Modular Arithmetic

Clock arithmetic and addition

In our counting system, the numbers go on indefinitely: 1, 2, 3, 4, ... This set is an *infinite* one. However, some counting systems are not infinite.

Example 1

If we count around a clockface, the sequence of numbers is 1, 2, 3, 4, ..., 12. The pattern is repeated after we get to 12. The set is *finite*.

For example, if we start at 8 on a clockface and add 7, we finish at 3.

Example 2

Egg timers work in a similar way. Suppose the indicator on the dial is at 3 minutes. In a further 2 minutes it will be at 1. Thus in this system, 3+2=1.

Assuming this indicator keeps going around, in 5 more minutes it will be at 2. That is, 1+5=2.

1	0	1	2	3
0	0	1	2	3
1	-1	2	3	0
2	2	3	0	1
3	.3.	0	.1	2

This arithmetic, which uses only the numbers 0, 1, 2, 3, is known as arithmetic modulus 4 or mod 4 arithmetic.

Exercise 17A Clock arithmetic and addition

1 Copy and complete this addition table for a 5 minute clock.

+	O	1	2	3	.4
D:	"O"	1	2	3	4
1	1	2	3	4	0
2	2		Maring Street	adepartament	
3	3		,		
4	4				

- 2 Use the mod 5 table in question 1 to simplify the following.
 - (a) 1+4
- **(b)** 3 + 3
- (c) 2+4
- (d) 4+2

- (e) 1+2+3:
- (f) 3+2+1
- (g) 4+4
- (h) 2 + 2 + 2

- (i) 4+(3+1)
- (i) (4+3)+1
- (k)(3+2)+3
- (1) 3+(2+3)

- 3 The diagram shows a 3 minute clock. Use it to make an addition table for *mod* 3 arithmetic. Then simplify the following.
 - (a) 2+1
- (b) 2 + 2
- (c) 2+1+2

- (d) 1+2+2
- (e) 2+2+2
- (f) 1+2+2+1

- (g) 2+1+2+1+2+1
- 4 Construct addition tables for the following modular arithmetics, and keep them for future reference.
 - (a) mod 6

(b) mod 7

- (c) mod 8
- 5 Use the tables you have constructed in question 4 to evaluate the following.
 - (a) $5+3 \pmod{7}$
- **(b)** $5+4 \pmod{6}$
- (c) $4+7 \pmod{10}$

- (d) $3 + 4 \pmod{7}$
- (e) $9 + 8 \pmod{11}$
- (f) $7 + 6 \pmod{8}$

- (g) $4+2+3 \pmod{9}$
- **(h)** $5 + 6 + 7 \pmod{10}$
- (i) $4+4+4+4 \pmod{11}$
- 6 If a 5 minute clock starts at 0, what will the indicator show after:
 - (a) 11 minutes?
- (b) 15 minutes?
- (c) 23 minutes?

(d) 1 hour?

- (e) 176 minutes?
- (f) 89 minutes?
- 7 If a 9 minute clock starts at 0, what will the hand show after the clock has run for:
 - (a) 20 minutes?
- (b) 36 minutes?
- (c) 100 minutes?

- (d) 23 minutes?
- (e) 86 minutes?
- (f) 2 hours?
- 8 Suppose the days of the week are placed on a 7 position dial, beginning with Sunday.
 - (a) What number corresponds to Wednesday?
 - (b) What number corresponds to Saturday?
 - (c) What day is 34 days after Sunday?
 - (d) What day is 59 days after Tuesday?
 - (e) Anthony planted some tomato seeds on a Thursday, and 32 days later he transplanted them. If he harvested them 54 days after they were transplanted, on what day of the week were they harvested?
- 9 Cheryl goes to the gymnasium every second day. The diagram gives a geometric pattern that illustrates her program.
 - (a) If she trains on Monday, what time will elapse before she trains on Monday again?
 - (b) How many lines are found in this pattern?
 - (c) How many times do you move around the clock before arriving back at the starting point?

- 10 Draw a pattern similar to the pattern in question 9 for a person who goes to the gymnasium:
 - A every day

B every third day

C every fourth day

- D every fifth day
- For each pattern, answer the following questions.
- (a) If the person trains on Monday, what time will elapse before training on Monday again?
- (b) How many lines are found in the pattern?
- (c) How many times do you move around the clock before arriving back at the starting point?

- 11 State the modulus of the following.
 - (a) the months of the year
- (b) a 3 minute egg timer
- (c) the days of the week

(d) an analogue clock

Residues and congruent integers

This clock uses mod 6 arithmetic. No matter how many times the pointer moves around the dial, only the numbers 0, 1, 2, 3, 4, 5 will be indicated. For example, if we set the clock at 0, after 49 minutes the pointer will

be at 1. That is,

 $49 = 6 \times 8 + 1$ The remainder is 1 when we divide 49 by 6.

The remainder is known as the residue.

Residue

The residue of an integer n mod m is the remainder when n is divided by m.

All integers in mod 6 with the same remainder are said to be congruent in mod 6 arithmetic. For example,

 $19 \equiv 37 \; (mod \; 6)$

Congruence

The integers x and y are said to be congruent mod m if they have the same residue mod m. In this case we write $x \equiv y \pmod{m}$.

Exercise 176 Residues and congruent integers

- 1 (a) Write down the residues in mod 5 arithmetic.
 - (b) Write down the residues in mod 7 arithmetic.
- 2 Write down the residues mod 5 for the following numbers.
 - (a) 26
- **(b)** 100
- (c) 17
- (d) 0
- (e) 11

- (f) 83
- (g) 264
- (h) 81
- (i), 4
- (i) 3217

(1) 4316

- 3 Write the residues of the following in *mod* 7.
 - (a) 34

(f) 170

- **(b)** 21 (g) 131
- (c) 88 (h) 0
- (d) 94 (i) 4
- (e) 5
- 4 What are the residues of 50 in the following arithmetics?
 - (a) mod 7
- **(b)** mod 5
- (c) mod 6
- (d) mod 11

- 5 Write 4 numbers congruent to:
 - (a) 1 (mod 7)
- **(b)** 3 (mod 5)
- (c) 4 (mod 6)

- 6 Write true (T) or false (F) for the following statements.
 - (a) $5 = 3 \pmod{2}$
- **(b)** $17 \equiv 2 \pmod{3}$
- (c) $49 \equiv 37 \pmod{12}$

- (d) $16 \equiv 3 \pmod{7}$
- (e) $32 = 0 \pmod{5}$
- (f) $1233 \equiv 1914 \pmod{11}$
- 7 Find the smallest value for the pronumeral in each of:
 - (a) $17 \equiv x \pmod{5}$
- **(b)** $20 \equiv y \pmod{7}$:
- (c) $33 \equiv a \pmod{6}$

- (d) $65 \equiv b \pmod{3}$
- (e) $47 \equiv a \pmod{4}$
- (f) $101 \equiv c \pmod{11}$

Notation

The set of residues in mod 5 arithmetic is $\{0, 1, 2, 3, 4\}$. This set is often referred to as \mathbb{Z}_5 .

Similarly, in *mod* 7 the residues are given by $\mathbb{Z}_2 = \{0, 1, 2, ..., 6\}$.

- 8 Write each of the following as a set.
 - (a) \mathbb{Z}_3

(b)ℤ₄

- (c) Z₀
- 9 Write each of the numbers below as congruent to $a \pmod{5}$, where a is an element of \mathbb{Z}_5 .
 - (a) 46
- (b) 83
- (c) 109
- (d) 153
- (e) 550

- 10 Find the smallest value of m in the following.
 - (a) $7 = 2 \pmod{m}$
- (b) $7 \equiv 3 \pmod{m}$
- (c) $27 \equiv 5 \pmod{m}$

- $(\mathbf{d}) 27 \equiv 2 \pmod{m}$
- (e) $81 \equiv 0 \pmod{m}$
- (f) $586 \equiv 5 \pmod{m}$

- 11 Consider the question $22 + 34 \pmod{5}$.
 - Approach 1: $22 + 34 \pmod{5} = 2 + 4 \pmod{5}$
 - $\equiv 1 \pmod{5}$
 - Approach 2: $22 + 34 \pmod{5} = 56 \pmod{5}$
 - $\equiv 1 \pmod{5}$

Use both approaches to answer the following.

- (a) $7 + 12 \pmod{5}$
- $_{1}$ (b) 14 + 11 (mod 7)
- (c) $20 + 19 \pmod{7}$

- (d) $16 + 23 \pmod{6}$
- (e) $5+4+6 \pmod{3}$:
- (f) $21 + 23 + 25 \pmod{4}$

Riddle When visitors knock on your door, what is the polite thing to do?

Match the letters with the answers to solve the riddle.

- A: $6 + 11 \pmod{12}$
- $M: 24 + 27 \pmod{5}$
- I: $3+4+5 \pmod{6}$
- N: 22 + 15 (mod 7)
- T: The number of elements in \mathbb{Z}_7
- V: The number of elements in \mathbb{Z}_6

Challenging problem Operation ©

The operation O is defined as

$$a \odot b = 2a - b$$

where a, b are integers.

For example,

$$5 \odot 4 = 2 \times 5 - 4$$

= $10 - 4$

=6

Answer the following.

(a) Find:

(i) 4 © 3

(ii) 6 © 8

3 (iii) -4 © 2

(b) Is 6 © 5 the same as 5 © 6?

Opposites and subtraction

In normal arithmetic, the opposite of the integer 6 is the integer -6; that is, 6 + (-6) = 0. And the opposite of -3 is 3; again, -3 + 3 = 0.

Opposites exist in modular arithmetic also. For example, $3 + 2 \equiv 0 \pmod{5}$. Thus 3 is the opposite of 2, and 2 is the opposite of 3, in mod 5.

Subtraction is an operation where we 'add the opposite'.

Examples -

$$1 \ 3-4=3+1 \ (mod \ 5)$$

= $4 \ (mod \ 5)$

$$2 \ 1-5=1+2 \ (mod \ 7)$$

= 3 \ (mod \ 7)

Exercise 17C Opposites and subtraction

- 1 Write down the opposites of the following in mod 3.
 - (a) 1

(b) 2

(c) 0

- 2 Write down the following in \mathbb{Z}_5
 - (a) -3

(b) -4

(c) -1

(d) -2

3 What numbers in \mathbb{Z}_{g} are represented by:

- (a) -6?
- (b) -3?
- (c) -7?
- (d) -2?

- (e) -1?
- (f) -9?
- (g) -27?
- (h) -16?

4 Simplify.

- (a) $\bar{2} \bar{3} \pmod{7}$
- (c) $4-1 \pmod{5}$
- (e) $(3-5) \pmod{10}$
- (g) $3-2-3 \pmod{4}$
- (i) $1-(2-4) \pmod{5}$

(j) $4-7-9 \pmod{11}$

5 In mod 4, simplify the following.

- (a) 1+3-2
- (c) 1-(2-1)
- (e) (1-2)+(2-3)

- (b) 3 2 3
- (d) 2 (1 2)

(b) $2 - 4 \pmod{5}$

(d) $9 - 2 \pmod{10}$

(f) $2+1-4 \pmod{5}$

(h) $1 - 4 - 3 \pmod{6}$

(f) (1-2)-(2-3)

6 In what modular arithmetics would the following be true?

- (a) 1-3=2
- (c) 5-7=8
- (e) 2 7 = 3

- (b) 1 3 = 5
- (d) 4-5=6
- (f) 6-9=10

Riddle Who gets the sack every time he goes to work?

Evaluate the following, then match the letters with the answers to solve the riddle:

- S: $1-4 \pmod{7}$
- H: $3-4-2 \pmod{11}$
- $M: 5 6 \pmod{7}$
- $O: 3+3+5 \pmod{6}$
- $E: -3 \pmod{5}$
- P: -36 (mod 13)

- T: The opposite of 3 in \mathbb{Z}_{10}
- N: The additive inverse of 6 in \mathbb{Z}_7

Multiplication in modular arithmetic

Example 1

 \mathbb{Z}_5

X	0	1	2	3	4
0	0	0	0	0	0
1	0	1	.2	3	4
2	0	2	4	1	3
3	0	3	¶.	4	2
4	0	4	3	2	1

Consider the multiplication table in mod 5 Each entry belongs to Z₅ For example,

$$3 \times 4 = 12 = 2 \pmod{5}$$

and
$$4 \times 2 = 8 = 3 \pmod{5}$$

Exercise 170 Multiplication

1 Use the multiplication table in \mathbb{Z}_5 above to evaluate the following.

(a)
$$(3 \times 4) \times 2$$

(b) 4×0

(c) $2 \times 2 \times 2$

(d)
$$(2\times3)\times4$$

(e) 4×4

(f) 32

(g) 2^3

(h) $1 \times 2 \times 3 \times 0$

(i) 4^3

- (i) $(2 \times 3) + (3 \times 4)$
- (k) $2 (3 \times 4)$
- (I) $2^2 + 3^2$
- 2 Make multiplication tables for mod 2, mod 4, mod 6, mod 7, mod 8, mod 9, mod 10 and mod 12 arithmetics, and keep them for further reference.
- 3 Compute in mod 4.

(a)
$$2 \times 3$$

(b) $2 \times 3 \times 2$

(c) 2^2

(d) 3(1+2)

(e) $3 \times 2 + 1 \times 2$

(f) 3^2

 $(g) 3 \times 0$

(h) $2^2 + 3^2$

(i) 3^3

4 Simplify in Z₆

(a)
$$\hat{5} \times \hat{2}$$

(d) 2^3

 $(g) - 4 \times 5$

(i) $2^2 - 3^2$ (m)(2-3)(3-4) (b) $3 \times 2 \times 4$

(e) $3^2 - 4^2$

(h) 34

 $(k)-1\times3\times4$

(n) 3(2-4)

(c) 5² (f) $2^3 - 4$

(i) $3^2 + 4^2$

 $(1) (-4)^2$

(o) 4⁴

Example 2

Evaluate $(3 \times 7)^6$ (mod 6).

Solution:

 $(3 \times 7)^6 \equiv 3^6 \pmod{6}$

 $\equiv 3 \pmod{6}$

- (a) $(2 \times 3)^4$ (nuod 5)
- (b) $(2 \times 3)^6 \pmod{4}$
- (c) $5 \times 6 \pmod{7}$

- (d) $7 \times 8 \ (mod \ 10)$
- (e) $(4 \times 5)^8 \pmod{10}$ (h) $5^2 + 3^2 + 4^2 \pmod{6}$
- (f) $(3 \times 7)^{10} \pmod{10}$ (i) 10³ (mod 9)

 $3 \times 7 = 3 \pmod{6}$

- (g) $3 + 4 \times 2 \pmod{8}$ (i) 10⁴ (mod 12)
- 6 Evaluate x2 if:
 - (a) $x = 2 \pmod{5}$
- **(b)** $x = 3 \pmod{5}$
- (c) $x = 7 \pmod{8}$

- (d) $x = 9 \pmod{12}$
- (e) $x = 3 \pmod{7}$
- (f) $x = 8 \pmod{10}$

7 Evaluate $x^2 + 3x + 2$ if:

(a)
$$x = 2 \pmod{5}$$

(b)
$$x = 3 \pmod{7}$$

(c)
$$x = 5 \pmod{8}$$

(d)
$$x = 7 \pmod{9}$$

(e)
$$x = 7 \pmod{10}$$

(f)
$$x = 9 \pmod{12}$$

Example 3

Evaluate $17 \times 29 = a \pmod{7}$, where a is in \mathbb{Z}_7

Approach 1: $17 \times 29 = 493 \pmod{7}$

 $\equiv 3 \pmod{7}$

Approach 2: $17 \times 29 = 3 \times 1 \pmod{7}$ = 3 (mod 7)

8 Study Example 3, then evaluate the following where a is in \mathbb{Z}_7

- (a) $9 \times 11 \equiv a \pmod{7}$
- (b) $13 \times 15 = a \pmod{7}$
- (c) $28 \times 16 \equiv a \pmod{7}$

i think approach 2

is easieri

- (d) $36 \times 50 = a \pmod{7}$
- (e) $5 \times 8 \times 11 = a \pmod{7}$
- (f) $22^2 \equiv a \pmod{7}$

9 Simplify the following in mod 5.

(a) 24×27

- (b) $31 \times 32 \times 33$
- (c) 104×216

(d) 16⁴

- (e) 101×203
- (f) 6¹⁰

Example 4

Consider this example in mod 5:

 $1 \times 1 = 1 \pmod{5}$ and $4 \times 4 = 1 \pmod{5}$ We can conclude that the square root of 1 in mod 5 is either 1 or 4.

- 10 (a) By considering the multiplication table in mod 5, find the square root(s) of 4.
 - (b) Does every element of Z5have a square root? If not, which ones do?

11 Consider Z₇

- (a) Indicate which numbers have a square root or roots, and write them down.
- (b) Which numbers do not have a square root?
- 12 Investigate square roots in Z₃, Z₂ and Z₃. Write down your conclusions.

Challenging problem Remainders

- (a) Find the remainder when 74 is divided by 100.
- (b) Hence or otherwise, find the remainder when 7¹⁹⁹⁹ is divided by 100.

Riddle How can you build a sandcastle in 10 seconds?

Evaluate the following, then match the letters with the answers to solve the riddle.

- N: 42 (mod 9)
- D: $3 \times 7 \pmod{11}$
- K: $5 \times 4 \pmod{7}$
- A: 3×8 (mod 10)
- S: $2 \times 3 \times 5 \pmod{7}$
- I: $5 \times 3 \pmod{12}$
- E: 23 (mod 9)
- U: $7 \times 5 \pmod{10}$
- C: $6 \times 3 \pmod{9}$
- Q: $5 \times 2 \pmod{9}$

والمقتلطون للمنازية لحجورة الرواز الأحاران والأورو فيراحان

Challenging problem Is it true?

We can show that:

 $2^3 \equiv 2 \pmod{3}$ $2^5 \equiv 2 \pmod{5}$ $2^7 \equiv 2 \pmod{7}$

 $3^5 = 3 \pmod{5}$ $3^7 = 3 \pmod{7}$ $4^5 = 4 \pmod{5}$

(a) Is it true in general that

 $x^m \equiv x \pmod{m}$

for x in \mathbb{Z}_m ?

(b) For what values of m does the result hold?

Reciprocals and division

If 2 numbers have a product of 1," then they are said to be reciprocals of each other.

 \mathbb{Z}_5

X	O	1	2	3	4
0	0	Ø	0	0	0
1	Q	1	2	3	4
2	0	2	4	1	3
3	. Q	3	1	4	2
4	0	4	3	2	1

If we look at the multiplication table for mod 5 arithmetic. we observe that:

$$2 \times 3 = 1$$

$$4 \times 4 = 1$$

$$1 \times 1 = 1$$

$$3 \times 2 = 1$$

 \mathbb{Z}_4

	A theough
0 0 0 0	0
1 0 11 2	3
2 0 2 0	2

Consider multiplication in mod 4.

$$1 \times 1 = 1$$
 1 \therefore 1 and 3 have

$$1 \times 1 = 1$$
 \uparrow \therefore 1 and 3 have and $3 \times 3 = 1$ \uparrow reciprocals

We can conclude that in mod 4 the number 2 does not have a reciprocal.

The state of the second of the second If p is prime, then in mod p arithmetic every non-zero number has a unique reciprocal.

As in the case of real numbers, division is regarded as the inverse of multiplication. That is, when 'dividing' we 'multiply by the reciprocal'.

Examples

$$1 \ 4 \div 3 = 4 \times 2 \ (mod \ 5)$$

= 3 \ (mod \ 5)

$$2 \quad 1 + 4 = 1 \times 2 \pmod{7}$$
$$= 2 \pmod{7}$$

Exercise 17E Reciprocals and division

- 1 (a) Do all non-zero numbers in mod 3 arithmetic have reciprocals?
 - (b) Write down the reciprocals of each number.
- 2 Which numbers have reciprocals in mod 7? List them.
- 3 (a) Which numbers have reciprocals in mod 6?
 - (b) Which do not have reciprocals?
- 4 Evaluate in mod 7.

(a)
$$3 + 2$$

(d)
$$5 \div 2$$

$$(g) 6 + 5$$

(i)
$$3+6+4$$

(a)
$$1 \div 2$$

(d)
$$(2+3)\times 4$$

$$(g)$$
 $4+2+3$

(d)
$$10 \div 7$$

(g)
$$\frac{4\times3}{6\times7}$$

(b)
$$2 \div 3$$

(e)
$$2 \div 6$$

(k)
$$(2-3) \div 2$$

(e)
$$(1+3)^2$$

(h)
$$3 - 1 \div 2$$

(b)
$$2 \div 9$$

(e)
$$6 + 5$$

$$\text{(h) } \frac{2\times5}{3\times7}$$

(c)
$$1 \div 2$$

(f)
$$4 + 3$$

(i)
$$\frac{3\times2}{4\times5}$$

(1)
$$(5 \times 2) \div 6$$

(c)
$$4 \div 3$$

(f)
$$\frac{2+3}{3+4}$$

(i)
$$4 + 3 \times 2$$

- (c) $5 \div 6$
- (f) $7 \div 10$
- (i) $\frac{3+7}{4+9}$

Challenging problem *Mod* primes

1 Show that $1+3+5+7+9 \equiv 0 \pmod{5}$.

The second secon

- 2 Find 2+4+6+8+10+12+14 (mod 7).
- 3 (Harder) Find 1 + 4 + 7 + ... (22 terms) (mod 5).
- $4 \ 3 + 3^2 + 3^3 + 3^4 + ... + 3^{24} \pmod{7}$.

Solving equations

The normal rules apply when solving equations in modular arithmetic.

Examples

$$1.3x = 4$$
 (mod 5)
 $x = 4 \div 3$ (mod 5)

$$=4\times2\pmod{5}$$

$$=3 \pmod{5}$$

Divide both sides by 3.

$$a = 4 + 3$$
 (mod 5)
 $a = 4 + 3$ (mod 5) Add 3 to both sides.
 $= 2$ (mod 5)
 $3 \ 2a + 6 = 1$ (mod 7)
 $2a = 1 - 6$ (mod 7) Take 6 from both sides.
 $= 1 + 1$ (mod 7) Add the opposite.
 $= 2$ (mod 7)
 $a = 1$ (mod 7) Divide both sides by 2.

Exercise TVF solving equations

1 Solve the following in mod 5.

(a)
$$2x = 1$$

(b)
$$x + 4 = 3$$

(c)
$$\frac{x}{2} = 3$$

(d)
$$x - 4 = 1$$

(e)
$$3a = 1$$

(f)
$$3 - y = 2$$

(g)
$$1 - c = 4$$

(h)
$$4x = 3$$

2 Solve the following in mod 7.

(a)
$$3a = 2$$

(b)
$$\frac{c}{4} = 3$$

(c)
$$a+6=3$$

(d)
$$5 + y = 0$$

(f)
$$y - 6 = 3$$

(g)
$$5x = 4$$

(h)
$$x^2 = 1$$

3 Solve in the modulus indicated.

(a)
$$x+3=1 \pmod{6}$$

(b)
$$2a - 3 = 7 \pmod{9}$$

(c)
$$5 - d = 3 \pmod{7}$$

(d)
$$5 - 2c = 1 \pmod{6}$$

(e)
$$3a-2=4 \pmod{5}$$

(f)
$$2x+5=2 \pmod{7}$$

(g)
$$5x + 6 = 7 \pmod{11}$$

(h)
$$3x + 1 = x + 6 \pmod{7}$$

(i)
$$2x+1=3-x \pmod{5}$$

(j)
$$3(x-1) = 2 \pmod{5}$$

(k)
$$\frac{2a}{3} = 4 \pmod{5}$$

(1)
$$3x - 5 = 6 + x \pmod{7}$$

Riddle What do you have if you are holding 7 oranges in your left hand and 8 apples in your right hand?

Solve the following equations in *mod* 11, then match the letters with the answers to solve the riddle.

S:
$$x+x=1$$

D:
$$x + 7 = 3$$

A:
$$\frac{C}{E} = 4$$

I:
$$3-c=10$$

B:
$$9y = 7$$

G:
$$2x + 5 = 3$$

N:
$$5d = 7$$

The state of the s

Answers

Exercise 17A

1 mod 5

-	(0)	r- 1	2	3.5	
O	Ō	1	2	3	4
	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
	4.	0	1	2	3

 $2 ext{ (a) } 0 ext{ (b) } 1 ext{ (c) } 1 ext{ (d) } 1 ext{ (e) } 1 ext{ (f) } 1 ext{ (g) } 3 ext{ (h) } 1 ext{ (l) } 3 ext{ (l) }$

9 mod 3

はな			(a) u	{ 5 } 1	(C) Z	
0	1	2	(e) 0	(£)0	(g) ()	
D	1	2				

4 (a) mod 6

÷	0:	1	2	3	4	5
0.	0	1	2	3	. 4	. 5
1	1	Ž	3	4	5	Ò
2.	2	3	4	5	0	i
3	3	.4	5	0	1	. 2
A L	4	5	0	1	2	3
5	5	O	1	2	3	4

(b) mod 7

1	D).	1	2	3	4	5	/ 6
0	Q	1	2	ä	4	5	6
	1	2.	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	O.	1	2
	4	5	Ģ	0	1	2	3
5	5	6	Ó	1	2	3	4
6	6	0	j	2	3	4	5

5 (a) 1 (b) 3 (c) 1 (d) 0 (e) 6 (f) 5 (g) 0 (h) 8 (i) 5 6 (a) 1 (b) 0 (c) 3 (d) 0 (e) 1 (f) 4 7 (a) 2 (b) 0 (c) 1 (d) 5 (e) 5 (f) 3 8 (a) 3 (b) \$7\$ (c) Saturday (d) Friday (e) Saturday 9 (a) 2 weeks (b) 7 lines (c) 2 times

(a) A7 days, B3 weeks, C4 weeks, D5 weeks (b) All 7 lines (c) A1 time, B3 times, C4 times, D5 times 11 (a) mod 12 (b) mod 3 (c) mod 7 (d) mod 12 (e) mod 6 (f) mod 24

(d) 2

Exercise 178

1 (a) 0, 1, 2, 3, 4 (b) 0, 1, 2, 3, 4, 5, 6 2 (a) 1 (b) 0 (c) 2 (d) 0 (e) 1 (f) 3 (g) 4 (h) 1 (i) 4 (j) 2 3 (a) 6 (b) 0 (c) 4 (d) 3 (e) \$\frac{1}{5}\$ (f) 2 (g) 5 (h) 0 (i) 4 (j) 4 4 (a) 1 (b) 0 (c) 2 (d) 6 5 (a) 8, 15, 22, 29 (b) 8, 13, 18, 23 (c) 10, 16, 22, 28 6 (a) T (b) T (c) T (d) F (e) F (f) F 7 (a) 2 (b) 6 (c) 3 (d) 2 (e) 3 (f) 2 8 (a) \$\frac{1}{5}\$ (a) \$\frac{1}{5}\$ (b) \$\frac{1}{5}\$ (c) \$\frac{1}{5}\$ (d) \$\frac{1}{5}\$ (e) \$\frac{1}{5}\$ (f) \$\frac{1}{5}\$ (g) \$\frac{1}{5}\$

Exercise 17C

1 (a) 2 (b) 1 (c) 0 2 (a) 2 (b) 1 (c) 4 (d) 3 3 (a) 2 (b) 5 (c) 1 (d) 6 (e) 7 (f) 7 (g) 5 (h) 0 4 (a) 6 (mod 7) (b) 3 (mod 5) (c) 3 (mod 5) (d) 7 (mod 10) (e) 8 (mod 10) (f) 4 (mod 5) (g) 2 (mod 4) (h) 0 (mod 6) (i) 3 (mod 5) (j) 10 (mod 11) 5 (a) 2 (b) 2 (c) 0 (d) 3 (e) 2 (f) 0 6 (a) mod 4 (b) mod 7 (c) mod 10 (d) mod 7 (e) mod 8 (f) mod 3

Exercise 170

1 (a) 4 (b) 0 (c) 3 (d) 4 (e) 1 (f) 4 (g) 3 (h) 0 (i) 4 (j) 3 (k) 0 (l) 3 2 mod 2 mod 4 mod 6

or I	Ho.		2	3
r O	0	0	Ō	0
	TO.	1	2	3
2	-0	2	Ö	2
	Ď	3	2	1

101	ij.	24	19	.4	5
0 0.	0	0	. O:	0.	0.
1 0	1	2	3	1	5
2 0	2	4	. 0	2	4
3 0	3	Ō	3	Ò	3
0	4	2	. D.	4	:2
5 0	5	4	3.	2	أ إنا

3 (a) 2 (b) 0 (c) 0 (d) 1 (e) 0 (f) 1 (g) 0 (h) 1 (f) 3 4 (a) 4 (b) 0 (c) 1 (d) 2 (e) 5 (f) 4 (g) 4 (h) 3 (i) 1 (j) 1 (k) 0 (l) 4 (m) 1 (n) 2 (o) 4 5 (a) 1 (mod 5) (b) 0 (mod 4) (c) 2 (mod 7) (d) 6 (mod 10) (e) 0 (mod 10) (f) 1 (mod 10) (g) 3 (mod 8) (h) 2 (mod 6) (i) 1 (mod 9) (j) 4 (mod 12) 5 (a) 4 (mod 5) (b) 4 (mod 5) (c) 1 (mod 8) (d) 9 (mod 12) (e) 2 (mod 7) (f) 4 (mod 10) 7 (a) 2 (mod 5) (b) 6 (mod 7) (c) 2 (mod 8) (d) 0 (mod 9) (e) 2 (mod 10) (f) 2 (mod 12) 8 (a) 1 (b) 6 (c) 0 (d) 1 (e) 6 (f) 1 9 (a) 3 (b) 1 (c) 4 (d) 1 (e) 3 (f) 1 10 (a) 2 or 3 (b) No. 0, 1, 4 do. 11 (a) 0, 1, 2, 4 (b) 3, 5, 6 12 I_8 and I_6 : 0, 1 have square root(s).

Jet 0, 1, 4, 7 have square rook(s).

Challenging problem Remainders (a) 1 (b) 43

Challenging problem Is it true? (a) No (b) When m is a prime

Exercise 178

1 (a) Yes (b) The reciprocal of 1 is itself. The reciprocal of 2 is itself. 2.1, 2, 3, 4, 5, 6 3 (a) 1, 5 (b) 0, 2, 3, 4 (a) 5 (b) 3 (c) 4 (d) 6 (e) 5 (f) 6 (g) 4 (h) 2 (i) 1 (j) 8 (k) 3 (l) 4 5 (a) 3 (b) 4 (c) 3 (d) 1 (e) 4 (f) 2 (g) 3 (h) 0 (f) 1 6 (a) 5 (b) 10 (c) 10 (d) 3 (e) 10 (f) 4 (g) 5 (h) 1 (j) 10 Challenging problem Mod prime $11+3+5+7+9=25=0 \pmod{5}$ 20 $\pmod{7}$ 30 $\pmod{5}$ 40 $\pmod{7}$

Exercise 17F

1 (a) x=3 (b) x=4 (c) x=1 (d) x=0 (e) a=2 (f) y=1 (g) c=2 (h) x=2 2 (a) a=3 (b) c=5 (c) a=4 (d) y=2 (e) c=5 (f) y=2 (g) x=5 (h) x=1, 6 3 (a) $x=4 \pmod 6$ (b) $a=5 \pmod 9$ (c) $d=2 \pmod 7$ (d) $c=2 \pmod 6$ (e) $a=2 \pmod 5$ (f) $x=2 \pmod 7$ (g) $x=9 \pmod 11$ (h) $x=6 \pmod 7$ (f) $x=4 \pmod 5$ (j) $x=0 \pmod 5$ (k) $a=1 \pmod 5$ (l) $x=2 \pmod 7$