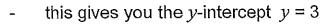
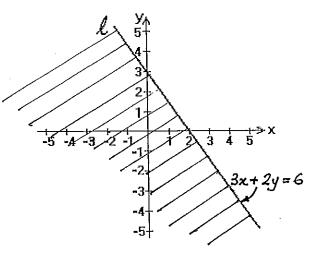
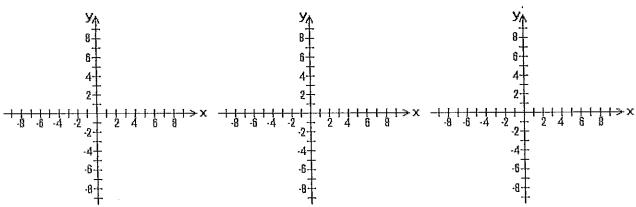

A3.8 – Sketching regions


The quickest and easiest way to graph the solution of a linear inequation, is to plot its intercepts and then draw the line passing through these points, then test a point for the required region or half-plane.


For the linear inequation: $3x+2y \le 6$

- this gives you the x-intercept x = 2
- 2nd, place your pen or finger over the term containing x (set x = 0) 3x + 2y = 6

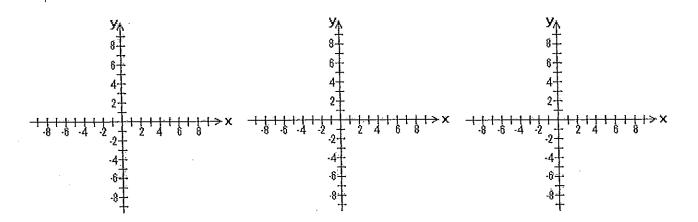
3rd Then simply get your ruler and draw a line through these two points.


4th Now choose a convenient point, e.g. (0,0) to test the inequation above i.e. $3(0)+2(0) \le 6$ is true, therefore shade the lower half plane.

Draw the graphs of the solutions to the following linear inequations:

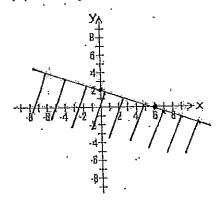
$$(1) \quad 2x + y \geq 8$$

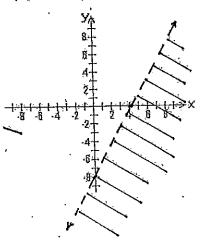
(2)
$$x + 3y \le 6$$


(3)
$$2x - y > 8$$

$$(4) 3x - 4y < 12$$

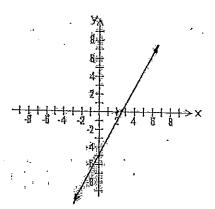
$$3x - 4y < 12$$
 (5) $y = 2x - 5$

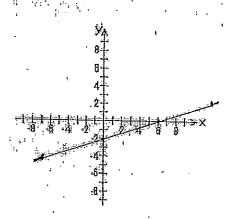

(6)
$$\frac{x}{3} - y = 2$$


(7) Check whether the following pairs of coordinates (1,5), (5,3), (-1,4), (7,-2), (0,5), (9,5) would lie in the shaded region given by x+y<7.

(8) Graph the regions formed by inequalities such as x+y<7, y<2(x-3) and $y \ge 0$.

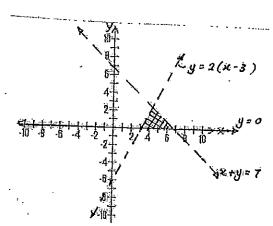
$$(2) x + 3y \le 6$$


(3)
$$2x - y > 8$$


<u>Page 16:</u>

4).
$$3x - 4y < 12$$

(5)
$$y = 2x - 5$$



(6)
$$\frac{x}{3} - y = 2$$

(7) Only points (5,3) and (9,5) would not lie in the region.

