1 Find the value of the pronumerals in these figures. Give answers correct to 2 decimal places.

(a)

(b)

(c)

2

- (a) Find the length of the diagonal of the rectangle in this figure.
- (b) Find the area of the triangle in this figure.

Gemma goes bike riding and travels 725 m north, then 1090 m west and then 860 m south. She stops for a rest. How far is she from her starting point?

What is the value of x?
Leave your answer in exact form.

- A $\sqrt{48}$
- B $\sqrt{144}$
- C $\sqrt{1224}$
- D $\sqrt{2304}$
- Peter is decorating a cake he made out of 2 trapeziums to form a hexagon. With parallel sides of 30 cm and 50 cm and height 15 cm, how much ribbon will he need to decorate the perimeter of the hexagon?

(b)

- 10 Using the values of x and y and with the appropriate method, find each triad.
 (a) 8, 12

 - (b) 15, 5
 - (c) 4, 1

Pythagoras' theorem

Name:	

- 1 Are the following statements true or false?
 - (a) Pythagoras' theorem only applies to right-angled triangles.
 - (b) If two sides of a right-angled triangle are 4 cm and 6 cm, then the length of the hypotenuse is 7.21 cm.
 - (c) If the length of the hypotenuse is 22 mm and one side is 13 mm, then the length of the other side is 19 m.
- Find the length of the hypotenuse, correct to 2 decimal places.

(a)

(b)

(b)

- What is the length of a diagonal of a rectangle 9 m long and 5 m wide?
 - A 4 m
 - B 8.5 m
 - C 10.3 m
 - D 14 m
- An isosceles triangle has sloping edges equal to 9 mm and a base equal to 6 mm. Calculate the height of the triangle to the nearest mm.

6	Find the length of the hypotenuse in triangles with:
	(a) sides 63 m and 2752 cm, hypotenuse in m
	(b) sides 4.6 km and 8930 m, hypotenuse in km
	(c) sides 250 mm and 580 mm, hypotenuse in cm.
7	Find the length of the third side (hypotenuse and one other side is given in order) of triangles with: (a) sides 0.45 km and 176 m, third side in m
	(b) sides 20 cm and 15 cm, third side in mm
	(c) sides 0.68 m and 38 cm, third side in mm.

Pythagoras' theoremName: Nancy Le

1 Find the value of the pronumerals in these figures. Give answers correct to 2 decimal places.

(a)

$$6^{2} = 2^{2} + x^{2}$$

$$36 = 4 + x^{2}$$

$$36 - 4$$

$$x^{2} = 32$$

$$x = 5.656854249$$

Now $x^2 + y^2 = 12^2$ $y^2 = 144 - x^2$ = 144 - 32= 112

(b)

(c) 25 cm 7 cm 20 cm 4 cm

$$25^{2} = 20^{2} + 2^{2}$$
 $4q = 16 \text{ ty}^{2}$
 $4q$

2

$$\chi^2 = 8.6^2 + 10.5^2$$

 $\chi^2 = 73.96 + 110.25$
 $\chi^2 = 184.21$
 $\chi = 13.57239846$
 $\chi = 13.6m$ (to $1d.p$)

- (a) Find the length of the diagonal of the rectangle in this figure.
- (b) Find the area of the triangle in this figure. $\frac{90.3 \text{ m}^2}{2} = 45.15 \text{ m}^2$

Gemma goes bike riding and travels 725 m north, then 1090 m west and then 860 m south. She stops for a rest. How far is she from her starting point?

What is the value of x? Leave your answer in exact form.

$$\chi^{2} = 18^{2} + 30^{2}$$
 $\chi^{2} = 324 + 900$
 $\chi^{2} = 1224$
 $\chi^{2} = 1224$
 $\chi^{2} = 34.9887137$
 $\chi^{2} = 34.35$, (1dec)

$$\begin{array}{ccc}
 A & \sqrt{48} \\
 B & \sqrt{144} \\
 C & \sqrt{1224} \\
 D & \sqrt{2304}
\end{array}$$

Peter is decorating a cake he made out of 2 trapeziums to form a hexagon. With parallel sides of 30 cm and 50 cm and height 15 cm, how much ribbon will he need to decorate the perimeter of the hexagon?

$$\chi^{2} = 2.8^{2} + 4.8^{2}$$
 $2 = 7.8 + 23.04$
 $\chi^{2} = 30.88$
 $x = 5.556977596$
 $2 = 5.66(1dxc)$

7 Use the triad 7, 24, 25 to create 3 other triads and check that they satisfy Pythagoras' theorem.

3)
$$930^{2} = 24^{2} + 18^{2}$$

$$900 = 576 + 374$$

$$= 576 + 324$$

$$= 900$$

$$= 5760$$

8 Is the following statement true or false?

If the smallest number of a Pythagorean triad is 8, the middle number is 15 and then the hypotenuse must be 17.

$$x^{2} = 130^{2} + 60^{2}$$

$$x^{2} = 16400 + 3690$$

$$x^{4} = \sqrt{20500}$$

(b)

$$3c^{2} = 24^{2} + 7^{4}$$

$$x^{2} = 576 + 404$$

$$3c^{2} = \sqrt{625}$$

$$\chi^2 = 2^2 + 2^2 / \chi^2 = 4 + 9$$

- Using the values of x and y and with the appropriate method, find each triad.
 - (a) 8,12
- a) 8,6,10
- (b) 15, 5
- 6) 5,13,12
- (c) 4, 1
- c) 4,3,5.

Pythagoras' theorem

Name: _

- 1 Are the following statements true or false?
 - (a) Pythagoras' theorem only applies to right-angled triangles. True
 - If two sides of a right-angled triangle are (b) 4 cm and 6 cm, then the length of the hypotenuse is 7.21 cm. True
 - If the length of the hypotenuse is 22 mm and one side is 13 mm, then the length of the other side is 19 m. False
- Find the length of the hypotenuse, correct to 2 decimal places.

(a)

$$\chi^{2}=14^{2}+11^{2}$$
 $\chi^{2}=196+1961$
 $\chi^{2}=317$
 $\chi=17.80$ (to 2dp)

(b)

$$\chi^{2} = 8^{2} + 19^{2}$$
 $\chi^{2} = 64 + 36!$
 $\chi^{2} = 425$
 $\chi = 20.62$

$$\chi^{2} = 16^{2} + 10^{2}$$

$$\chi^{2} = 256 + 100$$

$$\chi^{3} = 356 \longrightarrow \chi = 18.867...$$

$$\chi^{6} = 18.19.1 \longrightarrow \chi = 27.66$$

3 Find the value of the pronumeral. Leave your answer in exact form.

(a)

(b)

$$25^{2} = 11^{2} + y^{2}$$

$$625 = 121 + y^{2}$$

$$625 - 121$$

$$y^{2} = 504$$

$$y = 22.44994432$$

$$y = 22.4(1 \text{ dec})$$

(c)

$$30^{2} = 21^{2} + 2^{2}$$

$$900 = 441 + 2^{2}$$

$$900 - 441$$

$$2^{2} = 459$$

$$2 = 21.42428529$$

$$2 = 21.4 (1 dec)$$

What is the length of a diagonal of a rectangle 9 m long and 5 m wide?

4 m

8.5 m $10.3\,\mathrm{m}$

14 m

 $\begin{array}{r} x^{2} = 5^{2} + 9^{2} \\ x^{2} = 25 + 81 \\ x^{2} = 106 \\ x = 10.29563014 \\ x = 10.3 \text{ m} \end{array}$

An isosceles triangle has sloping edges equal to " 9 mm and a base equal to 6 mm. Calculate the height of the triangle to the nearest mm.

sides 63 m and 2752 cm, hypotenuse in m (a)

$$\chi^{2} = 63^{2} + 27.52^{2}$$

 $\chi^{2} = 3969 + 757.3504$
 $\chi^{2} = 4726.3504$
 $\chi = 68.74845744$
 $\chi = 68.76(1dec)$

- sides 4.6 km and 8930 m, hypotenuse in χ^2 : 4.6 ℓ 8.9 x2= 21.16+79.21 162 100.37
- 2210.01848292 24 210 la (- total
- sides 250 mm and 580 mm, hypotenuse

25
$$\chi^2 = 25^2 + 158^2$$

 $\chi^2 = 625 + 3364$
 $\chi^2 = 3489$
 $\chi = 63.1585397$
 $\chi = 63.2$ cm. (idea)

Find the length of the third side (hypotenuse and one other side is given in order) of triangles with:

sides 0.45 km and 176 m, third side in m

$$\chi^{2} = 0.45 + 1.76 \pm Try again$$
 $\chi^{2} = 0.0625 + 3.0976$
 $\chi^{2} = 3.1601$
 $\chi = 1.77766701$
 $\chi = 1.8 km (1 dec)$

change

sides 20 cm and 15 cm, third side in mm

$$\chi^{2}$$
: 150² + 200² /
 χ^{2} = 22500 + 40 000
 χ = 62500
 χ = 250 mm

sides 0.68 m and 38 cm, third side in mm.)

9 A ladder 12 m long leans against a wall. The foot of the ladder is 190 cm from the wall. How far up the wall does the ladder reach?

$$12^{2} = 1.9^{2} + x^{2}$$

$$144 = 3.61 + x^{3}$$

$$144 - 3.61$$

$$x^{2} = 140.39$$

$$x = 11.84862861 m$$

= 11.85m (to 2 4)

10 Vivian is making a window 700 mm wide and 900 mm high. She decides to add 2 diagonals which will cross each other, made of wood. How much wood will she need in metres?

$$\chi^{2} = 0.1 + 4.9$$

$$\chi^{2} = 0.1 + 4.9$$

$$\chi^{2} = 13.0$$

$$\chi^{4} = 11.40 \times 75425$$

$$\chi = 11.40 \times (1 \text{ dec})$$
Total length of wood needed