(III) In 2016 t=6 28000 = 23000 e $K = \frac{6K}{23}$

K = 0.032785....

(a)
$$y=x^5-80x$$

$$x\left(x^{4}-80\right)=0$$

$$x = 0, \frac{4}{80}, -\frac{4}{80}$$

(11)
$$y' = 5x^4 - 80$$
Stat pts where $y' = 0$

$$x^{4} = 16$$

$$x = \pm 2$$

$$\frac{\times |-1| \cdot 0 \cdot 1}{y'' \cdot -20} = 20$$

(b)
$$P = 2r + \pi r + 2x$$

$$x = 6 - \pi r - r$$

$$x = 6 - \pi r - r$$

(ii)
$$A = 2r \times (6 - \frac{11}{2}r - r)$$

$$A'' = -2\pi - 4 < 0$$

$$... 6-\pi\tau-2r=0$$

$$=\frac{6}{\pi t^2}$$

(a) $y = a \times c + b \times c + c \times c + d$ y = 3 a x + 26 x + c Let a co-ords of the stationary pts be & ond B or and B are roots of 30x +26x + C = 0 $\alpha + \beta = \sum_{\alpha \neq \beta} roots$ $\alpha + \beta = \frac{-2b}{3a}$ Average of α and $\beta = \frac{\alpha + \beta}{2} = \frac{-b}{3a}$ We are told that there is a point of

occurs when y"=0....

 $x = \frac{b}{3\alpha}$ which is the average of & and \$.