

KAMBALA

Mathematics

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- · Write using black pen
- · Board-approved calculators may be used
- · A reference sheet is provided at the back of this paper
- In Questions 11-16, show relevant mathematical reasoning and/or calculations

Total Marks - 100

(Section I) Pages 2-3

10 marks

- · Attempt Questions 1-10
- · Allow about 15 minutes for this section

(Section II) Pages 4-9

90 marks

- Attempt Questions 11-16
- · Allow about 2 hours 45 minutes for this section

Section I

10 marks **Attempt Questions 1–10** Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

	(A) 7.5×10^3	(B) 7.5×10^4	(C) 9.7977×10^6	(D) 9.7977×10^7		
2	What is the value of	of $\sum_{k=1}^{4} (-1)^k k^2$?				
	(A) -30	(B) -10	(C) 10	(D) 30		
3	Which of the following quadratic expressions is positive definite?					
	(A) $x^2 + 5x + 2$	(B) $x^2 + 5x + 4$	(C) $x^2 + 5x + 6$	(D) $x^2 + 5x + 8$		
•	,	ving trigonometric expre	• ,			
	(A) tan x	(B), $\cot x$ f the function $f(x) = \sqrt{1}$	(C) - tan x	(D) - cot x		
	(A) tan x	(B), cot x	(C) - tan x	(D) - cot x		
5	(A) $\tan x$ What is the range of (A) $0 < y < 1$	(B), $\cot x$ If the function $f(x) = \sqrt{1}$ (B) $0 \le y \le 1$	$\frac{\text{(C)} - \tan x}{-x^2 ?}$	(D) $-\cot x$ (D) $-1 \le y \le 1$		
5	(A) $\tan x$ What is the range of (A) $0 < y < 1$	(B), $\cot x$ If the function $f(x) = \sqrt{1}$ (B) $0 \le y \le 1$	(C) $-\tan x$ $-x^2$? (C) $-1 < y < 1$	(D) $-\cot x$ (D) $-1 \le y \le 1$		
5	(A) $\tan x$ What is the range of (A) $0 < y < 1$ α and β are the root	(B), $\cot x$ If the function $f(x) = \sqrt{1}$ (B) $0 \le y \le 1$ (B) 8	(C) $-\tan x$ $-x^2$? (C) $-1 < y < 1$ x + 5 = 0. What is the va	(D) $-\cot x$ (D) $-1 \le y \le 1$ lue of $o^2 + \beta^2$?		

What is the amplitude and period of the function $f(x) = 2 - \sin 2x$?

- (A) Amplitude = 1, Period = π
- (B) Amplitude = 1, Period = 2π
- (C) Amplitude = 2, Period = π
- (D) Amplitude = 2, Period = 2π

9 Which of the following is an expression for $\frac{d}{dx}[e^{2x} \tan x]$?

- (A) $2e^{2x} \tan x$
- (C) $2e^{2x}(1 + \tan^2 x)$ (D) $e^{2x}(1 + \tan x)^2$

What is the number of real roots of the equation $x(x-2) \log_e x = 0$?

- (A) 0
- (C) 2
- (D) 3

Section II

90 marks

Attempt Questions 11–16

Allow about 2 hours and 45 minutes for this section

Answer each question in the appropriate writing booklet. Extra writing booklets are available.

In Questions 11-16, your responses should include relevant mathematical reasoning and/or

Question 11		(15 marks)	Use the Question 11 Writing Booklet			
(a)	Expand and simp	plify $(3 - 2\sqrt{2})^2$.	•	1		
(b)	Solve the quadra	tic equation $2x^2 - 5x - 3 =$	0.	2		
(c)	Differentiate each of the following with respect to x .					
	(i) $\sin(x-\pi)$	•		1		
	(ii) $x \log_e x$.*	2		
(d)	Find the equation	of the tangent to the curve	$y = \frac{x}{x-1}$ at the point (2,2) on the curve.	3		
(e)	Evaluate the integral	gral $\int_{1}^{2} \frac{x+1}{x} dx$. Give you	r answer in simplest exact form.	3		

(f) The region bound by the curve $y = \frac{1}{2x+1}$ and the x axis between x = 0 and x = 13 is rotated about the x-axis to form a solid. Find the volume of the solid of revolution. Give your answer in exact form.

Ouestion 12

(15 marks)

Use the Question 12 Writing Booklet

2

3

2

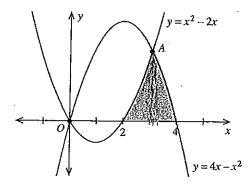
- (a) Find $\int \sec x(\cos x + \sec x) dx$.
- (b) Show that the curve $y = x^3 3x^2 + 6x$ has a point of inflexion at (1,4).
- (c) A parabola has equation $8y = x^2 6x + 1$.
 - (i) Write the equation in the form $(x-h)^2 = 4a(y-k)$.
 - (ii) Find the coordinates of the vertex and the focal length of the parabola.
 - (iii) Draw a large, neat sketch of the parabola. Give the coordinates of the focus and the equation of the directrix of the parabola on your sketch.
- (d) Find the values of x for which the function $y = x x^2$ is decreasing.
- The 8th term of an arithmetic progression is 23. The 11th term is four times the 3rd term. 3 Find the first term and the common difference of the arithmetic progression.

Question 13

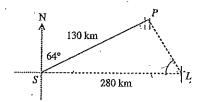
(15 marks)

Use the Question 13 Writing Booklet

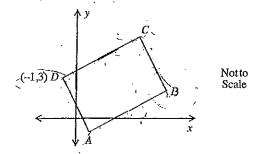
- (a) The gradient function of a curve y = f(x) is given by $f'(x) = \frac{x}{2} + \frac{4}{\sqrt{x}}$. The curve passes through the point (4.5). Find the equation of the curve.
- (b) The diagram below shows the parabolas $y = 4x x^2$ and $y = x^2 2x$. The graphs intersect at the origin O and the point A.



- (i) Find the coordinates of the point A.
- (ii) Find the area of the shaded region bound by the two parabolas and the x-axis.
- (c) A ship S is 280 km west of a lighthouse L. It travels a distance of 130 km on a bearing of 064° to a position P, as shown in the diagram below.

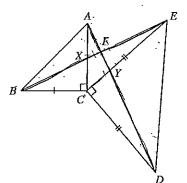


- (i) Calculate the distance from the lighthouse to the ship's position at P.
- (ii) Find the bearing of P from the lighthouse L.
- (d) Use Simpson's rule with 5 function values to approximate $\int_1^9 (\log_e x)^2 dx$. Give your answer correct to 2 significant figures.



- i) Show that ABCD is a rectangle.
- (ii) Find the coordinates of vertex C.
- (b) The population of a colony of laboratory rats is modelled using the equation $P = P_0 e^{it}$.

 where k is a constant, t is the time (in weeks) and P_0 is the initial population of the colony.
 - (i) A population of 20 rats increases to 100 rats after 6 weeks. Calculate the value of k.
 2 Give your answer correct to 4 decimal places.
 - (ii) How long will it take for the population of the colony to reach 500 rats?
- (c) In $\triangle ABC$, AC = BC and $\angle BCA$ is a right angle. In $\triangle CDE$, DC = EC and $\angle ECD$ is a right angle. DA and BE intersect at F. CA and BE intersect at X. CE and AD intersect at Y.



- (i) Copy the diagram into your writing booklet.
- (ii) Prove that $\triangle BCE \equiv \triangle ACD$.
- (iii) Show that DA is perpendicular to BE.

- 3
- 3.

- **Question 15**
- (15 marks)

Use the Question 15 Writing Booklet

(a) Find the value of $\int_0^{\ln 3} e^{2x} dx$.

2

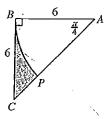
- (b) Solve the equation: $2 \log_2 x \log_2(x+4) = 1$
- (c) A point P moves so that its distance from A(3,0) is twice the distance from B(0,3).
 - (i) Show that the equation of the locus of P is $x^2 + 2x + y^2 8y + 9 = 0$.
 - (ii) Show that this locus is a circle and write down its centre and radius.
- (d) (i) Solve the equation $\sin x = \cos x$ for $0 \le x \le 2\pi$.
 - (ii) On the same diagram, sketch the graphs of the curves $y = \sin x$ and $y = \cos x$ for the domain $0 \le x \le 2\pi$. Clearly show the intercepts on the coordinate axes.
 - (iii) Find the area of the region bounded by the curves $y = \sin x$ and $y = \cos x$ in the domain $0 \le x \le 2\pi$. Give your answer in exact form.

Question 16

(15 marks)

Use the Question 16 Writing Booklet

(a) In the diagram below, $\triangle ABC$ is a triangle with $\angle ABC = 90^{\circ}$. AB = BC = 6 cm and $\angle CAB = \frac{\pi}{4}$ radians. PB is an arc of a circle with centre A and radius AB.



(i) Find the exact area of sector ABP.

1

(ii) Find the exact area of the shaded portion BPC.

1

(b) Determine an expression for the limiting sum of the series k, $\frac{k}{e}$, $\frac{k}{e^2}$, ...

2

- (c) A cylindrical container, closed at both ends, is to be made from thin sheet metal. The container is to have a radius of r cm and a height of h cm. Its volume is 2000π cm³.
 - (i) Show that the area of sheet metal required to make the container is $\left(2\pi r^2 + \frac{4000\pi}{r}\right) \text{cm}^2.$

2

- (ii) Find the radius required so that area of sheet metal required to make the container is minimized.
- ,
- (ii) Hence find the minimum area of sheet metal required to make the container.

1

- (d) Consider the equation $\frac{x}{a} + \frac{a+2}{x+1} = 2$ (with $a \ne 0$ and $x \ne -1$).
 - (i) Show that $x^2 + x(1-2a) + a^2 = 0$.

2

(ii) Find the greatest integer a for which x is real and rational.

3

End of paper

2 UNIT MATHEMATICS 2016 TRIAL HSC EXAMINATION

SECTION I

1
$$(9.8 \times 10^7) - (2.3 \times 10^4) = 97\,977\,000$$

= 9.7977×10^7

$$2 \sum_{k=1}^{4} (-1)^{k} k^{2} = [(-1)^{1} \times (1)^{2}] + [(-1)^{2} \times (2)^{2}] + [(-1)^{3} \times (3)^{2}] + [(-1)^{4} \times (4)^{2}]$$

$$= [-1 \times 1] + [1 \times 4] + [-1 \times 9] + [1 \times 16]$$

$$= (-1) + 4 + (-9) + 16$$

$$= 10$$

$$b^{2}-4ac < 0$$

$$(5)^{2}-4(1)(k) < 0$$

$$25-4k < 0$$

$$-4k < -25$$

$$k > 6\frac{1}{4}$$

 \therefore Range: $\{y: 0 \le y \le 1\}$

 \therefore Only the expression $x^2 + 5x + 8$ is positive definite.

$$4 \tan \left(\frac{\pi}{2} - x\right) = \tan \left(90 - x\right)$$

$$= \cot x$$

5 For the domain:

$$\begin{array}{c}
1 - x^2 \ge 0 \\
(1 + x)(1 - x) \ge 0
\end{array}$$
5 B

$$(x+x)(x-x) \ge 0$$

$$-1 \le x \le 1$$

$$f(-1) = \sqrt{1 - (-1)^2}$$

$$= \sqrt{1 - 1}$$

$$= 0$$

$$f(0) = \sqrt{1 - (0)^2}$$

$$= \sqrt{1 - 0}$$

$$= 1$$

$$f(1) = \sqrt{1 - (1)^2}$$

$$= \sqrt{1 - 1}$$

$$= 0$$

$$6 \quad \alpha + \beta = \frac{-b}{a}$$

$$= \frac{-(-8)}{1}$$

$$= 8$$

$$\alpha\beta = \frac{c}{a}$$

$$= \frac{5}{1}$$

$$= 5$$

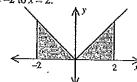
$$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$$

$$= (8)^2 - 2(5)$$

$$= 64 - 10$$

$$= 54$$

7 The expression
$$\int_{-2}^{2} |x| dx$$
 represents the area under the graph $y = |x|$ from 7 B $x = -2$ to $x = 2$.



Area =
$$2 \times \frac{1}{2}bh$$

= $2 \times \frac{1}{2} \times 2 \times 2$
= 4
 $\therefore \int_{-2}^{2} |x| dx = 4$

8 Amplitude = 1
Period =
$$\frac{2\pi}{2}$$

= π

9
$$\frac{d}{dx}[e^{2x} \tan x] = e^{2x} \times \sec^2 x + \tan x \times 2e^{2x}$$

= $e^{2x}(\sec^2 x + 2 \tan x)$
= $e^{2x}(1 + \tan^2 x + 2 \tan x)$
= $e^{2x}(\tan^2 x + 2 \tan x + 1)$
= $e^{2x}(\tan x + 1)^2$

10 Make each factor equal 0. Therefore:
$$x = 0$$
 or: $x - 2 = 0$ or: $x = 2$ or: $\ln x = 0$

However, $\ln x$ is only defined for x > 0. $\therefore x = 0$ is not a valid solution.

x = 1

.. There are only 2 real roots of the equation.

SECTION II

QUESTION 11

(a)
$$(3-2\sqrt{2})^2 = 3^2-2 \times 3 \times 2\sqrt{2} + (2\sqrt{2})^2$$

= $9-12\sqrt{2} + 4 \times 2$
= $17-12\sqrt{2}$

(b)
$$2x^2 - 5x - 3 = 0$$

 $(2x + 1)(x - 3) = 0$
Therefore:
 $2x + 1 = 0$
 $2x = -1$
 $x = -\frac{1}{2}$
or:
 $x - 3 = 0$
 $x = 3$
 \therefore Solution is $x = -\frac{1}{2}$ or 3

(c) (i)
$$y = \sin(x - \pi)$$

$$\frac{dy}{dx} = \cos(x - \pi)$$
(ii) $y = x \ln x$

$$\frac{dy}{dx} = x \cdot \frac{1}{x} + \ln x \cdot 1$$

$$= 1 + \ln x$$

(d)
$$y = \frac{x}{x-1}$$

$$\frac{dy}{dx} = \frac{(x-1) \cdot 1 - x \cdot 1}{(x-1)^2}$$

$$= \frac{x \cdot 1 - x}{(x-1)^2}$$

$$= -\frac{1}{(x-1)^2}$$
At (2,2), $\frac{dy}{dx} = -\frac{1}{(2-1)^2}$

$$= -\frac{1}{1^2}$$

$$= -1$$

:. Gradient of tangent to curve at (2,2) = -1

.. Equation of tangent to curve is:

$$y - y_1 = m(x - x_1)$$

$$y - 2 = -1(x - 2)$$

$$y - 2 = -x + 2$$

$$x + y - 4 = 0$$

(e)
$$\int_{1}^{2} \frac{x+1}{x} dx = \int_{1}^{2} \frac{x}{x} + \frac{1}{x} dx$$
$$= \int_{1}^{2} 1 + \frac{1}{x} dx$$
$$= \left[x + \ln x \right]_{1}^{2}$$
$$= \left[2 + \ln 2 \right] - \left[1 + \ln 1 \right]$$
$$= 2 + \ln 2 - 1 - \ln 1$$
$$= 1 + \ln 2$$

(f) Equation of curve is:

$$y = \frac{1}{2x+1}$$
= $(2x+1)^{-1}$

$$y^{2} = (2x+1)^{-2}$$
Volume = $\pi \int_{0}^{1} (2x+1)^{-2} dx$
= $\pi \left[-\frac{1}{2} (2x+1)^{-1} \right]_{0}^{1}$
= $\pi \left[-\frac{1}{2} (2(1)+1)^{-1} \right] - \pi \left[-\frac{1}{2} (2(0)+1)^{-1} \right]$
= $\pi \left[-\frac{1}{2} (2+1)^{-1} \right] - \pi \left[-\frac{1}{2} (0+1)^{-1} \right]$
= $\pi \left[-\frac{1}{2} (3)^{-1} \right] - \pi \left[-\frac{1}{2} (1)^{-1} \right]$
= $\pi \left[-\frac{1}{2} \times \frac{1}{3} \right] - \pi \left[-\frac{1}{2} \times 1 \right]$
= $-\frac{\pi}{6} + \frac{\pi}{2}$
= $\frac{\pi}{3}$ cubic units

QUESTION 12

(a)
$$\int \sec x (\cos x + \sec x) dx = \int \sec x \cos x + \sec^2 x dx$$
$$= \int \frac{1}{\cos x} \times \frac{\cos x}{1} + \sec^2 x dx$$
$$= \int 1 + \sec^2 x dx$$
$$= x + \tan x + C$$

(b)
$$y = x^3 - 3x^2 + 6x$$

 $\frac{dy}{dx} = 3x^2 - 6x + 6$
 $\frac{d^2y}{dx^2} = 6x - 6$

For points of inflection, $\frac{d^2y}{dx^2} = 0$ and changes sign on either side of the point. 6x - 6 = 0

$$6x - 6 = 0$$

$$6x = 6$$

$$x = 1$$
When $x = 1, y = 4$

When
$$x = 0.9$$
, $\frac{d^2y}{dx^2} = -0.6 < 0$
When $x = 1.1$, $\frac{d^2y}{dx^2} = 0.6 > 0$
 \therefore Point of inflection at (1.4)

(c) (i) Equation of the parabola is:

$$8y = x^{2} - 6x + 1$$

$$x^{2} - 6x = 8y - 1$$

$$x^{2} - 6x + 9 = 8y - 1 + 9$$

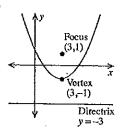
$$(x - 3)^{2} = 8y + 8$$

$$(x - 3)^{2} = 8(y + 1)$$

$$(x - 3)^{2} = 4.2.(y + 1)$$

(ii) Vertex is (3,-1)
Focal length is 2 units

(iii)



Focus is (3,1)Equation of directrix is y = -3

(d)
$$y = x - x^2$$

$$\frac{dy}{dx} = 1 - 2x$$

Curve is decreasing when
$$\frac{dy}{dx} < 0$$

 $1-2x < 0$
 $-2x < -1$
 $x > \frac{1}{2}$

- \therefore Curve is decreasing when $x > \frac{1}{2}$
- (e) We have:

$$T_8 = 23$$

$$a + (8-1)d = 23$$

$$a + 7d = 23$$

and:

$$T_{11} = 4T_3$$

$$a + (11 - 1)d = 4[a + (3 - 1)d]$$

$$a + 10d = 4[a + 2d]$$

$$a + 10d = 4a + 8d$$

$$3a - 2d = 0$$

Solving simultaneously:

$$\begin{cases} a+7d = 23 \\ 3a-2d = 0 \end{cases}$$

$$\begin{cases} 2a+14d = 46 \\ 21a-14d = 0 \end{cases}$$

$$23a = 46$$

$$a = 2$$
Substituting:
$$2+7d = 23$$

$$7d = 21$$

$$d = 3$$

 \therefore The first term of the arithmetic progression is 2 and the common difference is 3. The sequence is 2, 5, 8, ...

QUESTION 13

(a)
$$f'(x) = \frac{x}{2} + \frac{4}{\sqrt{x}}$$

 $= \frac{1}{2}x + 4x^{-\frac{1}{2}}$
 $f(x) = \frac{1}{4}x^2 + 8x^{\frac{1}{2}} + C$
 $= \frac{x^2}{4} + 8\sqrt{x} + C$
The curve passes through (4.5).

$$\frac{(4)^2}{4} + 8\sqrt{4} + C = 5$$

$$\frac{16}{4} + 8 \times 2 + C = 5$$

$$4 + 16 + C = 5$$

$$20 + C = 5$$

$$C = -15$$

$$\therefore f(x) = \frac{x^2}{4} + 2\sqrt{x} - 15$$

(b) (i) Solving for coordinates of A:

$$\begin{cases} y = x^2 - 2x \\ y = 4x - x^2 \end{cases}$$

$$x^2 - 2x = 4x - x^2$$

$$2x^2 - 6x = 0$$

$$2x(x - 3) = 0$$

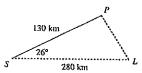
$$x = 0 \text{ and } x = 3$$
When $x = 0, y = 0$
When $x = 3, y = 3$

$$\therefore A = (3,3)$$

(b) (ii) Area =
$$\int_{2}^{3} x^{2} - 2x \, dx + \int_{3}^{4} 4x - x^{2} \, dx$$

= $\left[\frac{1}{3}x^{3} - x^{2}\right]_{2}^{3} + \left[2x^{2} - \frac{1}{3}x^{3}\right]_{3}^{4}$
= $\left[\frac{1}{3}(3)^{3} - (3)^{2}\right] - \left[\frac{1}{3}(2)^{3} - (2)^{2}\right] + \left[2(4)^{2} - \frac{1}{3}(4)^{3}\right] - \left[2(3)^{2} - \frac{1}{3}(3)^{3}\right]$
= $\left[9 - 9\right] - \left[2\frac{2}{3} - 4\right] + \left[32 - 21\frac{1}{3}\right] - \left[18 - 9\right]$
= $0 - \left(-1\frac{1}{3}\right) + 10\frac{2}{3} - 9$
= 3 square units

(c) (i)



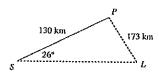
Using the cosine rule:

$$PL^2 = 130^2 + 280^2 - 2 \times 130 \times 280 \times \cos 26^\circ$$

= 29867.79343
 $PL = 172.8230119$
= 173 km

.. The ship is approximately 173 km from the lighthouse.

(ii)



Using the sine rule:

$$\frac{130}{\sin \angle PLS} = \frac{173}{\sin 26^{\circ}}$$

$$173\sin \angle PLS = 130\sin 26^{\circ}$$

$$\sin \angle PLS = \frac{130\sin 26^{\circ}}{173}$$

$$= 0.3294118444$$

$$\angle PLS = 19.23308874$$

$$= 19^{\circ}$$
∴ Bearing of P from L is 289°.

(d) Using Simpson's rule:

x	$\int f(x)$	W	P
i	0.0000	i	0.0000
3	1.2069	4	4.8278
5	2.5903	2	5,1806
7	3.7866	4	15.1463
9	4.8278	1	4.8278
			29.9825

Therefore:

$$\int_{1}^{9} (\ln x)^{2} dx = \frac{1}{3} \times h \times \text{sum}$$

$$= \frac{1}{3} \times 2 \times 29.9825$$

$$= 19.9883$$

$$\approx 20$$

QUESTION 14

$$AB = DC$$

 $AD = BC$

(given)
(opp sides of parallelogram)
(opp sides of parallelogram)

Gradient of
$$AB = \frac{-a}{b}$$

$$= \frac{-1}{-2}$$

$$= \frac{1}{2}$$

Gradient of
$$BC = \frac{-a}{b}$$

$$= \frac{-A}{1}$$

$$= -2$$

$$m_{AB} \times m_{BC} = \frac{1}{2} \times -2$$
$$= -1$$

: AB is perpendicular to BC

AB | DC ∴ BC is perpendicular to CD

(opp sides of parallelogram)

 $AD \parallel BC$

(opp sides of parallelogram)

∴ CD is perpendicular to AD ∴ ABCD is a rectangle

(all angles are 90°)

(ii) Equation of BC is 2x + y - 16 = 0

Gradient of $AB = \frac{1}{2}$

Now CD is parallel to AB and passes through (-1,3)

Equation of CD is:

$$y - y_1 = m(x - x_1)$$

$$y - 3 = \frac{1}{2}(x + 1)$$

$$y - 3 = \frac{1}{2}x + \frac{1}{2}$$

$$\frac{1}{2}x - y + \frac{2}{2} = 0$$

$$x - 2y + 7 = 0$$

```
Now, solving for coordinates of C:
                   (2x + y - 16 = 0)
                     x-2y+7=0
                     2x + y - 16 = 0
                    2x - 4y + 14 = 0
                   5y - 30 = 0
                        5y = 30
                         y = 6
            Substituting:
                  2x+6-16=0
                      2x - 10 = 0
                            2x = 10
                             x = 5
            \therefore C = (5,6)
(b) (i) P = P_0 e^{tt}
            When t = 0, let P = 20.
                  20 = P_0 \times e^{k(0)}
                  20 = P_0 \times e^0
                  P_0 = 20
            \therefore P = 20e^{tt}
            When t = 6, P = 100.
                  100 = 20e^{k(6)}
                     5 = e^{6t}

\ln 5 = \ln e^{6k}

                   6k = \ln 5
                     k = \frac{\ln 5}{6}
           P = 20e^{0.2682}
P = 20e^{0.2682t}
      (ii) When P = 500,
                       500 = 20e^{0.2682t}
                        25 = e^{0.2682i}
                     \ln 25 = \ln e^{0.2682t}
                  0.2682t = \ln 25
                               In25
                         t = \overline{0.2682}
                            =12.00177414
```

(c) (i) (ii) Let $x = \angle ACE$ $\angle BCE = 90 + x$ (adjacent angles) $\angle ACD = x + 90$ (adjacent angles) ∴ ∠BCE = ∠ACD BC = AC(given) CE = CD(given) $\therefore \Delta BCE = \Delta ACD$ (SAS) (iii) ΔECD is an isosceles right angled triangle $\angle CDE = \angle CED = 45^{\circ}$ (equal angles opp equal sides) In ΔFED: $\angle FED = \angle FEY + \angle YED$ (adjacent angles) $= \angle FEY + 45^{\circ}$ $= \angle BEC + 45^{\circ}$ $\angle BEC = \angle FED - 45^{\circ}$ and: $\angle CDE = \angle CDY + \angle FDE$ (adjacent angles) $45^{\circ} = \angle CDY + \angle FDE$ $\angle CDY = 45^{\circ} - \angle FDE$ $\angle CDA = 45^{\circ} - \angle FDE$ Now: $\angle BEC = \angle ACD$ (corr angles in cong triangles) $\angle FED - 45^{\circ} = 45^{\circ} - \angle FDE$ $\angle FED = 90^{\circ} - \angle FDE$ $\angle FED + \angle FDE = 90^{\circ}$ Therefore: $\angle FED + \angle EDF + \angle DFE = 180^{\circ}$ (angle sum of Δ) 90° + ∠DFE = 180° $\angle DFE = 90^{\circ}$

.: The population of the colony will reach 500 after approximately 12 weeks.

: DA is perpendicular to BE

QUESTION 15

(a)
$$\int_0^{\ln 3} e^{2x} dx = \left[\frac{1}{2}e^{2x}\right]_0^{\ln 3}$$
$$= \frac{1}{2}e^{2(\ln 3)} - \frac{1}{2}e^{2(0)}$$
$$= \frac{1}{2}e^{\ln 3^2} - \frac{1}{2}e^0$$
$$= \frac{1}{2}e^{\ln 9} - \frac{1}{2}$$
$$= \frac{1}{2}(9) - \frac{1}{2}$$
$$= 4$$

(b)
$$2\log_2 x - \log_2(x+4) = 1$$
$$\log_2 x^2 - \log_2(x+4) = 1$$
$$\log_2 \left(\frac{x^2}{x+4}\right) = 1$$

Using the definition of the logarithm:

$$2^{1} = \frac{x^{2}}{x+4}$$

$$2(x+4) = x^{2}$$

$$2x+8 = x^{2}$$

$$x^{2}-2x-8 = 0$$

$$(x-4)(x+2) = 0$$

$$x = 4 \text{ or } x = -2$$
But log x is only defined for x = 2

But $\log_2 x$ is only defined for x > 0.

 \therefore Solution is x = 4

(c) (i) Let P(X,Y) be one position of the variable point.

$$PA = 2PB$$

$$PA^{2} = (2PB)^{2}$$

$$PA^{2} = 4PB^{2}$$

$$(X-3)^{2} + (Y-0)^{2} = 4[(X-0)^{2} + (Y-3)^{2}]$$

$$X^{2} - 6X + 9 + Y^{2} = 4[X^{2} + Y^{2} - 6Y + 9]$$

$$X^{2} - 6X + 9 + Y^{2} = 4X^{2} + 4Y^{2} - 24Y + 36$$

$$3X^{2} + 6X + 3Y^{2} - 24Y + 27 = 0$$

$$3(X^{2} + 2X + Y^{2} - 8Y + 9) = 0$$

$$X^{2} + 2X + Y^{2} - 8Y + 9 = 0$$

 \therefore The equation of the locus of P is $x^2 + 2x + y^2 - 8y + 9 = 0$.

(ii) Completing the square:

$$x^{2}+2x+y^{2}-8y+9=0$$

$$x^{2}+2x+y^{2}-8y=-9$$

$$x^{2}+2x+1+y^{2}-8y+16=-9+1+16$$

$$(x+1)^{2}+(y-4)^{2}=8$$

 \therefore The locus of P is a circle with centre (-1,4) and radius $\sqrt{8}$ units.

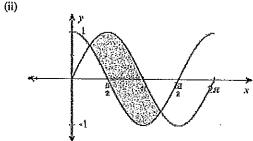
(d) (i)
$$\frac{\sin x = \cos x}{\cos x} = 1$$

$$\frac{\cos x}{\cos x} = 1$$

$$\tan x = 1$$

$$x = 45^{\circ} \text{ or } 225^{\circ}$$

$$= \frac{\pi}{4} \text{ or } \frac{5\pi}{4}$$



(iii) Solving for points of intersection:

$$\begin{cases} y = \sin x \\ y = \cos x \\ \sin x = \cos x \\ \frac{\sin x}{\cos x} = 1 \\ \tan x = 1 \\ x = \frac{\pi}{4} \text{ or } \frac{5x}{4} \end{cases}$$

Now:

Area =
$$\int_{\frac{\pi}{4}}^{\frac{5\pi}{4}} \sin x \, dx - \int_{\frac{\pi}{4}}^{\frac{5\pi}{4}} \cos x \, dx$$
=
$$\left[-\cos x \right]_{\frac{\pi}{4}}^{\frac{5\pi}{4}} - \left[\sin x \right]_{\frac{\pi}{4}}^{\frac{5\pi}{4}}$$
=
$$\left[\left[-\cos \frac{5\pi}{4} \right] - \left[-\cos \frac{\pi}{4} \right] - \left[\left[\sin \frac{5\pi}{4} \right] - \left[\sin \frac{\pi}{4} \right] \right] \right]$$
=
$$\left[\left[-\left(-\frac{1}{\sqrt{2}} \right) \right] - \left[-\left(-\frac{1}{\sqrt{2}} \right) \right] - \left[\left[-\frac{1}{\sqrt{2}} \right] - \left[-\frac{1}{\sqrt{2}} \right] \right] \right]$$
=
$$\left[\left[\frac{1}{\sqrt{2}} \right] - \left[-\frac{1}{\sqrt{2}} \right] - \left[-\frac{1}{\sqrt{2}} \right] - \left[-\frac{1}{\sqrt{2}} \right] \right]$$
=
$$\left[\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right] - \left[-\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \right]$$
=
$$\frac{2}{\sqrt{2}} - \left[-\frac{2}{\sqrt{2}} \right]$$
=
$$\frac{2}{\sqrt{2}} + \frac{2}{\sqrt{2}}$$
=
$$\frac{4\sqrt{2}}{\sqrt{2}}$$
=
$$\frac{4\sqrt{2}}{2}$$
=
$$2\sqrt{2}$$
 square units

QUESTION 16

- (a) (i) Area of sector $ABP = \frac{1}{2}r^2\theta$ = $\frac{1}{2} \times 6^2 \times \frac{\pi}{4}$ = $\frac{3\pi}{2}$ square units
 - (ii) Area $\triangle BC = \frac{1}{2}bh$ $= \frac{1}{2} \times 6 \times 6$ = 18 square unitsArea $ABP = 18 - \frac{8\pi}{2}$ $= \frac{35-9\pi}{2} \text{ square units}$
- (b) First term = kCommon ratio = $\frac{k}{e} \div k$ = $\frac{k}{e} \times \frac{1}{k}$

Limiting sum
$$= \frac{e}{1-r}$$

$$= \frac{k}{1-\frac{1}{e}}$$

$$= k + \left(1 - \frac{1}{e}\right)$$

$$= k + \frac{e-1}{e}$$

$$= k \times \frac{e}{e-1}$$

$$= \frac{ke}{e-1}$$

(c) (i) The volume of the cylinder is $2000\pi \, cm^3$. Therefore:

$$m^2 h = 2000\pi$$

$$r^2 h = 2000$$

$$h = \frac{2000}{r^2}$$

Now let S be the surface area of sheet metal required to make the container. $S = 2m^2 + 2m'h$

$$S = 2m^{2} + 2mh$$

$$= 2m^{2} + 2m\left(\frac{2000}{r^{2}}\right)$$

$$= 2m^{2} + \left(\frac{2m}{1} \times \frac{2000}{r^{2}}\right)$$

$$= 2m^{2} + \frac{4000m}{r^{2}}$$

$$= 2m^{2} + \frac{4000\pi}{r}$$

(ii) $S = 2\pi r^2 + 4000\pi r^{-1}$ $\frac{dS}{dr} = 4\pi r - 4000\pi r^{-2}$ $\frac{d^2S}{dr^2} = 4\pi + 8000\pi r^{-3}$

For minimum area, we need $\frac{dS}{dr} = 0$ and $\frac{d^2S}{dr^2} > 0$.

$$4m - 4000m^{-2} = 0$$

$$4m - \frac{4000\pi}{r^2} = 0$$

$$4m - \frac{4000\pi}{r^2}$$

$$4m^3 = 4000\pi$$

$$r^3 = 1000$$

$$r = 10$$

When r = 10, $\frac{d^2S}{dr^2} = 4\pi + \frac{8000\pi}{(10)^3}$ $= 4\pi + \frac{8000\pi}{1000}$ $= 4\pi + 8\pi$ $= 12\pi$ > 0

- .. The minimum area of sheet metal required occurs when the radius is 10 cm.
- (iii) When r = 10, $S = 2\pi (10)^2 + \frac{4000\pi}{10}$ $= 200\pi + 400\pi$ $= 600\pi$
 - : The minimum area of sheet metal required is 600π cm².
- (d) (i) $\frac{x}{a} + \frac{a+2}{x+1} = 2$ $\frac{x(x+1)}{a(x+1)} + \frac{a(a+2)}{a(x+1)} = 2$ $\frac{x(x+1) + a(a+2)}{a(x+1)} = 2$ x(x+1) + a(a+2) = 2a(x+1) $x^2 + x + a^2 + 2a = 2ax + 2a$ $x^2 + x + a^2 = 2ax$ $x^2 + x 2ax + a^2 = 0$ $x^2 + (1-2a)x + a^2 = 0$

(ii) For the discriminant,

$$\Delta = b^{2} - 4ac$$

$$= (1 - 2a)^{2} - 4(1)(a^{2})$$

$$= 1 - 4a + 4a^{2} - 4a^{2}$$

$$= 1 - 4a$$

= 1-4aFor real and rational roots, $\Delta \ge 0$ and Δ is a perfect square. Therefore:

$$\begin{array}{c}
1 - 4a \ge 0 \\
-4a \ge -1
\end{array}$$

 $a \le \frac{1}{4}$ Since a is an integer and $a \ne 0$, we have a = -1, -2, -3, ...We also need Δ to be a perfect square. When a = -1, $\Delta = 1 - 4(-1)$

When
$$a = -1$$
, $\Delta = 1 - 4(-1)$
= 1 + 4

When
$$a = -2$$
, $\Delta = 1 - 4(-2)$
= 1 + 8

= 9, which is a perfect square.

$$\therefore$$
 The greatest value for a is -2 .

(ii) For the discriminant, $\Delta = b^2 - 4ac$

$$\Delta = b^{2} - 4ac$$

$$= (1 - 2a)^{2} - 4(1)(a^{2})$$

$$= 1 - 4a + 4a^{2} - 4a^{2}$$

$$= 1 - 4a$$

= 1-4aFor real and rational roots, $\Delta \ge 0$ and Δ is a perfect square. Therefore: $1-4a \ge 0$

Since
$$a$$
 is an integer and $a \ne 0$, we have $a = -1, -2, -3, ...$
We also need Δ to be a perfect square.
When $a = -1$, $\Delta = 1 - 4(-1)$
 $= 1 + 4$
 $= 5$, which is not a perfect square.
When $a = -2$, $\Delta = 1 - 4(-2)$
 $= 1 + 8$

= 9, which is a perfect square. \therefore The greatest value for a is -2.